<<

arXiv:2105.12040v1 [astro-ph.EP] 25 May 2021 Keywords uvvlo xmosaon around of Survival ehd:nmrcl–Paesadstlie:dnmclev dynamical satellites: and – numerical Methods: : ls-npaeswihaemsl aordb urn detec current by escape favoured mostly to are which causes planets close-in instability Tidal planets. close-in ftepae.Frtemjrt ftecoei lnt ( planets close-in the of majority the known For not of survival . if term the or long of , the the determining of factor age survive important most the is the (which when calcul time cases We integration investigated the exoplanets. of known fraction around the moon of stability 2 Netherlands The Groningen, tbeobtfrmos ewe 0ad30dy efidatransi a find we days 300 and 70%. 10 to zero Between about moons. for stable 10 oeadbcmsdsutdb togtdlforces. tidal strong in by migrates disrupted moon becomes the and which lobe in scenario”, “disruption (3) and 1 Szab .Dobos V. 3 Hungary Budapest, 1121, E¨otv¨os (ELKH), Network Sciences, Lor´and Research 5 cnro:()“okn” nwihtemo a tbeorbi stable a c fo has specific orbits moon few the moon a which study of in We evolution “locking”, the moon. (1) test where scenarios: one time and integration planet one star, a of 4 hc r h otlkl ohs moons. host to likely most the strategies, are search which optimize to order detect In previously exomoons. characterize discover to aim CHEOPS like missions Abstract. 2020 January E-mail: Hungary 112, u. h. Imre okl hg ilo srnmclIsiue eerhCe Research Institute, Mikl´os Astronomical Thege Konkoly aty srnmclIsiue nvriyo Groningen, of University Institute, Astronomical Kapteyn T-LEEolntRsac ru,90,SetIr .u 11 u. h. Imre Szent 9700, Group, Research MTA-ELTE LEEovo o´n nvriy ohr srpyia O E¨otv¨os Astrophysical ELTE Gothard Lor´and University, nvri´ ePrs ntttd hsqed lb eParis de Globe du Physique de Institut Paris, Universit´e de 9 u eut ieapsil xlnto otelc fsucces of lack the to explanation possible a give results Our pligtemdlt elcssfo neolntcatalogue exoplanet an from cases real to model the Applying eivsiaetetdleouino yohtclmo orb moon hypothetical of evolution tidal the investigate We er) 2 ecp cnro hr h onlae h plan the leaves moon the where scenario” “escape (2) years); o ´ 3 [email protected] , 5 1 , ept ueosatmt,n xmo a rl enconfirm been firmly has no attempts, numerous Despite 2 , 3 .Charnoz S. , 4 .P A. , al ´ 2 .Roque-Bernard A. , < 0dy ria eid)teei no is there periods) orbital days 10 ene odtrietoeplanets those determine to need we intechniques. tion rbigtdlydsutdaround disrupted tidally being or NS -50 ai,France Paris, F-75005 CNRS, , 77A,Lnlvn12, Landleven AD, 9747 sraoy zmahl,Szent Szombathely, bservatory, okl hg ilo ´ut Mikl´os 15-17, Thege Konkoly neooni h ria period orbital the is exomoon an deolnt,adptnilyto potentially and exoplanets, ed ad ni trahsteRoche the reaches it until wards tefrAtooyadEarth and for ntre rudtepae o h full the for planet the around d hnteaeo h ).The the of age the then , t h uvvlrt hc is which rate survival the ate fleoondsoeisfor discoveries exomoon sful lto n stability and olution naln iesae( scale time long a on t lw n fteethree these of one llows tsgaiainldomain; gravitational et’s t nssesconsisting systems in its ini uvvlrt from rate survival in tion 4 ,Sobtey Hungary Szombathely, 2, esuytelong-term the study we , n y M. Gy. and sswt e billion ten with ases dt ae New date. to ed & Survival of exomoons around exoplanets 2

1. Introduction

Regular moons are predicted to form generally in planetary systems, as a direct outcome of planet formation. During the core-, gravitational perturbations between planet embryos imply a series of constructive impacts up to the formation of a fully grown planet (Nagasawa et al., 2007). This phase may happen between a few Myrs to a few 100 Myrs after the (see e.g. Chambers and Wetherill, 1998), and in these processes, satellites may form around the growing planets. Such giant impacts are advocated for the formation of the ’s Moon (Canup, 2004) and for the formation of and ’s satellites (Morbidelli et al., 2012). Satellites may also be formed in rings, which could be natural outcomes of giant impacts or tidal disruptions, either in the planet formation phase or later in a relaxed (see e.g. Charnoz et al., 2009; Canup, 2012; Crida and Charnoz, 2012). An alternative scenario invokes the accretion of moons in the gaseous circumplanetary envelopes that surround the most massive giant planets during their growth in the gaseous protoplanetary disks (see e.g. Canup and Ward, 2006; Sasaki et al., 2010; Miguel and Ida, 2016). Inside the , the solid material is replenished by the surrounding . This solid material is thought to accrete in the form of large satellites in a way similar to planets. Then the young satellites migrate inward, and sometimes sink into the planet. When the circumplanetary disk disappears, the satellite system remains and then undergo long-term tidal evolution. After the planets have been formed, the orbits of moons evolve due to the planet’s tides. Tidal forces lead to the dissipation of energy. On the one hand, this usually results in the gradual expansion of the moon’s orbits, if the evolution starts outside the planet’s synchronous radius. (A synchronous orbit is where the moon’s is equal to the planet’s rotational period.) On the other hand, moons inside the synchronous orbit will migrate inwards and can reach the planet’s Roche limit where the moons are disrupted by tidal forces. The timescale of orbital evolution depends mainly on the intensity of dissipation in the planet’s interior, which relies on the material composition and internal structure of the planet. The dissipation coefficient also varies with the changing planet radius (for gas-rich planets Recent papers attempting to compute the quality factor, Q, (also known as tidal dissipation) show that Q could even be frequency dependant, and thus may strongly depend on the orbital distance (see e.g. Ogilvie and Lin, 2004). However, in the current stage of our knowledge, the large uncertainties in the origin of the dissipation process and in the internal structure of detected exoplanets preclude any theoretical calculation of Q for a specific planet. For this reason, in the present paper, a classical approach is adopted where Q will be considered as a 1 constant, and many values will be explored. The dissipation scales as Q− and we can assume it to be in steady-state when exploring those scenarios which lead to moons on the long-term stability. For rocky planets, Q is low and the dissipation is high (Q 10–100), conversely ∼ for giant planets Q is high ( 104–105) and dissipation is low (Goldreich and Soter, 1966; ∼ Alvarado-Montes et al., 2017). Survival of exomoons around exoplanets 3

The quest for exomoon discovery is a challenging task in itself, and upon finding an exomoon we could empirically constrain the Q value of the host planet by considering the planetary distance and the age of the star. This will provide invaluable information about the exoplanet interior, too, since high/low dissipation rates may depend on the planet core and interface with (Lainey et al., 2012; et al., 2012). Recently, Alvarado-Montes et al. (2017) investigated the orbital changes of exomoons around close-in giant planets due to tidal effects. In addition to the tidal evolution, they implemented the changes of the ’s physical parameters into the model. The radius of the planet decreases over time, and this change is most prominent in the first billion

after the formation of the planet. The value of k2/Q slowly increases, which also has an impact on the orbital evolution of the moon. Probably the most intriguing question concerning the moons is the lack of a firmly confirmed moon in exoplanetary systems. Before novel observation projects are designed for exomoon detection, first we need to find the answer to the question where the exomoons would be. Did we use suboptimal signal detection strategies, or did we simply look for moons in systems where their existence is not too likely? This latter possibility is the central question of this paper. Barnes and O’Brien (2002) showed that exomoons are more stable at longer planetary orbital periods, and also that the orbit of exomoons can tidally evolve first outward and then inward (towards the planet) as the planetary rotation slows due to tidal interaction with the star. Heller (2012) studied the orbital stability of habitable moons using the method of Kipping (2009) and it was found that for of below 0.2M , moons are not likely to stay ≈ ⊙ on stable orbits around planets which are in the habitable zone. Later Zollinger et al. (2017) showed that for planets in the habitable zones of . 0.5M stars, the orbit of moons are not ⊙ stable as they migrate towards the planet. Here we investigate the evolution of hypothetical satellites orbiting the currently known exoplanets with numerical integration, under the influence of tidal interaction. We map a wide range of parameters, including planet periods, moon to planet ratios, and k2/Q. Instead of studying a few cases in large details and with high accuracy, which would be meaning less due to our lack of knowledge on both the physical origin of tidal dissipation, and on the planet’s internal structure, we are more interested in the statistical survival rate of moons. In order to investigate a large range of configurations over billions of years of evolution, we used the average description of Barnes and O’Brien (2002) which are formulated in Eqs. 1–3 (Section 2). We apply this method to identify different evolution pathways of moons (Section 3) and then we calculate survival rates of hypothetical moons around known exoplanets with the aim of pointing out to specific planets as observation targets which might have satellites (Section 4 and Appendix A). Independently of our work, Sucerquia et al. (2019) used similar methods to investigate the orbit stability of exomoons around close-in planets, and estimated their detectability through TDV and TTV effects. Guimar˜aes and Valio (2018) had a similar goal with the focus on the photometric detectability of hypothetical moons around Kepler planets. They selected 54 planets which could possibly host observable moons. Although we also list planets with Survival of exomoons around exoplanets 4

survival rates for moons, we focus our investigations on the survival statistics.

2. Methods

2.1. Orbital evolution of satellites

We calculate the orbital evolution of the planet and the moon from the following equations (Barnes and O’Brien, 2002; Sasaki et al., 2012).

5 16/3 dn 9 k2pR GMmnm m = p Ω n , 8/3 sgn( p m) (1) dt −2 Qp(GMp) −

5 dn 9 k2pR p = p 16/3 Ω 2/3 np sgn( p np) , (2) dt −2 QpGMp (GM⋆) −

3 2 3 dΩ 3 k2pR (GM ) 3 k2pR 1 p = p m 4 Ω p 4 Ω 3 nmsgn( p nm) npsgn( p np) ,(3) dt −2 Qp α(GMp) − − 2 Qp αGMp − where nm and np are the mean motions of the moon and the planet, k2p is the order

Love number of the planet which relates to the dilatation due to tidal response, Qp is the quality factor of the planet which describes the dissipation of energy in the body, G is the , Rp is the radius of the planet, Mm, Mp and M⋆ are the masses of the moon, the planet and the host star, respectively, Ωp is the rotation frequency of the planet, and 2 α is the prefactor of the moment of inertia (αMpR ). Circular orbits are assumed for both the planets and the satellites. p Since Equations (1) and (2) have the form ofy ˙ = C y (where y is either nm or np, p is the exponent of 16/3 while C contains all of the astrophysical constants) and Equation (3) can directly be integrated once the time evolution of nm and np are known, this set of equations can be solved analytically on the domains until nm, np or Ωp do not surpass each other; in this case, the presence of the sgn() function would not allow the fully analytical solution. We therefore implemented the solution in a piecewise-analytical manner, monitoring the sign changes in the differences between nm, np or Ωp while in the distinct pieces, the exact soluion is evaluated. Thus, besides the vicinity of the points where the signs commute, the solution does not even depend on this stepsize, allowing us to highly speed-up the computations. For calculating the survival rate of moons around known exoplanets, we let the orbits of the planet and the moon to evolve until the current age of the star, or if it is not know then until the age of the Sun (4.57 Gyr). We solve the equations analytically with fixed time steps to monitor whether the moon reaches the Roche lobe of the planet or the critical distance (half of the Hill ). In these cases the integration ends because the moon is considered to be lost either because of tidal disruption or escape from the planet’s gravitational bond (for the latter case see Domingos et al., 2006). The critical distance is calculated by 1/3 Rcrit = 0.5 RHill = 0.5 ap Mp/(3M⋆) . If at the end of the calculation the moon is still orbiting the planet, then it is counted as a ”survival” case. Survival of exomoons around exoplanets 5

2.2. Parameters used for the integrations

Stellar mass (M⋆), planet mass (Mp), semi-major axis (ap) and radius of the planet (Rp) were taken from the The Extrasolar Planets Encyclopaedia (http://exoplanet.eu, data obtained on March 25, 2021). Only those planets are considered where the M or the M sin i or the R p p · p value is known (at least one of them). Planets with higher masses than 13 mass are ignored as well as those with M⋆ < 0.08M . In addition, the selected planets also had to have ⊙ either the orbital period (Pp) or the semi-major axis data. After this selection 4064 planets remained. For both the radius and mass (or M sin i if M is not given) of the planet, the uncertainties p· p were taken into account wherever possible. If there was no uncertainty in the data, then simply the given mass or radius was used. If there was a symmetric uncertainty given, then the mass or radius values were generated by choosing a random value with a Gauss distribution. The symmetry was determined with the same method as described in Chen and Kipping (2017, Section 2.2) where the difference between the upper and lower errors must be below 10%. For these symmetric cases the mean of these two values was taken as the standard deviation of the data. If the difference was higher than 10%, then the errors were ignored and simply the mean value was used. We applied exactly the same method for those planets where only the M sin i value was known, not the real mass. In these cases the error of the M sin i p · p · was taken into account wherever possible. This way we could generate realistic data for all planets, taken into account the uncertainties in the measurements. There are 1007 cases (out of 4064) where both the radius and the mass (M or M sin i) of p p · the planet are known. For all the other planets, the Forecaster model was used for generating realistic values for the missing parameter (Chen and Kipping, 2017). This tool predicts the mass (or radius) of the planet based on the radius (or mass). As an input, the generated (above- mentioned Gauss distributed) mass (or radius) values were used as posteriors. This way, for each run the planet had a different mass or radius, or both (if the original data had symmetric errors). See the following description of the defined ranges and distribution of the chosen random values for the rest of the (initial) parameters. Mass of the moon: The mass of the hypothetical moons is selected randomly with a • uniform distribution between 1% and 10% of the host planet’s mass, for each planet. Semi-major axis of the moon: The initial semi-major axis of the moon is chosen • randomly with a uniform distribution on a logarithmic scale between 2 Rp and Rcrit. Radius of the moon: Estimating the radius of exomoons is very challenging, because only • the serves as an example. We choose to define it through their (ρm) using their mass which is already chosen. Based on the big moons (radius >200 km) in the Solar system, we define three categories depending on the locations with respect to

the snowline (asnow). This is because beyond the snowline there are more icy, hence less dense bodies in the Solar system. The snowline is calculated as a = T 2 R /T 2 where snow eff · ⋆ 0 T ff is the effective of the star and T 230 K is the equilibrium temperature e 0 ≈ at the planet’s sub-stellar point (Cowan and Agol, 2011). A fourth category is also given Survival of exomoons around exoplanets 6

for those cases when Teff or R⋆ is not known, hence asnow cannot be calculated. The ρm values are selected randomly with a Gauss distribution with the following parameters. 3 3 – If ap < asnow: the mean value of ρm is3g/cm , σ = 1/3g/cm . 3 3 – If asnow ap < 2asnow: the mean value of ρm is 2.5 g/cm , σ = 1/3g/cm . ≤ 3 3 – If 2asnow ap: the mean value of ρm is 2.5 g/cm , σ = 1/6g/cm . ≤ 3 3 – If asnow is not known: the mean value of ρm is 2.5 g/cm , σ = 1/2g/cm . of the planet: In the Solar system the planet that has the slowest spin • around its axis is Jupiter with 9.9 hours. Scholz et al. (2018) defines an empirical spin– mass relation for planets and brown dwarfs. According to their work, the spin velocity scales as v √M, and from this relation it can be concluded that the spin period does not ∼ exceed 5 days even for brown dwarfs. (Spin–orbit resonances are not taken into account.) Based on these information and considering possible deviations, we set the spin period to a random value with uniform distribution between 10 hours and 5 days. Quality factor of the planet: For the quality factor (Q ) three categories are definied. • p – Rocky planets if Rp < 2R : 10 < Qp < 500 (Goldreich and Soter, 1966). Since ⊕ lower values are more probable, the distribution of the randomly chosen Qp value is uniform on a logarithmic scale. 3 6 – /gas giants if Rp 2R and Pp > 10 days: 10 < Qp < 10 (Goldreich and Soter, ≥ ⊕ 1966; OgilvieandLin, 2004; Laineyetal., 2012, 2017). For these planets

intermediate values are the most probable in this range, hence Qp values are chosen 4.5 0.5 with a log-normal distribution with a mean of Qp = 10 and σ = 10 . 6 – Hot if Rp 2R and Pp 10 days: Qp 5 10 (Ogilvie and Lin, 2004). ≥ ⊕ ≤ ∼ · We do not have much information on the possible Qp value of these planets, hence we use a Gauss distribution with Q = 5 106 as the mean value and σ = 2 106. p · ·

Qp is a critical parameter, as it controls the tidal evolution of the planet, however its value is very poorly constrained, and, in the current state of our knowledge it could vary by several order of magnitudes even for similar planets (Remus et al., 2012). For the giant planets in the Solar System, Q is mostly constrained by the secular acceleration of a big moon orbiting relatively close to the planet and also by theoretical considerations. For these planets Q is estimated to be in the range of 104–105 (see e.g. Goldreich and Soter, 1966; Ogilvie and Lin, 2004; Lainey et al., 2009). However, if Q is not treated as a constant but as a function of the tidal frequency, then we obtain much lower values for with Q about 2500 (Lainey et al., 2012, 2017). Q is mostly unknown for ice giants like Uranus and Neptune, but theoretical considerations put them in the range > 104 (Goldreich and Soter, 1966). However this estimate is based on some unconstrained assumption on the moon formation scenarios and ages. There is also a more recent estimation for Neptune which puts the Q value between 9000 and 36000 (Zhang and Hamilton, 2008). Conversely, the Q of terrestrial planets is very low, in comparison to gas giants, and is typically between ten and a few hundreds (see e.g. MacDonald, 1964; Goldreich and Soter, 1966; Smith and Born, 1976; Ray et al., 2001; Rainey and Aharonson, 2006; Lainey et al., 2007). The Q for these planets is better constrained because of the possibility of laboratory Survival of exomoons around exoplanets 7

tests of rocks (where possible). While Q might go up to 500 for rocky planets, it is typically below 200 in the Solar System. It is highly challenging to draw conclusions about the possible Q value of exoplanets. It seems reasonable to assume that rocky planets have similar values as in the Solar System. We can also speculate that maybe the Q of giant planets is in the same order of magnitude as their Solar System counterparts, however, theoretically, with low- ice-rich cores, Q in the range a few hundreds would also be possible for a Saturn-like planet (Lainey et al., 2017). In hot-jupiters, because of the assumed synchronous spin and circularized orbit, Q might be around 5 106 (Ogilvie and Lin, 2004). · The Love number k2 varies modestly from one planet to another in the Solar System but is between 0.1 and 0.6 (Gavrilov and Zharkov, 1977). We choose k2p = 0.5. However k2 never appears alone, but only in k2/Q. So we fix the value of k2 and vary the value of Q to save a free degree of liberty that would lengthen the computation time. For the same reason, the parameter used for calculating the gyration radius is also fixed to α = 0.3. It is expected that planets with different compositions and structures have different gyration radii, but by keeping α fixed, a free parameter is removed. For each planet ten thousand runs are made to get a wide sample of the different initial parameters. What we call the ”survival rate” is simply the ratio of surviving moons (those that stayed in orbit around the planet until the end of the integration) and the total number of tested configurations. For a few example cases, the parameters of the planet and the moon are set to specific values which are described in details in Section 3.

3. Example cases

In the example cases (see Figs. 1 and 2), the system configuration consists of a Solar-mass star with an Earth-like planet and a moon which has different mass in the different cases. The quality factor of the planet is Qp = 10 in all cases. The initial parameters used for the different runs are summarized in Table 1. Note that the time shown in the horizontal axis is significantly shorter in Fig. 1 (where it ends at 5 106 years) than in Fig. 2 (where it ends at 1010 years). ·

3.1. Evolution outcomes

In the integrations, the moon has been observed to follow three different families of evolutionary tracks, and depending on the actual parameter set, all of these three tracks can evolve rapidly, resulting in an unstable system, or the evolution can be slow enough to lead to a surviving moon. Both the morphology and the stability depends on the position of the Hill sphere, thus eventually, on the masses and orbital periods of both the planet and the moon, the

, and Qp.

3.1.1. Disruption scenario When the planet is close enough to the star, the tidal torque on the planet from the star very effectively spins down the planet. The tidal bulge is shifted Survival of exomoons around exoplanets 8

Fig.1upper Fig.1lower Fig.2upper Fig.2middle Fig.2bottom panel panel panel panel panel

Mm/Mp 1/85 1/85 1/85 1/150 1/300

ap [AU] 0.3 0.3 1.0 1.0 0.8 6 1 nm [10− s− ] 38.0 6.1851 2.6640 2.6640 2.6640

Table 1. Initial parameters used for the example cases shown in the different panels of Figs. 1 and 2. The star mass is M⋆ = 1M , the planet mass is Mp = 1M and the quality factor of the ⊙ ⊕ planet is Qp = 10 in each case. slightly toward the trailing side of the moon’s orbit, the moon quickly looses energy, spirals inward and is disrupted at the Roche lobe. The time scale of this migration is very short (in the order of 1–200 million years, mostly depending on the stellar distance and on the moon– planet mass ratio) compared to the 10 Gyr integration time, therefore we consider that these moons are unstable. This scenario is described in details in Alvarado-Montes et al. (2017), and our results are completely compatible with their findings (Fig. 1, top panel).

3.1.2. Escape scenario If the planet’s orbit is close to the star, then the Hill radius is smaller. On any orbit inside the Hill sphere, the moon suffers strong tidal forces, especially if the planet is relatively massive, which makes the outward migration very fast. As a consequence, if the moon formed close to the critical distance from the planet (half of the Hill sphere), then it will quickly escape, before synchronization could happen (Fig. 1, lower panel).

3.1.3. In connection with tidal locking, we define three different scenarios.

Moon–planet locking: the Selenoid scenario. The evolution track is somewhat similar to the Earth–Moon case. First, the moon migrates outwards, until a spin-orbit synchronisation is reached between the orbital period of the moon and the rotation of the planet. In the later evolution, the moon slowly turns back, the typical time scale before colliding with the planet was in the order of 10 in our integrations. (More specifically, the end state of the moon is reaching the Roche radius of the planet, where the moon will be disrupted). Therefore, we consider this scenario as stable (Fig. 2, top panel). We note that the similarity with the Earth–Moon case is limited to the synchronization between the two bodies, but there is a qualitative difference: here the planet spin is synchronizing with the orbit of the moon, while in the Earth–Moon case the spin of the Moon is synchronized with the orbit of the Earth. Star–planet locking. This scenario is similar to the Selenoid, but rather than synchronising with the moon, the planet is synchronised to the central star. We did find this possibility in several test runs, and seems to be typical for certain configurations (close- in systems with lightweight moon). In these cases, the moon’s migration is slow and has a similar time scale than in the Selenoid case. The path is qualitatively identical: first the moon migrates outwards and then later inward (Fig. 2, middle panel). This configuration is also stable on the long term, and the moon can be observed (with difficulties coming from its low Survival of exomoons around exoplanets 9

0

0

a 0MM

0 0 0

0

0

a 0MM

0 0 0

Figure 1. Moon orbit and planet spin evolution in two example cases. See the initial parameters in Table 1. Blue dashed horizontal line at 6 10 6 s 1 represents the location of the · − − critical distance from the planet (half of the Hill radius of the planet) beyond which the moon escapes. Red dashed horizontal line shows the Roche radius of the planet expressed in the unit of . Upper panel (disruption scenario): the moon quickly synchronises with the planet, but when migrating inwards to the planet, it reaches the Roche lobe and becomes tidally disrupted. Lower panel (escape scenario): the moon slowly migrates outwards meanwhile the planet spin evolves. When the moon reaches the critical distance (after about 4 million years), it escapes from the planet. mass and small size). Temporarily locked scenario. We found another tidal evolution scenario with rather complex evolution for which we have not found earlier discussion in the literature. At the beginning it has essentially the same evolution as the star–planet synchronisation, but since the moon migrates inwards, here the tidal forces from the moon is increasing, and from a point they majorate over the tidal forces from the star. At this point, the planet rotation will be decoupled from the mean motion, and resynchronizes with the moon. The inward migration of the moon is enhanced from that point, and the moon soon reaches the Roche limit of the planet. In the scenario shown at the bottom panel of Fig. 2, the planet’s synchronisation with the star happens after approximately 2 109 years, where there is the turning point of the · moon’s orbit, too, and the break-up of the star-planet synchronisation occurs at 7 109 years. ∼ · Survival of exomoons around exoplanets 10

0

0 0

0

0 a 0MM 0 00 0 0 0 0 0 00

0

0

0

0

0 a 0MM 0 0 00 0 0 0 0 0 00

0

0

0

0

0 a 0MM 00 0 00 0 0 0 0 0 00

Figure 2. Moon orbit and planet spin evolution in three example cases. See the initial parametersin Table 1. Blue and red dashed horizontallines represent the location of the critical distance for moon escape and the location of the Roche limit, respectively, expressed in the unit of mean motion. Upper panel (moon–planet locking scenario): the moon synchronises with the planet after 3 109 years; up to this point, the moon slowly migrates outwards from ∼ · the planet, but after synchronisation the moon’s orbital period slowly decreases. Middle panel (star–planet locking scenario): for smaller Mm/Mp mass ratio the planet synchronises with the star and becomes tidally locked. Bottom panel (temporarily locked scenario): first the planet synchronises with the star (at around 2 109 years) but because of the moon’s inward migration, · later it synchronises with the moon instead ( 7 109 years), but after that, the moon shortly ∼ · reaches the Roche limit of the planet. Survival of exomoons around exoplanets 11

Because of the large time scales, this configuration is also stable on the long term, and moons in such systems could be found.

3.2. Time scales

The time scales of the discussed scenarios depend on the migration rate, hence indirectly on the distance of the Hill-sphere which can limit the evolution path very close to the star. Close-in planets always evolve very rapidly, because (i) the Hill-sphere is close to the planet, and the moon reaches the critical distance from the planet very soon, or turns back at a very close distance to the planet; and (ii) since the moon is always very close to the planet, very prominent tidal forces emerge and the orbit evolution will be very fast. For most close-in configurations, similarly to the hottest sub-Jupiters known, the tidal escape time scale of the moon can be even less than 1000 years. The only possible scenarios for those cases when the planet is too close to the star are the disruption and the escape scenarios (Fig. 1 upper and lower panels). If the planet orbits the star at a larger distance, the path to the the critical distance from the planet is longer and the evolution is slower, hence the time scale of stability can reach billions of years, or even the Hubble time scale (these are the tidal locking scenarios, see Fig. 2). For selenoids, this means that the fallback takes several billion years, and for runaway moons, the runaway time takes several billion years. In other words, with increasing planet orbital period first we get quickly falling-back selenoids, then stable selenoids (Fig. 1 and 2 upper panels).

4. Known exoplanets

We calculated the evolution of possible model moons in the known planetary systems with the aim of pre-selecting those exoplanets which can physically have a satellite. These planets might worth a detailed follow-up observation for a moon survey. Planets and their model moons were simulated according to the recipe described in Sect. 2. The results are listed in Table A1 (in Appendix A), ordered by decreasing survival rate. (Only those cases are shown in the table which have non-zero survival rates.) The table also contains the mean of the integration times for each planet. If the survival rate is a hundred percent, then the mean of the integration times will be equal to the age of the star (or of the Sun, if the star’s age is not known, as described in Section 2). If in some cases the integration stops earlier, then the mean of the integration times will be shorter. This parameter together with the survival rate can be considered as a measure for the stability of moon orbits. Fig. 3 shows the survival rate for test exomoons as function of the orbital period of the planet. Because the critical escaping distance is small below 10 days orbital period, only a few exomoons stay in a stable orbit around the planet. Above 300 days, the survival rate ∼ is about 70–90 percent, as a consequence of the large critical distance. Between about 5 and 300 days we find a ”transition zone” where the increasing size of the critical escaping distance results in higher and higher survival rates. Survival of exomoons around exoplanets 12

100

80

60

40 Survival rate[%] Survival planet with measured radius and mass 20 planet with estimated radius planet with estimated mass

0 100 101 102 103 104 105 106 107 108 Orbital period of the planet [days]

Figure 3. Survival rate of moons around known exoplanets as function of the planet orbital period. Black coloured dots: planets with known radius and mass data. Teal coloured dots: planets without known radius data, for these, their radius was estimated based on their measured mass (or Mp sin i). Yellow coloured dots: Planets without known mass data, for these the masses were estimated from their measured radius.

The saturation at 85% survival rate for large orbital periods is caused by the chosen ∼ initial semi-major axes of the moons which in some cases is below the synchronous orbit. In these cases the moons spiral inwards to the planet until they reach the Roche sphere. Only a fraction of known exoplanets are promising exomoon hosts according to this work. This is primarily because the orbital period behaves as a moon ”censor”: not much satellites are expected (survival rate mostly below 40%) for planets in shorter period orbits than 10 days. This is not surprising, since planets this close to the star have small Hill radii, hence stable orbits for a moon are limited to a very narrow space. As the orbit of the moon evolves, sooner or later it will reach the instability limit and escape from the planet’s gravitational bond. Interestingly, the planets with known mass and radius data (see the black dots in Fig. 3) are showing smaller deviation above 100 days orbital period, compared to those for which ∼ the radii or masses are estimated from their other parameter (teal and yellow coloured dots, respectively). For the planets with known mass and radius value, the survival rate reaches 50% at around 100 orbital period of the planet, while for the other planets it is much more diffused in between approximately a hundred and a thousand days. Choosing a mass or radius value for the planet is an extra free parameter which naturally causes higher uncertainty in the results. This might be the reason of the shift of the transition zone from 5–100 days to 30–300 days orbital period for the two kinds of planets. For those where we have to add random mass or radius values, we will find more unstable cases, hence the survival rate starts increasing only at higher orbital periods where the critical escape distance from the planet Survival of exomoons around exoplanets 13 is larger. Another explanation for the shift could be an observation bias, since the planets for which both mass and radius data are measured are those for which both and observations were made. This means that they are orbiting close to the star and in the meantime they are also massive. This might also explain why the transition zone is closer to the star for these planets. For known exoplanets with long orbital periods, the host stars are quite faint, and the S/N ratio required for a successful moon detection is not achievable by even as precise instruments as the Kepler telescope. This finding is the resolution of the seeming paradox of missing exomoons in Kepler data. Moons are more likely to have a stable orbit around long orbital period planets, but these cases are difficult to observe. This result is also an alert for later transit finding surveys to focus on planets around bright stars with &10–100 days orbital period.

5. Discussion

The successful detection of a moon around an exoplanet relies basically on two independent factors: the moons must exist (occurrence), and those moons must be observable. The occurrence is a product of two factors: the formation rate and the stability time scale. Formation studies of moons (and planets or stars) are beyond the scope of this paper, however, with the described formalism, we estimate the survival rate of moons around currently known planets. The survival rate of model moons in known exoplanetary systems shows that satellites can only stay in orbit around the host planet if the orbital period of the planet is larger than five days. In our investigations we found a transition zone between 5 and 300 days orbital period where the survival rate is growing with larger orbital periods. Above 300 days orbital period the moon survival rate reaches 70–90% for the investigated planets. These specific numbers however depend on the range of chosen initial parameters. Also, increasing the integration time could result in decreasing the survival rates in some cases. This would be only a quantitative change as it would not alter the relation between the survival rate of moons and the orbital period of the planets. Our investigationserves statistical purposes, and it shows a clear trend in survival rates that increase with planetary orbital period. This result is in good agreement with the findings of Alvarado-Montes et al. (2017), who developed a more detailed model including the changes of the planet’s physical parameters over time as an additional factor influencing the orbital evolution of satellites. Their results showed that moons of planets with lower than 60-day orbital periods collide with the planet, ∼ but for planets with larger stellar distances, the satellites slowly migrate outwards and stay inside the Hill-sphere of the planet during the whole 4 Gyrs integration time (’realistic’ case,

Fig. 9 in their article). Including the change in the planet radius and k2/Q tidal parameter over time in their model increased the chance of moon survival. This implies that neglecting these factors in our study might underestimate the moon survival rates. Our results are in line with those of Sucerquia et al. (2019), too, who concluded that long-period planets are more favourable moon hosts than short-period ones. They used a very Survival of exomoons around exoplanets 14

similar calculation method with the aim of estimating the TTV and TDV signals for detection. They conclude that in their investigated phase space no system produces TDV signals strong enough to be observed, but there are a very few cases where the TTV signal would be observable with TESS and Kepler. Larger moon–to–planet ratios and stellar distances could help observations. With a similar aim, but using a different method, Guimar˜aes and Valio (2018) also investigated known planets which could host moons. Beside checking the possible semimajor- axes of moons, they also took into account their detectability, providing a list of 54 Kepler planets and candidates which could have detectable moons. Recently, Tokadjian and Piro (2020) made a similar work to ours in which they investigated the orbit evolution of moons around known exoplanets using simplified tidal lag models. They identified 36 habitable zone planets around which a moon might be stable for long time scales (at least for 1 Gyr). We found that from these planets 29 have at least 50% survival rate for exomoons (typically between 50 and 65%.). There are also four planets with survival rates higher than 65%: these are Kepler-459 b (69%), Kepler-456 b (72%), Kepler-1654 b (70%) and Kepler-1647 b (69%). They also found that for 21 planets the time scale before loosing the moon is larger than the Hubble time in all investigated cases. Our results show moon survival rates typically between 55 and 70% for these planets with mean

integration times (tmean) between 2 and 3 Gyrs (see Table A1). There is one outstanding case (Kepler-1628 b) which resulted in only 9% survival rate in our study. The explanation of our lower stability levels in general is that a much bigger phase space was explored for the initial parameters compared to the study by Tokadjian and Piro (2020). Also, since the age of these planets is typically lower than 5 Gyrs (and in some cases it is not known), our calculation stopped much earlier. Mart´ınez-Rodr´ıguez et al. (2019) investigated the orbital stability and habitability of exomoons around known planets of M dwarfs. They found 4 planets which were in the habitable zone and for which the orbit of the moonis stable for a long timescale (the migration time of the moon is larger than the Hubble time). These four planets are HIP 12961 b, HIP 57050 b, GJ 876 b and c (in their paper under the names of CD-23 1056 b, Ross 1003 b, IL Aqr b and c, respectively). Interestingly, for these planets our model gave 0%, 0%, 6% and 0% survival rates, respectively. One of these four planets, however, HIP 57050 b was thoroughly investigated also by Trifonov et al. (2020) (planet name: GJ 1148 b in their paper) where they were using secular theory and direct N-body integrations to study the possibility of a moon. Similarly to our results, they have found that it is unlikely that a moon would stay in stable orbit around the planet. Zollinger et al. (2017) investigated the tidal evolution and habitability of exomoons assuming possible configurations, and found that moons in the habitable zone of M dwarfs experience a rate comparable to the tidal heat flux of Jupiter’s moon, ( 2W/m2). For stars with masses . 0.2M , because of the strong gravitational effect of ∼ ⊙ the nearby star, the tidal heating rate of a -like moon around a Jupiter-like planet is much stronger than that of Io’s, implying that these moons might not be habitable. The maximum limit of tidal heating for habitability, however, is not known, and atmospheric effects can Survival of exomoons around exoplanets 15

influence the habitability of bodies, as well (Barnes et al., 2013). Recent hydrodynamical simulations showed that icy moons can form from circumplan- etary disks of ice giants such as Uranus and Neptune, indicating that there might be a large population of moons around exoplanets beyond the snowline (Szul´agyi et al., 2018). Accord- ing to our findings, these moons, if formed, can stay in stable orbits for a long period of time. Older stars host more evolved systems, in which there is a higher possibility that most satellites have disappeared due to either disruption (at the Roche radius of the planet) or escape. The presence of a massive exomoon may prevent synchronization of the planet with the star and promotes synchronization with the moon. In this case, satellites also evolve into a 1:1 spin-orbit resonance, getting to a mutually synchronised planet-moon system. Less dissipative planets (gas giants and ice giants) are more prone to keep satellites because of slower orbital migration (see e.g. Sasaki et al., 2012). If an exomoon is observed around a planet, it can provide a strong constraint on the value of the quality factor, Q, which describes the dissipation in the planet, and gives hint on its interior. Since younger stars host less evolved systems, there is a higher chance for planets to still have satellites (which will escape or be destroyed later). But satellites on less distant orbits are more difficult to observe (Szab´oet al., 2006; Simon et al., 2012). If more than one moon is found, than their orbital architecture may give information on their formation, and provide a strong constrain on Q. It may also be possible to infer the presence of rings.

6. Conclusion

There is no confirmed exomoon detection to date, but the quest for finding moons in Kepler data is still in progress. Teachey et al. (2018) reported an exomoon candidate, Kepler-1625 b I (see also Teachey and Kipping, 2018), but this discovery is under debate (Kreidberg et al., 2019; Teachey and Kipping, 2019). Regardless of the existence of this moon, we found stable orbits for satellites around this planet. Recently, the presence of an exomoon candidate was suggested based on observations of sodium and potassium lines around planet WASP-49 b (Oza et al., 2019). Further observations are needed for confirmation. As a result of our calculations, we conclude that planets with long orbital periods support high survival rates for moons, and close-in planets, which are easier to observe, are less likely to host moons. This can serve as an explanation for not having a confirmed exomoon discovery so far. Thanks to high accuracy and long-term follow-up missions, CHEOPS is measuring the radius of numerous known exoplanets through transits with unprecedented accuracy. This paves the way for characterizing the close environment of exoplanets, and can unveil the presence of exomoons and exorings. Moons and rings are natural companions of planets. Neptune sized planets are especially promising targets owing to their (putative) lower dissipation and large mass compared to Earth-like planets. Such targets will be in the reach of the CHEOPS mission. Following the CHEOPS mission, ESA’s PLATO 2.0 mission, capable of discovering and following exoplanet systems and host stars, and the ARIEL mission will REFERENCES 16

continue the task of collecting precise exoplanet light curves. Whereas exomoons have never been firmly detected up to date, they should exist and their successful detections will provide invaluable information on the planet’s interior and formation process (Crida and Charnoz, 2012). Detecting the first exomoons will be a major discovery as moons could provide habitable environments, in particular if they orbit volatile rich planets (like giant planets) and are located inside, or close to, the habitable zone (Forgan and Dobos, 2016; Dobos et al., 2017).

Acknowledgments

We thank the referee, Alessandro Trani for useful comments which improved the manuscript. The COFUND project oLife has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847675. This project has been supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grant GINOP-2.3.2-15-2016-00003, the City of Szombathely under Agreement No. 67.177-21/2016 and the grant KEP-7/2018 of the Hungarian Academy of Sciences. VD has been supported by the Hungarian National Research, Development, and Innovation Office (NKFIH) grants PD-131737 and K-131508. SC acknowledges support for the CHEOPS mission from the CNES agency, and EXOATMOS program from LabEx UnivEarthS (ANR- 10-LABX-0023 and ANR-18-IDEX-0001).

References

Alvarado-Montes J A, Zuluaga J I and Sucerquia M 2017 MNRAS 471, 3019–3027. Barnes J W and O’Brien D P 2002 ApJ 575(2), 1087–1093. Barnes R, Mullins K, Goldblatt C, Meadows V S, Kasting J F and Heller R 2013 13, 225–250. Canup R M 2004 &A 42, 441–475. Canup R M 2012 Science 338, 1052. Canup R M and Ward W R 2006 in ‘AAS/Division for Planetary Sciences Meeting Abstracts #38’ Vol. 38 of Bulletin of the American Astronomical Society p. 491. Chambers J E and Wetherill G W 1998 Icarus 136(2), 304–327. Charnoz S, Morbidelli A, Dones L and Salmon J 2009 Icarus 199, 413–428. Chen J and Kipping D 2017 ApJ 834(1), 17. Cowan N B and Agol E 2011 ApJ 729, 54. Crida A and Charnoz S 2012 Science 338, 1196. Dobos V, Heller R and Turner E L 2017 A&A 601, A91. Domingos R C, Winter O C and Yokoyama T 2006 MNRAS 373, 1227–1234. Forgan D and Dobos V 2016 MNRAS 457, 1233–1241. Gavrilov S V and Zharkov V N 1977 Icarus 32, 443–449. REFERENCES 17

Goldreich P and Soter S 1966 Icarus 5, 375–389. Guimar˜aes A and Valio A 2018 AJ 156, 50. Heller R 2012 A&A 545, L8. Kipping D M 2009 MNRAS 392(1), 181–189. Kreidberg L, Luger R and Bedell M 2019 ApJ 877(2), L15. Lainey V, Arlot J E, Karatekin O¨ and van Hoolst T 2009 Nature 459, 957–959. Lainey V, Dehant V and P¨atzold M 2007 A&A 465(3), 1075–1084. Lainey V, Jacobson R A, Tajeddine R, Cooper N J, Murray C, Robert V, Tobie G, Guillot T, Mathis S, Remus F, Desmars J, Arlot J E, De Cuyper J P, Dehant V, Pascu D, Thuillot W, Le Poncin-Lafitte C and Zahn J P 2017 Icarus 281, 286–296. Lainey V, Karatekin O,¨ Desmars J, Charnoz S, Arlot J E, Emelyanov N, Le Poncin-Lafitte C, Mathis S, Remus F, Tobie G and Zahn J P 2012 ApJ 752, 14. MacDonald G J F 1964 Reviews of Geophysics and Space Physics 2, 467–541. Mart´ınez-Rodr´ıguez H, Caballero J A, Cifuentes C, Piro A L and Barnes R 2019 ApJ 887(2), 261. Miguel Y and Ida S 2016 Icarus 266, 1–14. Morbidelli A, Tsiganis K, Batygin K, Crida A and Gomes R 2012 Icarus 219, 737–740. Nagasawa M, Thommes E W, Kenyon S J, Bromley B C and Lin D N C 2007 in B Reipurth, D Jewitt and K Keil, eds, ‘Protostars and Planets V’ p. 639. Ogilvie G I and Lin D N C 2004 ApJ 610(1), 477–509. Oza A V, Johnson R E, Lellouch E, Schmidt C, Schneider N, Huang C, Gamborino D, Gebek A, Wyttenbach A, Demory B O, Mordasini C, Saxena P, Dubois D, Moullet A and Thomas N 2019 arXiv e-prints p. arXiv:1908.10732. Rainey E S G and AharonsonO 2006 in S Mackwell and E Stansbery, eds, ‘37th Annual Lunar and Conference’ Vol. 37 of Lunar and Planetary Science Conference. Ray R D, Eanes R J and Lemoine F G 2001 Geophysical Journal International 144(2), 471– 480. Remus F, Mathis S, Zahn J P and Lainey V 2012 A&A 541, A165. Sasaki T, Barnes J W and O’Brien D P 2012 ApJ 754, 51. Sasaki T, Stewart G R and Ida S 2010 ApJ 714, 1052–1064. Scholz A, Moore K, Jayawardhana R, Aigrain S, Peterson D and Stelzer B 2018 ApJ 859(2), 153. Simon A E, Szab´oG M, Kiss L L and Szatm´ary K 2012 MNRAS 419, 164–171. Smith J C and Born G H 1976 Icarus 27(1), 51–53. Sucerquia M, Ram´ırez V, Alvarado-Montes J A and Zuluaga J I 2019 MNRAS p. 3168. Szab´oG M, Szatm´ary K, Div´eki Z and Simon A 2006 A&A 450, 395–398. Szul´agyi J, Cilibrasi M and Mayer L 2018 ArXiv e-prints . REFERENCES 18

Teachey A and Kipping D M 2018 Science Advances 4(10). URL: http://advances.sciencemag.org/content/4/10/eaav1784 Teachey A and Kipping D M 2019 in ‘American Astronomical Society Meeting Abstracts #233’ Vol. 233 of American Astronomical Society Meeting Abstracts p. 404.03. Teachey A, Kipping D M and Schmitt A R 2018 AJ 155, 36. Tokadjian A and Piro A L 2020 AJ 160(4), 194. Trifonov T, Lee M H, K¨urster M, Henning T, Grishin E, Stock S, Tjoa J, Caballero J A, Wong K H, Bauer F F, Quirrenbach A, Zechmeister M, Ribas I, Reffert S, Reiners A, Amado P J, Kossakowski D, Azzaro M, B´ejar V J S, Cort´es-Contreras M, Dreizler S, Hatzes A P, Jeffers S V, Kaminski A, Lafarga M, Montes D, Morales J C, Pavlov A, Rodr´ıguez-L´opez C, Schmitt J H M M, Solano E and Barnes R 2020 A&A 638, A16. Zhang K and Hamilton D P 2008 Icarus 193(1), 267–282. Zollinger R R, Armstrong J C and Heller R 2017 MNRAS 472, 8–25.

Appendix A. Moon survival rate for known exoplanets

See Table A1 for a list of exoplanets in a decreasing order of moon survival rate (see Section 4 for details). A horizontal line at 50% moon survival rate separates the cases where moons are more probable to stay in a stable orbit around the planet. Keep in mind that, as discussed in Section 5, the calculations served only statistical purposes, and the actual survival rates listed below might change for different initial conditions and different restrictions. REFERENCES 19 88 85 6 87 596 87 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.560.350.76 1.500.97 –1.56 1.26 –1.56 – 3972 1.50 –1.22 0.060 1.50 0.0050.76 – – 2224.58 0.002 – 1398.31 –1.56 13.17 1.26 3813.56 0.002 0.0601.73 – 163979.54 6291 3972 0.0601.75 1.50 1906.78 2637.71 – 0.0509 – 2637.71 0.160 0.0051.27 13.17 69533.20 – – – 1746222.400.95 14.27 1271.19 2224.58 41027.21 0.00453 2.14 0.00170 – 84 82169.80 10.53 0.060 23070.24 – – – 5641 0.0495 2923.73 94872.98 0.040 0.0497 83 0.00168 84 5436 0.020 45312.77 12.84 – 3114.41 0.132 82 826.27 19421.92 0.00448 18.11 83 82 – 113.45 12.18 0.0491 7749.03 82 12.97 113.90 82 10210.67 0.0321 3999.43 81 – 0.0161 3.65 80 3081.47 80 3.66 79 79 0.702.302.30 –1.92 – – 1.84 – – 8590 – 0.0010.35 0.440 0.0051.60 0.0050.97 4.13 – 66.101.96 95.34 –0.37 95.34 19.75 –1.65 1.77 – – – 75502.80 79025.00 – – 8840 1.60 – 333592.87 0.017 487421.45 0.100 0.00098 2.29 259124.58 0.014 7650 – 0.00456 3495.76 826.27 11361 0.389 0.250 0.00454 3146.19 0.012 98 14.81 0.047 3495.76 0.001 16.46 – 55220400.96 91 699.15 4131.36 88 90 300988.27 3495.76 – 0.0866 139944.66 13.17 – 0.0121 – 3985622.47 0.0147 218277.80 86 62445.15 0.216 3599636.38 0.0399 86 0.00086 86 0.0102 86 85 85 85 ⋆ M 4751b 0.60 – – 0.120 3972.46 – 1644768.25 0.101 84 + CHXR 73 b PDS 70 c LKCA 15 b HR 8799 d HR 8799 c 2M0103-55(AB)bGJ 504 b PDS 70 b OGLE-2008-BLG-092LAbHR 8799 e beta Pic b 51 Eri b PSRB1620-26(AB)bHD 114613 b HD 102843 b 0.40 0.71 – – – – 1.35 0.030 – – 4131.36 57.20 – – – 444608.25 – 0.0249 25182.35 794.49 3.72 82 – 34674.76 81 3.66 79 HR 8799 b ROXs42B(AB)bTYC8998-760-1cWD0806-661BbGU Psc b 2M 2236 0.60 1.00 0.62 – – – 2200 4573 0.007 0.017 – 2860.17 1906.78 27.43 1.500 – 781097.08 2542.37 0.00 2090805.11 – 0.014 57983276.50 1.30 87 planet name GQ Lup b HD 163296 c HD 163296 b b HD106906(AB)bHD 95086 b HD 203030 b HIP 65426 b DH Tau b HD 169142 b kappa And b Ross458(AB)c 1.50 – 6798 0.013 3495.76 – 0.60 7390457.83 0.0115 – – 0.475 3591.10 11.74 18822496.43 0.406 REFERENCES 20 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.071.071.09 1.381.03 1.53 58360.78 0.98 57940.92 1.24 8.500 56690.76 – 7.700 5892 0.78 120.76 6.6001.03 1026.48 – 7.400 4962 51051.67 953.391.31 – 1.24 – 521.19 3.7000.83 – – – 58921.07 – 1.42 5663.47 193.861.07 – 26965.31 0.90 7.400 5830 1.400 60991.15 194.49 1.46 23661.24 5116 – 1.25 6.81 14218.60 6.08 1032.84 171.61 2.400 5600 1.14 – – 0.660 57401.00 5.18 4318.00 931.14 – 57440.94 5.80 – – 244.70 9.700 3082.63 79 7012.25 78 – 2.5501.40 – 0.87 16424.19 2.92 78 2458.24 260.59 –1.02 – 209.75 1194.92 78 3.59 5760 5741 2.14 8644.96 1.081.27 – 5.74 – 22482.00 – – 2502.36 4.000 1.170 61961.13 78 1.18 1.63 78 1.85 4932.18 314.62 861.23 2.040 3.551.05 3947.77 11588.40 1.33 0.516 77 – 62121.06 77 1.12 1703.39 57010.99 – – 1.01 7.52 1.99 3.57 3.800 58740.79 77 77 – 77 – – 9.410 6024 3841.05 – 6533.36 336.55 3.080 0.78 689.62 2.100 59111.10 77 143.01 77 7381.45 77 5675 92.16 4699 – 0.903 3.09 161.44 4.300 – 0.86 – 1.56 – – – 3893.85 64.39 6180 – 76 6700.00 76 1631.29 5.930 111.42 1056.30 108.05 2.94 – 76 1308.76 7.20 1684.32 3.50 – – 2.36 2224.10 1.61 – 76 76 1360.60 2198.42 76 3.33 6175.27 76 76 3.53 3.52 4.47 76 76 76 75 ⋆ M planet name HD 34445 g HR 5183 b Kepler-93 c 47 Uma d HD 181433 d HD 114783 c epsInd A b HD133131Ac47 Uma c HD 221420 b HD 50499 c eps Eridani b HD 141399 e HD 134987 c HD 92788 c OGLE-2018-BLG-1269LbOGLE-2011-BLG-0173LbHIP 11915 HD 150706 b MOA-2011-BLG-028Lb 0.95HD 89744 c HD 86226 b MOA-bin-1Lb –ups And e 1.13HD 4203 c 5799 0.40HD 82943 d HD 7449A – 9.700 b HD 10180 – h HD 47186 0.75 152.54 c HD – 219134 h OGLE-2014-BLG-0124Lb – – –OGLE-2012-BLG-0026LcHD142Ac – – 3411.59 – 0.75 219.28 7.58 60.38 – – – – 0.89 77 0.82 29.87 3400.95 – 18262.43 – – – 3.52 – 3.53 – 8046.47 – 1175.85 76 76 – – 3.54 – 203.39 10084.98 216.10 76 – 3.48 – 2513.40 4018.40 76 3.51 3.53 76 76 REFERENCES 21 4 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.520.94 7.601.40 49432.12 0.83 1.50 2.3001.03 13.76 – 6577 4766 508.471.19 1.01 0.150 0.790 0.950 5790 – 2288.14 – 2526.481.16 422.67 2.4200.94 – 2550.00 – 6212 2157.84 – –0.88 – 3.3000.83 3246.28 1.74 5276.24 – 59400.79 2275.91 – 486.23 57270.86 0.82 4.400 0.113 0.5971.21 0.78 6060.63 4.990 0.721 5468 56101.02 – 75 0.83 460.81 46991.41 1.34 222.46 4.920 3.330 51601.09 1.83 1.08 75 75 3121.91 6032 – 3.30 75 – 413.14 221.19 4.000 5666 – 1.18 2.410 4917 2.51 1423.73 75 3723.49 7.320 6160 – – 70.87 1639.83 2372.23 4.000 1299.79 – 2.000 3.33 1779.66 – 3471.76 1885.44 – 75 3.77 – 301.91 6065.62 – 5064.17 3.70 2.49 1678.95 75 – 5235.62 75 2.99 5097.40 1.81 3.41 1836.06 74 5.46 74 2.98 74 1.50 74 74 74 74 74 1.051.080.91 1.121.12 1.25 55801.47 1.53 57000.49 2.18 11.600 5988 12.73 6.410 5248 0.52 953.39 4769 – 576.48 9.560 – – – 197.67 – 985.17 6587.33 1906.78 – – – 4209.71 – 8.65 244.70 1934.39 4938.69 4.82 4099.61 – 7.21 74 3.42 3.40 74 7049.00 74 74 3.43 74 74 0.580.92 – 0.91 3564 5400 4.800 – 149.36 11122.89 – – 1680.05 41085.10 3.67 3.47 75 75 ⋆ M 49 828 b + OGLE-2012-BLG-0026LbPr 0211 c HD 113337 c HD 25723 c HD65216AcHD 98649 b HD126614AbHD 162004 b OGLE-2017-BLG-0406b 0.82OGLE-2006-109LcHD 220773 b HD 32963 – b DPLeo(AB)bHD 154345 b HD – 37124 d HD 219134 e HD 25015 b 0.92HD 0.56 148164 – b HD 217107 c 1.15HD 75784 c – – 0.51HD 34.96 25171 b 1.09OGLE-2017-BLG-0604b 5666OGLE-2016-BLG-0613L(AB)b – – 5585 – 7.200 – 0.69 3011.46 – – 120.76 645.13 – 3.49 130.30 – – 1.00 – 0.70 – – 1229.67 86.12 75 – 5250.45 – 3195.93 – – 5.49 – 3.46 – 1922.67 3.46 4882.28 75 – – 75 – 3.47 75 1328.39 10305.99 162.08 – 75 3.41 – 5913.69 3571.32 74 3.43 3.44 7 74 HD 30177 c mu Ara e HD 190984 b HD 11964 b HD 238914 b GJ 849 c MOA-2012-BLG-006b 0.49 – – – 2669.49 – 16997.73 3.40 74 planet name GJ 229 B HD 30669 b BD REFERENCES 22 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.001.01 2.901.06 1.05 48200.74 53860.63 1.171.31 0.72 – 6.320 57141.73 – 50561.04 1.42 2659.96 5.330 317.80 – 6.670 4105 6099 – – 632.42 – 3.000 2.400 84.53 – 5767 – 7494.71 2860.17 460.810.80 2090.81 – 3.380 0.040 – 3836.180.99 4.73 – – 2637.71 533.90 3.41 1739.131.06 13.17 14551.85 1.00 3.99 2486.23 48751.03 – 74 5.01 54851.00 1238.85 74 2.24 – 3.900 1.13 1.79 2783.682.20 74 0.84 0.0298 – 1720.87 5740 56521.18 74 56700.48 74 2.54 – – 2.7001.29 74 181.14 – 74 – 3.8800.95 – 425.851.13 2.65 5192.77 – – 635.59 5853 74 1.13 212.92 1.36 3600 49521.75 – 1.19 6.680 2.89 59260.93 – 1.67 953.81 – – 61360.96 5.38 – – 1274.37 1964.50 6.500 5765 – 2189.57 2860.17 1557.80 3.41 1.02 – – 1001.06 73 – 8.200 365.47 28.78 1.99 5453 5745 – 2.86 – 3.39 603.81 216.10 3669.40 – – – 73 4.000 – 4400.00 73 – 3867.18 – 2733.05 4.92 73 1797.88 724.58 73 5358.03 495.76 3.35 – 3957.35 4.80 1317.65 – 3.38 3.38 – 73 4191.00 6.09 3.40 73 2725.55 73 2503.96 73 73 2.93 3.36 73 73 3.38 73 73 73 ⋆ M planet name HD 219415 b HD 181234 b OGLE-2007-BLG-349L(AB)bHD 187123 c HD 204941 b HIP 70849 b HD 50499 b beta Pic c HD 204313 d HUAqr(AB)c 0.71OGLE-2013-BLG-0132LbKMT-2018-BLG-1292LbHD133131Bb –KMT-2017-BLG-0165LbHD 27894 d –MOA-2010-BLG-117bHIP 14810 d UKIRT-2017-BLG-001bHD – 79498 b 0.54HD 211810 b 1.60HD 70642 b 79.45HD207832Ac – 1.00 0.76FL Lyr b –HD 24040 – b GJ – 433 – c 0.93 – 0.58HD 73534 b – 1806.80HD 0.81 72659 b HD – 8535 – – – b –HD 222155 b – 3.41 –HD 145934 b 5805HD 92.16 156279 – – c – 1557.20HD 6718 9.700 b –HD197037Ab 74 – 1875.00 – 794.49 – 34.00 0.94 – – 3395.04 – 5120.26 0.90 – 162.08 406.78 5611.40 5710 3.42 – 6119.00 3.41 2684.79 4.500 – 3.42 2368.49 7.28 3.39 231.99 74 74 3468.25 3.39 – 74 1.11 74 73 3.39 1156.29 73 – 73 3.32 6150 1.900 73 251.06 – 1032.48 1.40 73 REFERENCES 23 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.721.14 1.761.07 5445 1.220.99 1.09 5.600 58101.02 54321.07 – 819.92 6.7001.54 1.23 6.6801.54 1.38 212.92 5829 – 4.36 – 654.66 58361.04 4.90 8.400 49781.05 – 3457.99 8.500 50980.71 – 1.20 – 597.46 3.0001.22 0.95 1146.85 199.89 2.700 55881.36 4.15 – 2594.98 197.03 58201.00 – 508.47 12.110 – 273.31 – 1.55 14.01 4.95 1.1001.74 1.22 475.11 4.93 – – 4226.68 6075 63301.00 73 – 807.63 1055.42 762.71 5407 5.40 – 3.300 1.450 73 1812.88 0.90 6.26 – 7.260 882.92 49590.87 73 – 6.18 2.20 1541.31 238.35 5448 2779.72 323.52 3.361.35 2161.02 1.00 – – 1341.89 1.97 7.0001.22 – 73 52931.95 8.85 72 – 72 – 2.39 1069.701.10 753.18 1.21 0.799 2375.20 73 13.400 970.60 56711.17 6.30 72 – 1602.47 7349.80 63081.02 1.05 116.00 – 72 48300.81 1.06 1.21 – 72 2.41 58972.40 2720.57 5.32 3.34 – – – 1.600 58880.45 2731.81 0.68 2.100 1051.91 12.40 72 483.05 8.100 4780 5.10 270.13 1240.26 12.81 72 – 2288.14 4815 – 3.35 72 72 1213.98 6.500 – 2609.74 – 0.690 – 9.79 – – 72 – 730.93 2478.81 72 1123.00 3.31 1268.11 2997.55 – 953.39 – 2958.55 – 72 1.16 3.36 1.53 – 72 3408.31 1478.09 5.90 218.96 72 2067.17 72 4.71 0.499 – 72 72 3.31 3719.08 72 72 3.33 72 72 ⋆ M planet name HD 154857 c NYVir(AB)cHD 170469 b HD 117207 b OGLE-2012-BLG-0838bHD 129445 b HD 13931 b HD 34445 b HD 33142 c 24 Sex c HD114729AbHD 190360 b Kepler-539 c GJ676A 0.54 c 0.60HD 187085 b HD 67087 c –HD 108874 c –RRCae(AB)bHD 4732A 33000 c –HD 37605 c HD106515Ab –OGLE-2018-BLG-0740Lb –HD 164922 b 0.93HD132563Bb 1426.91HD 13167 b 79.45 1.46HD 148156 b –HD 102329 c 5662 –HD 125612 d HD 9762.70 183263 4.580 c HD 152079 b 1.00 4278.24 0.62HAT-P-11 c 266.95 3.37HD 14067 b GJ 832 – 3.40 – b 0.91 – 73 – – – 1136.17 1.01 73 5232 3.35 – – – 6.000 5985 1430.09 1334.75 3054.03 72 5.000 – – – 473.52 3143.86 5650.76 3765.19 – 3.33 3.32 4.36 1541.27 72 72 3.63 72 72 REFERENCES 24 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.910.980.98 0.98 1.00 56831.31 1.52 61750.99 10.165 62581.30 3.801.49 0.90 – 63.56 47571.32 2.00 – 54661.24 3.13 4.590 57671.29 – 2.50 2.450 5599 –0.95 1.64 1105.93 5.270 5638 –1.04 1.52 1726.13 969.28 59601.01 – 6.80 – – 400.42 4.3001.40 – 6.46 – 3.7000.83 – 0.98 7.47 3495.76 1322.30 1010.59 5312 – 1.84 2107.50 2541.42 1320.10 5767 5196 2.600 0.82 12.84 10.000 – 1419.82 62661.03 3.36 10.200 – 1312.13 1229.87 3.380 56101.25 3.30 72 1461.87 2278.04 3.32 4.9500.84 1226.70 1.05 2834.68 1.75 1360.17 – 3.3301.44 2.16 – 2448.91 3.78 1283.90 59501.04 3.31 72 0.73 – – 71 207.20 5900 3.09 72 4.30 1823.62 – 6.760 4443.57 49651.00 2.67 71 – 4607.57 5164 71 – 2013.74 – 71 635.59 0.390 1.86 1.01 2108.52 7.17 71 3.000 57901.51 1331.57 7.37 71 896.49 2.42 54760.69 – 235.17 284.43 3.57 5.00 – – 71 7.470 71 – – 2198.93 2.39 4960 – 71 4004.24 71 1.07 153.08 930.50 71 2.500 3900 842.11 4.90 – 828.82 1.12 – 71 508.47 0.278 – 5742 3.30 3000.00 2.16 71 – 649.44 7.050 730.93 71 5.38 1246.12 71 498.94 3.31 – 71 – 1.80 71 4197.42 71 1446.29 3.29 71 5.10 71 71 ⋆ M planet name HD 220197 b Kepler-455 b Kepler-456 b OGLE-2003-BLG-235LbHD 1605 c Kepler-88 d HD 216435 b HD 18015 b HD 106270 b HD 74156 c HD 55696 b HD 95872 b 0.63HD 204313 b 55 Cnc d HD 169830 c –HD 37124 c OGLE-2013-BLG-0911LbOGLE-2018-BLG-1428Lb –HD 89307 b HD 156411 b HD 128311 c –HD 200964 c HD 210193 b OGLE-2011-BLG-0251Lb 826.27Kepler-407 c 0.29BD-114672b – 0.43OGLE-2007-BLG-368Lbkappa CrB – b GJ 5299.97 328 – b OGLE-2005-169LbMOA-2007-BLG-400Lb – 3.31OGLE-2018-BLG-0962 – 0.47HD 12661 c – – – 72 0.64 3203.39 244.70 – – – 0.57 – 0.69 0.69 0.52 24072.72 – 0.55 – 3339.07 4475 – – 3.28 305.08 – – 4.400 3.28 – – – 206.57 – 71 22.06 4040.37 – – 71 – – – 3.27 543.43 1752.42 14.11 2736.97 435.38 – 3.15 – – 71 3.31 3386.58 3517.66 3322.08 71 71 3.30 3.30 3.27 71 71 71 REFERENCES 25 0 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.631.520.90 5.522.39 2.30 48900.71 1.00 4792 9.12 55521.15 0.68 – 4892 – 49812.41 – – 1900.421.11 – 5.4170.87 287.92 8.69 5752 – 807.20 4.20 864.41 1430.09 49851.58 – – 5.560 47981.03 – 2135.94 – – 4.90 – 896.19 51131.72 1.67 929.39 – 5002 2445.73 3.27 2106.65 4052.66 7.000 3527.54 55770.78 – 5.40 2.500 400.42 3.28 104.87 3.29 9.000 4932 – 3.30 3.92 1261.65 1935.21 – 13.63 711.42 352.75 2.1000.89 – – 2598.98 1572.36 71 49621.35 1.88 3.99 71 444.92 711.10 71 – 0.96 568.41 6210 11.47 1860.00 3.29 3.32 – 53861.09 – 4700 – 1174.37 2.240 71 0.87 4.97 6.7901.12 1.78 214.20 1.10 3.070 2224.58 871.86 5628 71 1.13 71 0.85 6.43 92.16 6037 3101.70 1.02 – – 2.000 5571 70 70 – 1.48 2.980 59501.91 – – 603.81 4.4700.90 70 1014.59 1482.50 4134.54 2.000 5927 6.01 255.51 1139.70 – 0.71 614.05 70 – 3.25 975.64 7.100 5040 1.58 5311 – 2.16 1037.16 476.70 1.320 – 4.85 2101.01 5.100 70 70 609.22 829.96 – 1.42 1474.58 1110.87 2.12 70 70 – – 1277.52 3.17 1.42 70 70 958.16 1774.95 5.04 70 70 0.936 3.59 70 70 70 ⋆ M pi Men b planet name HIP 67851 c 7 CMA c HD 290327 b HD 120084 b HD 233832 b HD142245AbHD 66428 b NNSer(AB)cHIP 67537 b HD 94834 b HD 215497 c HD116029AcHD 95089 c HD 9174 b OGLE-2014-BLG-1722LcHD 99706 b NYVir(AB)bHD 181433 c 1.69OGLE-2006-BLG-284bOGLE-2014-BLG-0676Lb 5.20 0.65HD 86264 b HD 7199 b 4878HD 139357 b – 0.40HD 190647 2.300 b 1.58Kepler-1654b 603.81 – – 4.60HD 4208 b HD 68402 b 0.45 4951 – 0.62HD – 23127 b – 0.60NNSer(AB)d 2.700OGLE-2012-BLG-0950Lb – 1295.28 – 2195.98HD 202696 – 403.60 c –14 Her b 1.66 – – – 33000 – 83.68 5670.82 – – – 907.00 – 71 1.01 3.29 883.48 0.56 143.96 1.18 981.99 2282.80 1.91 5597 – – – – 0.65 3.25 71 5.000 70 2943.15 5500 1776.71 4281.26 158.90 – 70 – 3.24 8.99 3.22 3.26 – 1048.06 34.96 70 70 70 – 3.53 – 724.58 2165.41 7 – 3.25 2836.43 70 3.24 70 REFERENCES 26 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.661.100.94 8.801.14 1.10 48050.92 – 6039 –3.09 1.01 – 4.800 54671.05 6010 59020.92 14.10 295.55 4.920 1144.070.86 1.12 5242 2.900 5.5001.56 1.00 826.27 55801.56 – – 0.84 2707.63 104.87 57011.23 – 3.26 11.600 52461.04 – – 1271.71 – 1007.25 0.650 50521.17 – 2564.62 1.71 1302.97 7.8001.17 1.18 1522.59 384.53 2.400 5034 5960 7.83 – 1602.78 3.22 3.44 – 444.92 500.57 6128 1.29 365.47 3.000 4670 – 3.49 – 0.870 2414.45 2.07 5874 – 1600.32 158.90 3.91 70 70 – – 340.04 3.170 577.50 667.37 8.19 1799.27 3.26 70 – 70 899.36 871.56 1776.48 – – 70 0.459 5.56 465.79 – – 70 70 1.72 500.54 1043.41 70 1582.10 1310.81 2.15 70 0.620 3.22 70 3.23 2.25 70 70 70 70 70 1.221.13 1.64 5861 1.531.07 4.000 62721.31 1.46 409.96 4.9001.31 1.86 56001.04 1179.03 57701.10 – 3.801.27 1.04 – – 3.800 47571.27 – 1153.93 56701.12 2.09 216.10 4.5901.19 375.00 1.63 1271.79 4.300 58881.70 2.86 – – 305.08 6212 – 1.38 – 4036.02 6.890 3.46 5.20 3.800 6058 – – 2574.15 – – 473.01 4978 70 1066.88 7493.65 5.400 70 – 574.57 2478.81 1417.10 – 1093.22 – – 3.26 2.68 – 1584.07 – 21864.42 3.21 2.99 197.03 1319.77 70 69 – 1293.64 4.82 1268.31 – 2.67 69 69 3.21 914.11 3.79 494.00 69 69 3.19 69 3.22 69 69 69 ⋆ M 10c 1.50 – – – 826.27 – 1472.79 3.26 70 + planet name HD 86950 b HD 10647 b HD 171238 b HD 191806 b HD 564 b KMT-2018-BLG-1990Lbomi UMa A b HD 30177 b HD 147513 b HAT-P-17 c HD 5319 c HD 10442 b HD 31253 b HD 20367 b 0.14HIP 8541 b HD 196050 b PSR B0943 – – – 181.14 – 18859.20 3.25 70 HD 30562 b OGLE-2006-109LbKELT-6 c HD28254AbHD196885AbHD 141399 d HD 96167 b KIC5010054bHD 1605 b HATS-59 c HD 175167 b HD 23596 b 0.51ups And d HD 9578 b HD 11506 b –6 Lyn b 1.06 1.33 – 1.48 1.79 1.05 5664 – 6340 2.17 2.000 – 231.04 5550 947.03 368.64 – – – – 1784.00 1327.77 – 1118.39 3.23 1.42 6.80 3.25 70 904.20 70 70 3.22 69 REFERENCES 27 69 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.191.010.82 2.13 1.01 55341.19 0.76 60910.98 8.100 49800.58 – 1.21 – 704.87 9.800 0.53 5620 5947 13.19 26027.56 44620.85 6.200 5.280 – – 1183.17 4.3000.75 0.85 1941.74 511.651.75 5.38 295.55 2755.09 5560 5.70 0.76 –1.03 – – 7.400 48191.00 854.08 – 6.85 1.24 1228.66 69 1172.48 762.71 2.190 4827 1.32 1820.10 3.20 58922.17 378.18 2.100 5752 3.70 – 69 4.35 7.4001.12 20.90 3.03 556.14 – – 69 4445 1363.90 804.030.89 1.76 69 69 – 0.950 1046.00 55221.04 69 – 184.32 1.00 5.171.54 3400.43 8.600 925.64 5690 1.11 1.52 – 1095.212.19 1.34 – 699.47 59021.94 69 – 1.48 60970.96 45.12 474.14 13.19 5.18 4.580 69 870.52 8.03 4215 2.0001.81 1.09 1275.19 1639.83 – 4884 3.22 69 1.050 1897.25 0.662 5754 69 7.30 – 1.410 6.00 3848.52 10.04 – 5.020 4866 1398.31 69 69 – 1339.98 10442.80 1250.00 1.610 1013.28 – 69 – 591.10 3.20 3.21 783.51 1.39 1036.57 1653.86 – 0.731 69 69 0.982 3.52 69 684.80 69 69 1.12 69 68 ⋆ M 44 Uma b planet name HD 159868 b Kepler-459 b HD 87883 b OGLE-2015-BLG-1670LbHD 221585 b HD 2039 b HD 113538 c KMT-2016-BLG-1836LbMOA-2008-BLG-379LbHD217786AbHD 29021 b KMT-2019-BLG-0842b 0.55HD 114386 c HD 33844 c OGLE-2013-BLG-1721Lb –47 Uma b 0.49HD 44219 b OGLE-2005-071Lb – 0.66UZFor(AB)d –HD 110014 b –KMT-2016-BLG-2397b – 0.76HD 163607 c – 1.02KMT-2016-BLG-1397b 0.46 –Kepler-154 17.89 – g 1.27OGLE-2017-BLG-1375b –HD 50554 – b – 5966 – –HD 224538 b Kepler-1647(AB)b 699.15 7.600 0.46 – 2819.24 1302.97HD – 4131.36 111591 b 0.62 –HD 106252 – b – 0.84 3.19OGLE-GD-ECL-11388b – – 0.45 3266.95HD – 3416.59 47366 c 2695.18 0.77 – – – 203.39 1327.87 – 69 3.20 – 3.20 – – 2523.04 – – 5.29 – 2.19 – 69 – 2257.72 1112.29 3.18 69 – – 69 0.61 1.79 769.07 – 3.22 – 2447.04 6210 2224.58 69 – – 3678.44 – 3282.84 – – 69 2208.37 – – 3.18 1867.18 483.05 6271.01 3.19 11.63 – 2130.48 3.21 3.20 69 1107.87 3972.46 3.20 69 69 – 3.19 69 69 3250.00 3.17 69 REFERENCES 28 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.091.611.12 10.331.08 4.60 4534 1.33 49271.08 – 57801.21 – 2.7001.07 1.24 5.220 59451.53 4.96 540.25 699.15 57931.07 4.14 2491.53 5.400 49340.93 5.14 6.300 48061.52 – – 1.38 – 108.05 48771.47 – – 244.70 5836 2.30 – 775.44 869.750.93 11.10 – 1556.77 – 8.500 47920.49 – 561.86 – 48221.06 495.76 – 13.37 3.14 1.85 361.22 37.821.22 3.62 534.22 0.52 2.800 – 582.20 4.80 – – 13.41 855.92 5441 1471.40 1.50 – – 3.77 5112 602.22 68 68 68 4.38 6.360 780.07 5975 368.64 874.12 – 3.16 7.000 676.78 – 2084.75 – 5.110 68 – 413.14 3.16 3.18 967.05 68 1430.09 – 5.91 692.32 286.02 68 – 702.77 – 1.93 1010.83 68 – 68 3.16 68 751.90 3.17 956.43 4.36 1879.72 68 68 4.81 3.50 68 3.15 68 68 68 68 1.061.13 –1.13 1.06 59110.88 1.79 5922 4.300 5600 0.89 1.100 6.900 21.40 51941.32 152.542.50 2172.78 3.1402.70 4.23 – 12.64 – 8.93 656.89 48400.98 13.70 5000 1075.651.29 601.57 4901 3.500 281.23 – 1.18 0.625 – 1782.84 4.76 – 5904 2.99 0.762 982.00 2332.63 – 8.400 1906.78 6255 – 68 68 276.48 2.18 2.900 – 68 1009.21 1630.30 – 582.15 1088.12 2.42 68 – 0.428 624.32 3.14 930.12 68 5.78 68 68 2.00 68 68 ⋆ M 48 740 b + HD 131496 b HD 203473 b HD 38283 b HD116029AbKepler-68 d HD 72490 b HD 222076 b HD 5608 b HD 34445 f HD 48265 b 7 CMa b gamma Lib c OGLE-2014-BLG-1760LbHD 147018 c GJ 849 b HD 82886 b 1.58HD 213240 b 4.60 4951 0.51 2.700 – 667.37 – – 661.19 – 1.87 182.10 – 68 1184.02 3.18 68 planet name HD 10180 g MOA-2009-BLG-319LbHD 164509 b HD 10697 b HD30856AbKepler-48 e HD142022AbMOA-2009-BLG-266LbNGC24233bKepler-56 d HIP 65891 0.38 b eps Tau b OGLE-2017-BLG-1049b –HD 17674 b HD 13908 c BD – 0.56 1.35 0.99 – – 4.20 0.70 4982 2.40 0.55 66.10 – 5382 3.800 – – – 13.300 572.03 – 9343.23 – – 1675.88 – 10.39 – 0.750 3.17 – 889.13 – 1936.13 3368.65 1757.42 2.63 – 2793.96 68 9.24 – 3.16 717.48 68 68 3822.40 0.518 68 3.15 68 68 REFERENCES 29 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.43 5.011.74 49420.95 5.770.90 – 4850 –1.02 –0.94 356.25 –1.72 1.27 – 13.721.01 0.98 – 57540.77 762.71 5.40 677.01 5779 0.98 – 5.590 49321.06 0.73 – – 8.420 57660.58 568.86 3.19 2.100 48900.98 1.10 991.53 343.22 8.000 0.53 476.70 842.64 1808.26 3.300 5636 – 1.03 – 533.90 44621.15 – 68 – 1271.19 12.960 – 60651.18 3.16 4.300 962.141.04 – 1059.92 9.94 1.40 578.39 789.00 1.45 1123.00 898.95 – 114.41 6199 1.14 1081.52 – 68 3.87 3.16 791.39 6557 5.78 55521.20 1.46 – 3.16 – 1.900 – 2.24 1253.62 5.530.36 17.10 68 68 – 1433.26 659.391.65 68 4501 68 4.50 68 –1.35 8.84 0.38 – 67 1.50 416.31 3.85 68 4.600 2.92 3370 572.38 1.87 9.99 50601.70 2701.27 5.00 – 825.57 67 6022 – 1.900 3.11 4845 14.30 542.00 – 67 5.300 599.65 1.30 4528 193.86 234.88 – 1515.89 3.09 1088.01 67 – 3.11 – – – 67 826.27 3.15 67 1055.09 297.24 2287.07 – 989.63 67 – 67 3.13 1.29 843.51 3.61 751.10 3.12 67 67 67 3.12 67 67 ⋆ M planet name HD 14787 b OGLE-2018-BLG-0567LbOGLE-2017-BLG-0173LbHIP 74890 b OGLE-2012-BLG-0406LbHD 143361 b HD 176051 b KMT-2018-BLG-0029bHD 45350 b Kepler-97 c 0.24HD 99706 c 0.4216CygBb Kepler-167 e – 0.44OGLE-2014-BLG-1722Lb –HD 216437 b HD – 113538 – b Kepler-458 – b 1.06OGLE-2018-BLG-1700LbKIC5732155b – –HIP – 41378 – f 38 Vir b 101.69WASP-47 c – 0.40 2885.59 –HD41004AbMOA-2008-BLG-310Lb – – 867.59MOA-2010-BLG-477Lb –HD – 106574 b 0.54 3344.54KIC10255705b – 4107.40GJ – 179 b HD 6.41 175541 – b 3.17 3528.51HD 3.13 16175 b HD 155233 – b 1.13 –HD65216Ab – 3.16eta 68 Cet 0.67 c 1.99 68 55.30 0.67 2774.47 – 5755 0.70 – 68 – – 3.15 1398.31 – – – 1.10 1512.48 – – 68 5035 2.12 – 3.10 – 2328.78 1.640 – 5030 12.51 807.20 74.05 0.92 3.10 476.70 67 – 643.89 – – – – 67 3.13 – 916.86 5666 623.61 1262.11 7.13 – 67 1.11 3.14 3.12 704.81 411.55 67 67 67 3.14 – 565.08 67 3.10 67 REFERENCES 30 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.801.561.56 39.000.96 6.10 4155 3.26 4874 0.86 1.600 5052 3.000 5700 1588.98 2.400 699.15 4.180 – 616.53 2180.09 – – 603.43 – 636.78 676.99 1.08 1007.29 2.03 1.64 2.84 67 67 67 67 0.830.891.75 0.82 1.04 54051.58 – 53171.91 4.1001.91 4.90 7.400 48271.36 6.01 508.47 50022.12 13.00 972.46 2.100 50401.39 5.13 4975 2.5002.40 13.76 – 622.88 1.320 49401.44 – 1.74 1.250 4766 381.362.30 11.00 632.73 2.300 865.22 6430 – 1998.94 4.30 0.950 1261.641.69 – – 8.50 1080.51 2.800 51640.95 – – 797.67 2.80 558.79 4979 12.791.60 4.71 5.06 2319.92 3.000 539.170.92 0.94 – – 528.37 4945 51.10 686.70 769.00 – – 1.44 587.92 55201.95 0.93 67 4035 1684.32 1.70 1.800 67 456.25 0.896 0.854 3273.31 55441.09 1.56 – 6.30 2.000 – 674.60 807.20 –1.20 67 7.400 48300.78 – 3146.19 0.647 13.06 67 – 616.591.64 49.67 67 67 1.89 931.95 67 740.47 1.600 – – 564.36 3935 1009.68 – 58851.65 4.30 1875.00 67 2.04 – 13.50 4.500 3.10 6.400 5494 5020 67 878.73 4.80 3.13 1.22 – 3527.54 1782.84 670.65 5.200 2.200 969.09 4897 67 1.36 67 – 745.36 2161.02 – 508.47 2.500 67 67 3.09 5.07 – 572.03 – 674.80 1.09 974.70 67 – 67 1143.51 67 422.75 3.01 4.31 67 532.86 3.50 1.47 66 66 1.69 66 66 66 ⋆ M 10b 1.50 – – – 889.83 – 720.20 3.11 67 + planet name HD 112640 b HD 206610 b HD 5319 b HD 81040 b PSR B0943 OGLE-2016-BLG-0263LbHD 42012 b HD 73267 b HD 33844 b KIC7917485bHD 95089 b HD 202696 b HD 11977 b HD 18742 b 0.13HD 25723 b Kepler-419 c 81 Cet – b HD 200964 b 18 Del b MOA-2013-BLG-605Lb –HD 181342 b KOI-771 b 1.63HD 208527 – b HD 98736 b HD108341Ab – 1302.97HD 102329 b gammaCepheib 7067 –HD 132406 b HD 220074 0.19 b –HD 111232 16787.54 b HD 167042 b –HD133131Ab 3750.00 3.08HD 158038 b – – 67 827.44 0.84 – 1.40 0.79 3.09 20.97 4.90 5122 4800 – 4.900 67 0.95 6.600 1112.29 7212.50 3524.37 – – 3.09 – 5799 1125.17 9.700 906.06 67 3.31 454.45 4.46 – 67 67 647.55 6.56 66 REFERENCES 31 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.091.081.10 1.031.40 1.25 58341.07 1.05 57000.71 1.50 1.490 58971.40 1.24 6.410 6577 – 514.83 2.100 63400.92 14.80 532.63 0.1501.23 4469 953.391.41 – – – – 985.171.47 – 1.64 3.7000.84 – 4.16 376.41 5781 60590.76 – 9.30 985.17 – 645.67 – 49610.66 0.73 3.980 558.44 46661.50 – 0.999 – – 2.800 322.69 49650.81 2129.24 6.25 – 4.291.69 35.40 – – 535.49 1.41 0.390 3851.70 51862.49 – 0.76 684.22 0.101 4119 35001.17 32.00 440.78 66 13.40 692.80 7.200 – 4781 10.50 921.61 6.99 66 2.700 4361 1057.300.99 1.21 2.50 66 – 509.53 4846 1.410 3.06 31.460.54 66 – 1811.44 – 394.62 904.33 58881.30 – 3.06 3125.85 – 3813.561.70 – – – 1.89 – 8.100 459.14 16.70 66 661.85 66 1684.32 2.67 – 3.06 5688 –1.44 48.96 1166.31 4355 953.39 37001.10 66 603.56 674.04 0.261 3990 – 4.8001.10 66 3.09 4.900 820.30 1272.60 – –1.54 – 66 1.13 66 1.850 – 495.76 1.81 4.86 1112.29 1.06 735.83 6095 5848 66 2478.81 4.90 0.937 3.04 626.56 66 704.40 5925 – 104.24 – 2.700 6.530 5098 – 3.08 66 66 2.550 – 5.41 6931.15 66 3.06 778.60 2.700 531.60 66 648.33 3082.63 620.92 – 632.42 66 – 601.02 – 3.20 3.28 66 66 1.24 – 604.50 702.17 3.07 652.62 66 66 452.97 1.81 66 4.37 1.72 66 1.79 66 66 66 65 ⋆ M planet name OGLE-2016-BLG-1067LbKIC9704149bHD 142415 b mu Ara b HD 125612 b HD 113337 b Kepler-460 b GJ676Ab HD 118904 b 0.30KMT-2016-BLG-2364bHD 181720 b Kepler-849 b –HD 180902 b HD 62509 b 0.86HD – 128311 b HD 85390 b 0.78L2 Pup b HD 164428 – b 5640Kepler-94 c 0.50HD 240237 b 136.65 –75 Cet b HD – 183263 b IC46519122b –HD 4113A – b –GJ 649 b 1478.09HD 97619 b beta 4.39 Cnc b OGLE-2015-BLG-0966Lb – 3.05HD 60532 c 694.81HD 23079 b 1248.94HD 141937 b 24 66 Sex 3.06 b –HD19994Ab 2203.12 2.00 66 0.38 3.05 – – – 66 – – – 1.34 2002.12 20.97 1.93 – 5984 – 751.41 8.910 2203.00 533.90 3.07 3.08 – 66 533.91 66 5.88 65 REFERENCES 32 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.851.90 5.600.99 49561.33 10.101.38 1.95 4908 1.8001.22 3.40 56631.22 2.29 826.27 50710.73 – 1.23 8.000 59722.00 25.92 4.000 64841.80 – 0.68 4157 826.27 629.24 4.0001.00 8.56 635.59 0.910 46401.49 24.08 5.130 730.93 444.83 48691.26 – – 3139.83 4340 – 7.870 25.11 – 1372.88 1.3501.41 – 2.41 1.560 4181 – 167.48 1.19 521.27 556.71 55782.25 – 858.05 480.31 52071.38 3336.87 3.30 3.240 7.100 493.131.47 28.00 – 328.20 3.03 5.29 4.670 49171.25 – 577.38 2002.12 4.41 – 65 4367 603.81 2.65 11.10 3219.28 2.65 4.000 433.92 5041 0.597 – 4822 – 427.82 12.44 3.39 – – 520.28 65 65 365.47 1.800 65 2.800 5.24 6304 605.59 695.93 65 2065.68 0.895 65 666.10 592.76 1.03 – 327.01 65 1.300 13.23 – 2.14 3.09 65 – 981.99 4.74 341.88 65 340.76 65 588.04 – 415.82 65 65 2.67 65 1.19 3.01 456.56 1.87 65 65 0.862 65 65 65 1.810.91 7.30 4866 35.001.19 4152 1.6101.20 2.13 556.141.09 – 55341.61 11.101.70 – 1.10 1271.19 4549 8.100 4.92 5532 27.00 6.100 – 244.07 363.14 4951 4348 6.930 13.93 603.81 1.400 1.800 634.25 390.89 1.07 351.02 – 574.58 2065.68 – 3.02 13.34 – 65 5.41 438.30 354.07 403.61 65 514.64 4.01 65 0.921 4.58 1.19 65 65 65 65 ⋆ M 1422-614-1c 1.15 6.85 4806 – 3209.75 – 559.13 3.01 65 202457c 2.80 – 4127 – 3962.93 – 622.02 3.02 65 + + planet name HD 108863 b Kepler-1635bHD 102272 c HD 171028 b HD 136418 b HD 147873 c 30AriBb 17 Sco b HIP 57274 d HD 40956 b 11 UMi b HD 20782 b HD 113996 b HD 38801 b 0.89gamma1LeobHD 75784 b 0.85sig Per b HD 192699 b 5347gamma Lib b HD 221287 b 4.900TYC – 3.57 1.23 469.63 31.88 3.22 4330 – 65 20300.86 – 427.52 3.00 65 BD HD 47366 b KIC8012732bHD 96127 b Kepler-1632bTYC3318-01333-1bHD 159868 c KMT-2017-BLG-1146bHD 202432 b HD 210277 b HD 210702 b HD 60292 b 0.92 1.19 0.40 1.12 1.22 5.90 6221 1.19 – 4776 6137 – – – 3.090 – 1086.87 – – – 9.55 270.13 2.41 562.98 431.47 – 448.30 3.03 3.01 1280.06 2.03 3.00 65 65 65 65 REFERENCES 33 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.590.781.12 1.571.08 0.68 7500 1.34 51441.00 1.25 0.500 60760.96 57000.86 – – 4.3001.80 6.00 1.00 6.4101.20 – 867.59 5582 55080.85 18.20 24.15 3.92 165.860.75 20.00 4400 2.000 5432 – 1.05 – 4218 207.62 –1.45 – 0.76 1.800 368.64 4.770 57011.46 5.500 499.80 48191.15 190.68 1875.00 3.22 0.331 530.11 203.39 5.250 310.65 – 1592.16 4.67 2.190 50521.21 5.00 – – 1417.37 2.83 49471.09 – – 3.02 394.07 4.31 65 2.500 381.81 51210.93 1.34 – 2.4001.72 16.70 450.97 328.95 305.08 6.000 363.06 6032 – 482.85 65 4393 – 1.33 873.94 65 4.90 65 577.75 730.93 2.410 1.19 – 3.04 12.98 6.700 3.15 434.47 5272 5035 3.58 390.89 – 1938.56 65 3.42 428.55 12.200 2.000 272.04 65 65 1.42 – – 159.53 65 64 730.93 458.96 1.56 1.63 64 – 328.56 – 518.55 64 3.94 64 64 439.94 1.58 361.53 4.33 64 8.10 1.31 64 64 64 64 0.651.09 0.681.50 41201.74 1.101.18 13.90 12.400 55201.70 6.20 45531.08 1.12 56.27 6.200 50761.10 21.00 58740.98 – 1.14 8.60 4406 400.42 1.800 21.40 3.080 5922 22.03 1.740 4305 572.03 540.25 774.70 – 4608.05 4200 2129.24 6.840 – – – 9.490 – 8.10 454.15 1906.78 – 1233.05 15.00 392.03 382.34 – 436.48 4.06 415.22 – 5.32 64 2.97 1.18 457.79 2.01 284.21 1.14 478.96 64 4.42 64 64 2.98 6.14 64 64 64 64 64 ⋆ M 032562b 1.14 32.35 4095 5.250 2033.90 – 507.05 3.39 64 + planet name Kepler-462 c GJ 785 c HD 153950 b mu Ara d MOA-2011-BLG-322LbHD 100777 b HD 43197 b HD 63765 b HD 44385 b HD 95127 b Kepler-454 c HD 114386 b OGLE-2016-BLG-1227bHD 148427 0.31 b HD 1502 b HD 212771 b –HD177830AbHD 148164 c HD 1690 b –HD 99109 b HD 4313 b BD 0.10 – – 2478.81 – – 1.47 4480.86 – 2.99 3.03 251.06 4948 4.400 – 65 473.52 7241.14 – 2.96 406.85 64 2.89 64 MOA-2010-BLG-353LbGJ414A c 0.18 – – – 85.81 – 1941.98 2.97 64 Kepler-34(AB)bHD 188015 b alf Ari b HD 28678 b HD 82943 b eps CrB b KOI-1783.02 HD 66141 b 42 Dra b 2.07 1.10 5913 – 69.92 8.38 288.83 2.97 64 REFERENCES 34 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.360.770.79 1.551.30 – 6330 0.761.00 4.50 1.450 4684 53080.99 4992 38.00 972.46 4.0001.25 1.15 – 4052 4.0001.28 56621.32 – 1.10 9.000 – 572.031.25 634.96 1.60 6.160 62500.94 2987.29 5.01 351.52 60211.25 – 4.07 – 2462.93 – 3.000 4802 23.47 – 3.800 4.98 2891.95 0.947 4380 – 553.07 2.400 436.99 42901.40 639.16 797.67 48601.02 535.15 9.330 – 513.241.74 42.06 – 575.80 2.62 2.590.92 64 – 2.99 1588.98 4.50 13.43 – 41261.08 5.81 5.40 376.90 2192.80 51481.72 0.78 – 4.03 2.950 400.50 419.09 49591.00 444.92 64 1.49 64 64 9.000 – 51051.70 1938.56 1.76 1.96 64 55901.50 769.60 1.20 – 1.57 – 286.02 2.49 3.700 54450.92 14.30 64 – 501.08 5.590 57701.20 11.40 2002.12 4528 5.6001.10 6.12 64 – 753.18 0.85 351.49 4538 715.04 7.9400.82 64 511.35 1.20 64 – 2.95 711.86 52660.95 – 0.86 – 3.350 356.24 60801.08 – 2.98 – 64 – 2.880 6180 1.92 – 1.01 762.71 475.75 810.381.20 1.14 359.45 64 – 5.85 5.930 367.39 5434 5450 6.22 – – 64 408.76 5922 – 6.60 2.38 64 397.25 2.93 – – 296.64 3.60 – 4749 10.96 63 – 344.06 3.62 400.93 – 7.150 1010.59 63 209.08 328.24 11.06 5.13 63 15.00 2.16 63 2.93 429.03 358.75 – – 63 338.44 1.83 5.33 – 63 3.85 414.77 63 342.78 63 2.92 277.32 63 416.57 2.92 2.96 63 2.94 63 4.59 63 63 63 63 ⋆ M planet name HD 67087 b HD 164604 b Kepler-421 b HD 98219 b Kepler-1636bHD 24064 b HD 222582 b KMT-2017-BLG-1038bHD 33564 b HD 75898 b HD 4917 b HD 240210 b HD 47536 b HD 208897 b OGLE-2015-BLG-1649bOGLE-2012-BLG-0724Lbbeta Umi b 0.43 1.01HD 96063 b HD 4732A b 1.02HD – 114783 b HD 73526 c 5797HD 154857 b –Kepler-511 b 3.980eta 0.34 Cet b 0.29mu b Kepler-553 – c – –KOI-351 h –HD142Ab 762.71 3.16HD 45364 c –WASP-41 c – –K0I-1783 c 425.48KIC12454613b –HD 27442 – b 1458.76 2.60 807.20 149.36 2.96 – 64 – 64 1865.54 1372.68 2.98 2.98 0.87 0.82 64 64 5420 – – 2.50 748.36 2.95 63 REFERENCES 35 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.800.78 17.300.74 4296 –1.131.12 0.69 5180 – 1.33 47140.92 – 57011.02 – 1334.75 4.3000.78 – 9.410 6123 23.50 1620.76 –1.40 495.76 0.79 4301 578.39 1.250 59001.22 – 4795 12.80 – 8.700 605.28 10.700 603.81 – 1.33 4445 4.5001.11 1461.87 260.59 658.61 6176 – 499.41 2.94 632.42 431.502.17 – 1.85 – – 2.8401.24 2.77 246.40 5997 12.30 – 2.94 2984.11 435.38 6.02 63 0.50 350.85 1.03 392.28 4770 3.600 0.794 – 381.12 5482 63 – 0.23 63 718.22 5.46 – 6.79 63 29300 5.360 444.42 2.84 280.46 62 – 10.000 1811.44 540.25 62 1016.95 62 2.90 – 1.81 308.42 – 62 – 342.87 2.29 286.05 62 62 1144.92 3.37 2.89 6.34 62 62 62 62 0.742.54 11.001.25 44141.15 12.021.17 1.41 48441.32 – 1.14 62111.54 7.47 5744 – 4.06 289.20 2.900 46980.86 4.36 2.550 4995 508.47 260.59 7.100 4978 – 0.82 8586.87 4.200 994.70 3.000 5240 – – – 772.25 424.59 440.15 6.450 – 301.26 258.80 – 13.55 325.38 2.94 70.87 436.69 325.76 2.92 1.86 411.65 1.64 – 63 4.58 1.94 2.71 330.69 63 63 63 63 63 4.24 63 63 1.000.93 1.22 4.80 5407 5155 7.260 12.000 432.20 476.70 – – 393.54 683.03 4.70 7.79 63 63 ⋆ M 20 274 c 48 738 b + + HIP 109384 b Kepler-1533bBD-17 63 b HD 4203 b HD 159243 c Kepler-1634bHD 155358 c HD 175370 b HD 20868 b KIC9662267bHIP 75458 b HD 205739 b OGLE-2013-BLG-1761LbKepler-1600b 1.31HR 810 b MOA-2011-BLG-293Lb 1.51ome Ser b HD 28185 b 6431 0.92Kepler-1515bV391 Peg b 2.190 0.89 0.33 0.86 5474 – – 4.470 0.89 0.86 3.39 5602 0.86 – – – 308.55 0.82 – 3.13 – 5214 – 1.40 1.30 374.88 4.680 – 889.83 1.41 – 63 – 3.73 2.82 – 6511 1525.42 1.820 466.84 1535.47 3.06 – 62 – 386.37 2.87 2.87 454.39 9.35 2.94 62 62 2.86 214.31 62 62 1.15 62 Kepler-47(AB)cHD 2952 b Kepler-65 e HD 92788 b HD 76920 b Kepler-432 c HD 33142 b OGLE-2011-BLG-0265LbHD 137388 b BD 1.04 0.96 0.21 5636 – – – – – 4.50 279.66 351.76 – 2.94 2066.05 63 2.94 63 planet name HD 108874 b HD 152581 b BD REFERENCES 36 2 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.501.07 1.93 1.24 6317 6340 1.760 – 2043.43 – – 271.79 5.40 1.10 220.13 2.84 62 61 2.302.000.97 – 13.50 0.98 4683 46501.40 55181.10 – 2.14 –1.02 1.21 – 61960.41 858.05 1461.87 62050.90 0.95 2.0401.60 0.42 35.91 1.480 – 54261.75 27.30 – 3279.66 34131.08 10.87 2.33 1274.37 4312 11.0001.20 4.06 4786 – 352.87 322.671.18 1.00 10.200 918.43 – – 290.11 51300.78 1.20 2.950 2065.68 5990 1.12 271.07 – 2.86 2.84 2.300 60801.17 2637.71 1.04 15.89 270.99 2.86 0.650 – 58740.87 697.25 5796 1.37 – 1.27 – 434.42 133.47 – 3.080 2.19 0.922 61 61 13.20 432.12 6080 61 11.35 – 4573.10 5854 267.37 6.84 213.72 714.66 7.130 – 61 128.01 6.23 61 – – 670.55 – 1.80 1.41 2.77 7.93 61 0.404 216.65 – 60 4.06 – 199.47 60 60 60 1.89 60 228.16 290.94 8.01 2.85 4.37 2.82 60 239.74 60 2.81 60 60 60 ⋆ M 144559b 0.86 – 5008 – 467.16 – 269.76 2.85 61 + BD-061339dHD59686AbKepler-47(AB)dHD 1666 b 0.70 1.04 1.90 – 13.20 0.96 4658 5636 4324 1.730 4.400 – 2199.15 18.50 19.02 – – 6.89 299.89 476.43 209.10 1.09 2.80 2.95 62 62 62 planet name Kepler-1625bKepler-460 c OGLE-2018-BLG-0799bBD 0.96 0.94 0.16 5677 – 4.370 3686.44 – 5.94 – 287.38 130.30 2.74 – 6 1480.29 2.83 61 KIC11152511bMOA-bin-29bOGLE-2018BLG-1011LbKepler-1536bKIC6372194bHD 17092 b 0.18 1.01 6.50 – 2.08 0.71 5273 – – 0.80 0.67 – 0.75 – – 4434 5233 2.950 – 572.03 – – – – 174.79 3.95 – 3.07 – 2079.03 284.81 8.12 364.76 2.82 172.09 2.87 281.31 1.83 2.86 61 61 2.85 61 61 61 HD 173416 b Kepler-22 b OGLE-2017-BLG-0482bKepler-1085bHD 89744 b HD 40979 b Kepler-1630bHD 165155 b GJ 687 c HD 11755 b HD 104985 b HD 0.20 180053 b Kepler-289 c KOI-351 g –HD 82943 c Kepler-315 c 1.11MOA-2016-BLG-227Lb –HD 8574 b 1.14Kepler-108 c 0.66 6000 – 0.63 3.390 2860.17 4736 – – 5.010 0.24 1972.34 7.07 – – 219.32 2.82 2.14 – 2.10 510.00 61 – 3.13 61 730.93 – 61 1565.84 2.80 60 REFERENCES 37 58 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.101.00 1.300.58 4970 1.00 – 0.023 5793 3564 – – – 540.25 8.56 10.02 – 59.53 – 189.64 0.0136 406.76 2.71 58 2.70 58 58 1.40 11.00 4665 3.560 1016.95 – 180.79 2.10 58 0.781.071.23 – 1.46 – 4962 56000.94 6.000 44151.07 – 1.00 457.63 4.6041.07 1.25 56290.84 422.67 2256.36 57400.40 – 1.12 0.78 – – – 9.700 57421.01 – 347.24 5148 505.30 7.0500.42 108.80 0.94 201.94 266.81 3.310 – 3.71 730.93 9.29 54601.27 – –0.87 2.80 2.82 – 3.0000.35 – 1.63 281.78 – 257.41 35101.91 60 – 62121.40 20.21 0.35 4.75 60 267.00 2215.04 601.44 2.84 8.70 – 5.99 3.800 5530 3358 1.84 – 226.89 49071.50 – 2891.95 – 4.29 6266 740.40 – – 60 1.500 10.90 60 595.80 2.02 – 4.950 226.68 6095 – 2415.26 4791 851.70 72.14 59 915.25 2.700 1.81 2.400 258.94 – 2.77 59 659.10 – 2926.91 – – 2089.51 2.30 175.10 – 59 2.76 232.29 – 59 532.90 225.04 0.903 205.66 59 2.75 192.54 2.76 59 2.98 1.62 59 1.44 59 59 59 59 59 ⋆ M 46b 0.60 – – – 603.81 – 416.10 2.77 59 + 1422-614-1b 1.15 6.85 4806 – 797.67 – 194.32 2.72 58 + TYC V 1298 Tau e Kepler-16(AB)bHD 9446 c GJ229Ab Kepler-1514b 0.85 0.65 1.20 4450 1.29 – 6145 105.83 2.900 8.27 1677.97 12.16 234.42 217.87 2.71 1.71 58 91 Aqr b planet name HIP 5158 b HD 141399 c 4 Umab Kepler-1519bMOA-2011-BLG-291bKepler-1700bKepler-86 b HD 134987 b Kepler-1550bHD 12661 b Kepler-712 c GJ 163 d OGLE-2015-BLG-0954LbKepler-424 c 0.22MOA-2009-BLG-387LbGJ 317 b 0.94HD220842Ab –ups And c 1.25 0.91HIP 109600 b HIP 57050 – c 5644 1.14HD 5891 b 0.37 1.07HD 169830 b 3.980 5885HD 60532 – b 1.11Kepler-1690b 0.19 –HD – 233604 – b 59912M 27.01 1938 – – 3.550 6.91 – – 1.13 – – – 240.80 2.84 1289.94 – 1398.31 – 2.95 2.46 234.60 2.80 5920 – 225.58 826.27 2.82 0.88 60 – 60 789.33 – 2.17 0.87 1010.59 60 2023.58 2.73 5336 – 60 2.76 – 59 218.72 – 59 2.75 2.75 59 234.79 2.74 59 REFERENCES 38 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 2.202.172.13 11.00 20.90 4813 10.40 4445 47491.05 – 0.9500.651.01 – 985.17 1693.86 – 0.85 0.98 – – 476.70 5857 48751.19 51961.90 10.000 5.900 – 1.38 186.21 126.95 10.2000.94 9.90 282.84 29.87 6058 47.00 189.24 4757 0.98 0.560 2.69 – 5.400 – 52951.08 – – 2.73 260.59 367.63 58 8.900 580.12 1.49 193.30 246.531.13 – 921.61 508.47 5590 0.14 58 5.941.07 10.22 3.54 – 6.18 5.590 171.03 30811.15 – 4580 1.38 715.041.15 57 1.40 175.56 5.830 – 57 3.24 220.28 58361.59 57 6199 – 1.22 966.10 8.500 2.67 1.57 63.56 5.26 6095 57 – – 184.18 53.39 75000.98 – 3.2400.82 57 0.500 1.01 57 – 155.71 3.28 – 1529.43 – – 53.90 5867 214.87 3.36 3.87 5.250 5434 2.94 2.65 2.61 57 157.00 5.10 – 84.69 – 153.34 56 57 2.66 59.49 3.14 0.287 1.85 56 158.69 – 56 56 56 3.04 226.82 2.72 56 56 ⋆ M planet name 14 And b HD 110014 c omi CrB b OGLE-2018-BLG-0596bKepler-453(AB)bKIC5094412bHIP 68468 c HD 128356 b 55 Cnc f Kepler-1606bKepler-1527bHD 11506 c HD 0.20 145457 b Kepler-1549bHAT-P-44 c –Kepler-1040b 0.93KMT-2019-BLG-1953LbKepler-1538b 0.82 – 0.83HD 73526 b Kepler-1090b 5527 0.80GJ 3512 c –HD 32518 b 5313 0.90 –Kepler-1554b 1.21HD 34445 c 8.49 0.86 –HIP 41378 d 1.32 9.53 0.31Kepler-1535b 5422 0.88Kepler-937 c – 6224Kepler-462 6.04 b 4.270 – 0.98 – 0.84Kepler-35(AB)b 2.820Kepler-1000b 2574.73 240.50 5324 1.03 0.96Kepler-1552b 5.60 – –Kepler-782 b – 4.790 5694 0.86 2.68 1.03HD 45364 2.81 b 277.86 2.03 4.170 – 5837 0.82 4.67 – 0.84 196.44 58 2.70 4.370 5321 58 187.50 – 160.13 0.81 2.51 4.370 1.08 2.50 – – 5297 2.04 57 1.66 214.89 1.70 1.11 – 4.680 2.77 201.12 469.40 6021 1.40 57 1.00 2.81 0.85 57 2.21 – 175.14 3.470 5606 1.51 2.43 2.67 0.78 198.68 6453 57 2.84 2.57 – – 5202 1.260 57 57 2.55 198.09 3.310 2.49 40.30 57 – 7.99 2.70 – 138.94 57 4.66 131.44 2.41 1.99 56 120.02 184.77 2.69 56 0.728 1.89 56 56 56 REFERENCES 39 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.022.40 1.08 9.30 5946 4861 4.900 – – 540.25 2.66 – 172.70 156.21 2.83 2.63 56 56 1.211.02 1.221.06 63401.09 1.040.42 1.27 58291.36 1.44 – 57140.85 – 4.470 58451.10 12.50 9.280 2161.02 0.89 4639 5.700 3510 1.13 3.82 1595.34 – 57201.01 3.800 36.23 59430.84 – – 5.8001.12 84.00 0.96 3.12 467.16 3.550 5.04 0.80 58302.10 1.14 51.80 164.88 – – 161.47 51780.68 2.60 190.96 – 3.200 60461.23 – – 5.8901.05 0.50 2.02 5.30 148.85 2.58 613.35 1.300 3.33 1.36 3.23 56 4780 3717 0.95 10.86 1830.51 375.62 – 207.72 6260 2.19 151.86 5820 56 56 – – 141.82 – 56 2.630 3.58 2.66 3.35 1.1002.42 2.04 1700.21 56 10.49 1.81 104.18 – 198.71 308.26 11.60 –0.96 56 56 8.20 4945 – 56 0.728 5.96 3.36 55 0.94 133.61 125.57 – 258.11 127.83 5694 55 55 0.621 2.57 629.24 4.070 2.57 1.52 – – 55 55 55 55 143.44 6.50 161.53 2.58 2.37 55 55 ⋆ M 244755b 0.49 – – – 19.07 – 354.19 2.65 56 + planet name Kepler-540 b HD 100655 b TCP J050742 Kepler-1513bKepler-31 d 0.99 0.97 5617 3.980 – 8.28 160.88 2.34 56 Kepler-1143cKepler-630 b HD 154672 b Kepler-103 c GJ 317 c HD 216536 b HD108236 c Kepler-610 c BD-082823cKepler-1593bKOI-3680 b Kepler-967 c HD 145377 b 0.81ProximaCentauricHIP 105854 b 0.77GJ 3138 d Kepler-820 b 5053Kepler-539 b Kepler-1701b 4.790OGLE-2017-BLG-1140LbKepler-1318b 0.74KMT-2019-BLG-1953Lc – 0.81MOA-2016-BLG-319LbHIP 107773 b – 0.77 3.52OGL-2019-BLG-1053Lb 0.12Kepler-1097b 4995 4746Kepler-767 b 210.63 0.14OGLE-2005-390Lb 3.630 0.21 4.500 3050 2.78 104.87 0.31 – – 0.86 – 0.15 – 0.73 – 0.83 56 3.11 0.61 – 9.53 – 5116 238.09 0.70 174.51 – – – – 4598 – – 0.82 2.68 0.22 2.05 4.570 – – 518.01 1898.41 0.79 – – – – – 55 88.98 5211 – 55 2.55 197.03 2.17 – 4.900 – 3.04 813.36 2.48 – 55 168.61 – 213.26 – 469.40 2.58 – 873.23 2.57 3.19 2.60 5.40 2.66 2931.85 55 2.58 187.75 – 55 2.59 55 55 55 2.76 2369.77 55 2.55 55 55 REFERENCES 40 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.900.880.99 10.10 0.87 49082.10 1.00 54311.20 54851.35 13.00 – 7.200 9.20 47531.54 21.80 – 1875.00 4836 4284 – – – – 4.500 406.781.08 – 2.19 562.50 921.61 – 127.49 –0.40 1.30 164.48 489.410.93 – – 55941.01 147.69 2.56 – –0.89 – 4.02 – 135.14 132.31 9.09 –1.15 2917.37 2.59 0.87 – 121.71 5453 4830 55 2.56 2.52 5547 – 54 1.40 4.000 7.400 3.000 – 2.56 54 5.300 6199 3085.81 1836.87 125.00 13.60 54 54 3.31 10.60 – – – 54 – 2.53 2.17 157.66 131.90 140.23 – 123.52 338.22 2.54 54 2.23 4.10 5.40 2.87 1.66 54 131.00 54 54 53 54 2.56 53 0.850.89 0.861.38 0.85 48201.05 5643 2.29 8.500 1.15 5972 – 66.74 5886 4.000 5.500 – 1633.48 – – – 225.73 2.67 3.31 117.26 142.54 4.91 134.25 2.18 2.51 53 3.06 53 53 53 ⋆ M BLG-1019b 0.27 – – – 3877.12 – 385.50 2.47 53 / OGLE-2019 / 152375b 1.08 8.95 4649 7.400 336.86 – 153.64 4.18 53 + MOA-2012-BLG-505LbKepler-1038b 0.10 – 0.87 – 0.83 5335 – 4.270 2129.24 – – 3.46 1369.04 148.46 2.47 2.37 53 53 planet name HD 102272 b Kepler-439 b HIP 14810 c Kepler-1678bHD 81688 b HD 12648 b SAND 364 b Kepler-1545bHIP 63242 b Kepler-38(AB)bKepler-1567bKepler-1661(AB)bKepler-139 c Kepler-64(AB)bGJ 163 e HD 156279 b 0.96HD 5583 b Kepler-538 b 0.90Kepler-1086cHIP 41378 e 5421 0.84Kepler-1548b 0.95KMT-2018-BLG-125Lb 0.80OGLE-2012-BLG-0563Lb 1.10 – 0.95BD 1.76 5201 – 5640 1.93 0.93 4.470 – 5655 1.70 – – – 3.24 4.170 – 120.76 0.22 0.34 148.14 0.70 – 2.64 – 4.28 – 0.99 0.66 – – 163.69 16.84 2.53 2.68 118.66 4350 0.97 168.43 5907 – – 2.50 153.98 2.880 5706 6.07 2.53 54 – 4.370 175.06 – 2.34 132.72 – 54 54 123.94 – 2.58 6.06 2.88 2.54 54 – 2.59 161.52 – 54 54 398.75 124.83 1.57 1160.90 2.59 2.38 2.47 53 53 53 53 HD 218566 b Kepler-351 d Kepler-1609bHD 147873 b Kepler-965 b Kepler-1672bKMT-2019-BLG-1339 1.18 1.27 0.94 6132 1.08 3.020 5899 – – 2.17 – 114.34 2.91 1.66 151.10 53 2.52 53 REFERENCES 41 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.290.92 0.291.08 33821.01 0.910.96 1.14 55411.04 1.00 – 59220.98 1.06 5.890 57270.78 1.06 56632.20 0.98 9.44 – 59650.90 0.79 – – 8.500 56451.80 12.00 3.720 53440.84 – 70.99 4780 – 7.630 25.110.92 9.90 4.54 14.40 5.8000.92 0.81 8.67 1252.12 – 3.26 48471.10 530.58 – 1.97 – 150.24 – 5262 10.111.14 3.94 – 134.46 1.700 54321.32 10.21 1.82 118.59 641.95 5.010 2.48 0.002 111.01 1.35 3.24 149.49 476.70 – 7.090 5900 5600 1.55 117.93 2.55 3686.44 62081.20 – 4.54 2097.46 10.700 – 7.500 6158 4.11 – 2.52 53 635.98 – 4.900 2.05 52 1.25 270.13 – 108.77 6.36 52 2.48 – 343.22 52 6159 93.38 3.10 – 52 8.99 52 6.01 126.64 144.55 2.47 52 4.880 – 0.920 – 194.97 0.00109 193.56 384.53 52 3.82 2.69 131.99 52 2.77 – 5.95 52 4.59 52 2.73 52 135.37 52 125.03 52 52 2.45 52 2.63 52 51 1.171.08 1.230.91 60650.90 1.14 0.85 59220.97 0.90 – 5434 5540 0.91 – 3.390 8.770 – 56370.83 71.00 1070.98 – 2.450 0.82 2.79 8.67 – 5610 2.92 – 146.46 131.30 3.330 132.06 116.33 3.19 214.51 2.44 2.52 4.67 1.81 105.30 – 51 51 1.31 156.29 51 51 1.87 51 51 ⋆ M 152940b 1.10 14.70 4796 7.100 352.75 – 137.81 3.90 51 + planet name GJ 273 e Kepler-1036bKepler-867 b KOI-1783.01 HD 42618 b Kepler-11 g Kepler-807 b HD 80606 b tau Cet f ksi Aql b CI Tau b 8 Umib Kepler-896 b 70 Vir b 0.95HD 155358 b Kepler-87 c 0.89HD 231701 b Kepler-264 c 5533Kepler-1539bOGLE-2018BLG-1011Lc 3.240HD 52265 b BD – 2.95 122.88 0.18 1.78 – 0.84 0.80 – 53 5176 4.790 – 889.83 – – 2.64 616.01 133.30 2.39 2.53 51 51 Kepler-201 c Kepler-1540bK0I-1783 b Kepler-985 b GJ 3021 b HD207832AbKepler-987 b MOA-2011-BLG-262LbKepler-1362bKepler-1294bHD 37124 b 0.74 0.69 0.12 0.94 4540 – 2.510 0.90 0.80 5710 0.99 – – 0.74 4.500 0.97 4857 – 2.44 177.97 5776 3.090 125.41 3.980 – 18.00 – – 1.33 – 162.12 2.55 3.13 811.74 2.56 51 136.21 115.69 2.38 51 1.64 2.14 51 51 51 REFERENCES 42 49 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.030.81 1.050.88 5863 1.170.29 0.84 4.370 5384 5360 0.291.20 – – 4.570 33821.00 1.200.95 2.77 75.64 – – 6080 0.99 0.93 3.42 105.14 57302.17 10.96 2.86 – 56810.86 4.270 90.261.01 2.04 2.31 117.04 – 3.9801.25 0.90 9257 –1.39 1.01 – 2.34 53851.21 1.40 2.38 407.48 – 5808 50 1.74 – 2.82 7.000 6335 1.22 7.48 4.370 64300.74 6.74 2.38 50 2.340 80.37 63401.06 110.88 50 130.35 2.800 – 0.71 – 133.461.20 – – – – 794.49 2.34 4723 50 20.08 2.31 1.20 6.36 10.53 2.13 3.200 1493.64 5911 196.95 2.08 109.81 6080 49 5.19 127.91 69.72 4.3001.15 49 – 71.450.62 3.85 49 2.45 – 23.90 44.02 2.35 – 1.41 0.62 2.30 1.17 – 49 6060 – 4503 49 2.28 147.87 49 48 122.76 – – 48 2.60 1.61 48 1194.92 352.75 2.25 90.76 2.16 – 48 2.29 48 42.15 82.64 48 2.18 2.28 47 47 ⋆ M Kepler-1227bKOI-368 b 0.97 0.95 5747 4.170 – 2.24 94.29 2.13 49 planet name Kepler-1341bKepler-722 c Kepler-1621bKepler-396 b Kepler-549 c Kepler-1653bGJ 273 d OGLE-2018-BLG-0532bKepler-1333bKOI-351 f OGLE-2015-BLG-0051LbKepler-952 b Kepler-799 b 0.79TYC4282-605-1b 1.15 0.72HD 0.20 69830 d 4662 1.24Kepler-603 c 0.72Kepler-930 b 1.820 6158 0.10 –Kepler-419 b 0.69Kepler-31 c 2.690 0.94KIC5522786b – – – 4807Kepler-1016c 0.92Kepler-443 b – 7.700 2.93HD – 10180 0.97 f 5628 –Kepler-1442b 2.12KOI-351 e – 133.00 16.21 4.570Kepler-1475b – 6.24 4300MOA-2010-BLG-328Lb 92.26 2.13 0.969OGLE-2017-BLG-1434Lb – 10.100 228.81OGLE-2019-BLG-0960b –HD 3425.85 35759 138.96 b 1.40 2.75Kepler-55 – c 51 922.79 – 1.79 3.99 109.65 0.99 720.40 50 1.30 2.36 101.66 1.00 2.38 0.11 8719 0.23 1.34 50 2.32 5821 5.15 0.47 1.18 50 1.44 – – – 3.890 49 49 6394 – 1.28 – – – 1.700 – 6214 – 2.820 – 3.60 1.21 – – – – 105.66 760.61 9.22 3.85 4.45 2.25 2.86 2.02 2.26 81.42 – – – 82.18 0.860 971.79 976.22 48 48 1078.25 1.42 2.26 2.22 48 2.21 48 48 47 47 REFERENCES 43 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.871.18 0.82 1.64 49741.02 5770 0.2121.08 1.020.98 – 15.20 58401.63 1.001.28 1.02 4.070 3.25 59900.85 5.52 5399 – 1.40 0.650 4890 0.81 57.71 – 7.100 61201.02 2.49 5324 4.13 – 435.38 2.5001.10 1.02 4.04 0.105 4.4701.13 82.84 2.62 635.59 5857 – 438.56 1.82 99.75 1.08 – 47 3.800 66.63 5600 – 2.27 – 120.89 6052 7.500 2.08 5.12 – 0.327 1.4100.98 77.60 89.25 324.15 3.68 47 0.77 124.42 0.97 8.79 13.21 47 – 1.24 47 2.29 – 5753 47 2.28 116.17 98.720.99 2.32 3.890 49770.89 46 0.99 46 0.94 3.78 60.09 1.901.04 46 0.85 – – 56250.80 0.95 54030.87 0.94 0.672 4.000 5498 45 3.34 7.09 45 – 4.370 6018 0.83 266.95 2.000 0.300 90.41 4914 5232 – 45 10.31 – 23.20 4.680 7.63 – 95.32 1.93 8.61 193.45 3.72 9.49 – 66.58 129.79 100.83 1.99 2.17 45 130.06 3.87 – 1.08 2.11 0.181 45 45 105.96 158.90 44 44 2.28 44 2.30 44 44 ⋆ M planet name Kepler-411 d Kepler-129 c Kepler-1020bKepler-1058bKepler-966 b Kepler-1510bKepler-289 d XO-2S c HIP 67851 b HAT-P-46 c Kepler-841 b Kepler-1490bKepler-1667bKepler-950 b HD177830Ac 0.87Kepler-87 b 0.73Kepler-983 b 0.80Kepler-1494b 1.19 0.69Kepler-413(AB)b 5227KMT-2020-BLG-0414b 4644 1.28Kepler-1495b 3.630Kepler-1204b 3.390 6200Kepler-616 c HD 40307 – g 2.750 0.90Kepler-1354b – 1.09Kepler-1094b 0.87 2.23Kepler-1503b – 1.47 1.06 2.67CoRoT-9 b 5515Kepler-920 c 0.36 96.92 5951 2.99 3.29Kepler-30 d 110.97 1.36 4.570 0.96Kepler-51 d 4948HD – – 8326 b 84.70 1.80 0.78 0.94Kepler-976 1.67 b – 4.400 1.03 4700 5659 1.03 – 47.67 1.39 – 1.04 2.97 47 4.370 47 1.03 – 5831 1.16 – – 2.92 92.44 5825 1.14 47 – 4.170 0.77 67.06 1.24 4.270 1.21 83.75 110.92 1.21 2.25 6168 4.26 0.74 3.01 – 6112 – 2.950 5069 – 2.23 2.23 66.27 3.090 91.08 2.88 45 5.130 2.98 – 1449.83 – 2.18 45 85.27 45 2.14 – 85.74 2.91 2.14 3.12 2.04 2.23 45 45 76.61 2.08 78.10 45 96.17 45 1.43 45 1.51 2.48 45 45 45 REFERENCES 44 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.911.04 0.89 5526 1.260.77 64741.30 –0.62 –1.32 1.15 –0.99 0.62 4792 5929 –0.69 4.06 45030.95 1.03 3.880 – 4995 0.64 – 2.71 58850.86 0.94 – 131.25 4.200 49250.78 2.30 55311.10 0.76 98.32 11.19 – 1719.28 7.000 – 473.52 1.04 8.960 4997 12.561.04 1.30 75.20 – 2.38 34.96 5796 2.13 116.67 22.88 – 49701.32 1.11 52.50 – 1.381.42 2.12 27.95 – 121.07 0.023 57570.90 1.94 – 3.81 1.95 43 1.09 267.52 1.87 – 699.15 6.000 5907 – 1.00 2.14 1.99 43 –0.99 113.41 0.90 123.07 10.05 3.730 5635 52480.90 3.05 42 – 2.52 5602 42 1.13 3.69 24.15 3.600 2.140.97 43 4.28 42 0.98 – – 5520 84.72 1.59 – 206.57 42 5774 105.41 0.94 0.0102 9.300 34.19 6.57 42 383.15 42 5677 – 2.11 56.25 – 460.81 2.13 42 – 4.170 87.46 3.04 10.31 2.58 120.12 42 – 42 – 86.67 95.94 44.35 1.77 1.74 41 2.89 3.31 4.19 2.16 2.01 41 131.25 41 81.17 40 41 41 2.01 1.90 40 40 ⋆ M planet name Kepler-1411bKepler-1504bKepler-1101bKepler-1496bKepler-251 e Kepler-1316bKepler-457 c Kepler-1237bHD178911BbHD 103949 b HD 208487 b Kepler-55 b Kepler-432 b 0.95Kepler-266 c 0.85Kepler-62 f 0.94 0.9261 Vir d 1.18 0.81Kepler-1129c 5664 0.91Kepler-169 f 5393 1.04 1.27Kepler-315 b 4.170 5614V 1298 Tau 4.470 b 6182 0.94 1.12Kepler-1080b 4.270 1.07Kepler-452 b – 2.950 5884 0.90KMT-2018-BLG-0748b – 1.14TOI-813 b – 5.130 5472 2.77HD 206255 – b 5650 2.08HD 216770 b 4.570 2.41Kepler-282 e – 5.200 86.12 2.17HD102365Ab 82.30KOI-1257 1999.58 b – 81.32 1.00 3.47Kepler-344 c 64.66 2.00Kepler-1196b – 2.12 1.00 2.80Kepler-591 b 0.09 87.97 2.03Kepler-1524b 1.38 1.10 5831 44 63.92 84.57 – 44 4.070 2.47 1.16 44 44 2.39 2.14 5956 – – 43 3.890 0.85 2.68 43 – 43 – – 76.54 0.98 60.38 3.22 5650 1.17 0.97 – 1.89 9.000 77.25 5756 1.25 604.53 15.89 3.980 6179 42 1.84 2.880 – 2.05 – 42 – 123.60 2.18 41 3.47 66.18 4.17 70.97 1.78 41 1.30 40 40 REFERENCES 45 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.731.070.99 0.701.28 1.38 46510.87 1.51 58360.95 1.98 3.000 55910.89 0.86 8.500 60220.81 0.96 9.800 53070.99 1.36 – 2.620 30.83 54951.15 0.83 2434.01 7.590 56270.65 0.95 7.600 79.45 5326 1.22 2.63 – – 54981.03 0.59 – – 10.000 4.22 10.07 60950.64 2.000 84.38 54001.23 1.29 118.05 15.89 58.10 3.240 2.69 0.61 25.11 2.96 42.88 638.77 58970.25 1.75 – 2.61 1.34 43920.99 3.96 12.04 77.79 – – 4.24 86.49 63631.14 0.31 – 1.11 3.470 2895.13 77.23 1.85 60.32 33420.95 0.92 3.64 – 3.92 40 3.30 102.56 40 3.30 58770.49 508.47 39 – 58800.33 4.22 1.13 39 – 0.864 67.67 2.351.14 18.36 37.50 2.02 – – 0.100 60991.22 38 2.49 38 –0.79 1.23 3.04 7.69 1347.46 8.14 38 1.42 31911.18 38 1.80 3.57 – 82.53 3600 6167 – 38 9.22 0.78 56.10 49401.10 – – – 2.000 3.090 1.70 46991.20 695.97 38 3.01 38 1.45 9.27 1.00 – 2.80 1.86 60750.75 235.38 667.37 4.61 1.20 – – 59141.10 77.97 37 1.620 0.0404 6080 450.00 0.70 – 15.57 37 – 1.83 1.00 3.01 10.81 – 37 387.71 3.47 4590 1.93 – 5914 37 112.71 1.81 258.64 – 61.04 – 39.41 21.36 – 37 – 37 – 1.92 5.29 0.793 94.24 1.30 63.74 432.20 37 1.80 28.60 2.81 71.31 3.32 37 37 1.87 0.696 2.25 37 36 60.36 9.72 1.95 34.92 36 36 1.90 1.67 36 1.78 35 35 35 ⋆ M planet name Kepler-436 b HD 34445 d HD 168443 b Kepler-145 c Kepler-598 c Kepler-20 d HD 143761 c TOI-561 e Kepler-30 c Kepler-937 b Kepler-27 b Kepler-1092bKepler-24 b Kepler-991 b Kepler-279 d Kepler-1151bWolf 1061 d Kepler-335 c CoRoT-20 b Kepler-1047bKepler-58 c HIP 79431 b GJ667Cg Kepler-924 b 0.99Kepler-391 c HD 219134 g 1.00HD 121504 b Kepler-1696b 5862 0.88Kepler-328 c KOI-351 d 3.800 0.85Kepler-1486bKepler-28 c 5470 1.08Kepler-328 b – 4.370 1.13 2.03 5754 – 4.470 58.60 2.17 1.05 – 1.63 65.65 1.27 1.08 2.04 5379 38 1.84 1.12 56.19 – 5965 37 3.550 1.88 – – 37 2.75 2.27 65.98 54.65 1.93 1.44 36 35 REFERENCES 46 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.671.01 1.08 57660.95 – 3.340 0.95 5920 22.25 59080.57 – 2.521.17 – 0.550.96 947.03 1.30 33.44 43400.99 6174 – 1.05 – 1.900 0.99 1.27 3.440 61051.19 2.79 5773 58.83 – 4.13 1.65 – 4.270 33 88.13 5946 1.65 3.41 1.83 16.21 – 1.72 – 247.70 80.98 2.74 33 6.66 64.19 0.683 48.65 33 1.44 85.35 3.29 32 1.73 32 33.01 1.67 31 1.69 31 31 1.190.981.09 1.161.19 0.97 61000.65 1.13 56820.80 1.31 1.480 6326 0.58 4.790 62700.96 0.76 4465 – – 11.000 49701.07 0.91 –0.71 – 71.82 0.850 56530.88 1.09 2.49 –0.88 2.02 2.48 603.81 3.390 6248 – 0.85 44.93 5502 – 0.85 2.25 2.57 62.92 5368 – – 122.40 5368 – 2.45 0.581 7.000 56.42 8.20 7.000 1.94 4.76 4.53 14.80 – 76.31 14.81 – 34 1.79 0.282 76.14 2.36 34 3.93 2.36 1.76 33 3.80 50.82 33 33 1.36 80.11 50.82 93.63 33 2.69 1.79 33 2.66 1.80 33 33 33 33 ⋆ M 20 594 b + BD-061339cHD 12484 b Kepler-1345bKepler-358 c OGLE-2018-BLG-0677LbKMT-2016-BLG-1107bKepler-1023bKepler-1633bKepler-441 b Kepler-79 e Kepler-1184bKepler-276 d Kepler-857 b 0.10 0.70Kepler-1681bKepler-1615b 0.09 1.32Kepler-277 c – –Kepler-1462b 1.55Kepler-1359b – 4324 – 6449 0.93 1.20 4.400 – 2.240 0.89 – 1.32 54.03 5494 1.05 – – 6256 3.96 – 4.470 1.07 1043.33 2.820 0.72 2.32 5983 1.04 – 125.25 – – 0.89 – 3.550 44.62 1.00 1.05 5173 0.78 577.56 2.58 1.79 247.67 5865 1.00 1.55 – 0.863 0.72 – 3.890 62.14 5756 1.57 1.62 186.40 4709 33 2.62 4.070 33 – 2.340 1.74 – 0.991 32 53.60 32 – 2.02 – 2.50 32 32 1.34 3.74 47.31 70.01 2.77 65.65 31 59.50 1.45 1.71 1.55 0.862 31 31 31 31 planet name Kepler-1675bKepler-852 b Kepler-903 c Kepler-385 d Kepler-25 d Kepler-298 d K2-77 b Kepler-1132bKepler-858 b Kepler-1638bKepler-359 d Kepler-368 c K2-263 b 1.14K2-263 b BD 1.13 5747 – 0.87 0.97 0.83 – 5298 0.95 3.06 4.570 5710 4.370 63.03 – – 1.85 2.30 1.83 62.89 34 259.34 1.80 1.63 33 33 REFERENCES 47 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.640.78 0.621.01 4017 0.791.24 1.01 1.000 53440.85 5806 1.58 5.8000.98 0.88 – 4.370 6225 57970.96 3.94 0.96 3.8000.69 2.11 – 56920.95 0.98 – – 34.96 0.64 4.370 64.05 56421.08 0.98 2.26 2.13 49250.98 162.89 6.170 – 56901.08 1.31 – 0.344 7.000 52.070.81 1.09 8.42 6.310 60540.97 1.00 2.00 – 2.41 35.91 58201.09 0.74 5.86 1.62 59901.03 31 0.96 – – 7.000 1.58 1.26 48380.33 0.90 97.23 2.32 0.650 80.87 57691.04 30 1.10 349.58 2.510 56020.81 0.36 2.61 122.69 30 3.630 56.43 5835 –0.88 7.31 0.88 1.57 13.17 30 1.70 33500.92 0.77 – – 60.93 58751.03 2.27 0.84 2.11 – – 2.24 86.68 2.500 2.24 50010.42 0.89 0.180 30 53631.07 1.29 2.38 61.02 30 4.470 33.82 2.27 14.30 5533 0.40 65.42 3.27 317.80 2.68 29 4.370 – 58971.09 1.34 2.40 29 4.270 53.53 3466 – 2.68 – 0.218 59.62 6169 1.13 1.50 – 29 – 2.53 24.81 29 – – 0.893 5954 122.16 2.04 4.94 – 1.34 10.40 508.47 64.84 29 3.630 29 1.56 2.17 21.09 55.67 2.74 0.875 29 0.0552 39.64 – 1.58 29 – – 52.63 12.42 29 1.59 29 29 1.42 2.47 8.70 122.62 29 1.55 1.53 58.02 29 52.76 29 1.59 29 28 1.51 1.19 28 28 28 ⋆ M planet name Kepler-61 b Kepler-1085ctau Cet e Kepler-926 b Kepler-1562bKepler-50 c Kepler-310 d Kepler-1272bKepler-700 b Kepler-47(AB)bKepler-986 b Kepler-62 e Kepler-517 b EPIC212737443c 1.11Kepler-379 c Kepler-418 b 1.14Kepler-289 b 1.02Kepler-786 b 6000Kepler-940 b 1.05Kepler-282 d 3.390 1.06Kepler-265 e 5760 1.04GJ 876 e 1.09TOI-251 b – 4.790Kepler-934 0.96 b 5926Kepler-725 b 0.69 5636 3.20Kepler-938 b – 3.890Kepler-24 c 0.67GJ 3293 – c 56.78 3.48Kepler-361 c – 4684Kepler-1674bKepler-890 b 64.27 1.27 – 2.32 –Kepler-1502bKepler-1168b 2.96 51.13 1.79 9.63 31 57.48 2.63 1.44 30 65.15 1.66 30 0.93 1.64 29 1.44 0.87 0.87 29 5326 1.72 0.82 6666 – 5157 1.700 4.270 – – – 3.14 3.12 2.45 62.65 41.71 55.82 1.66 0.595 1.50 28 28 28 REFERENCES 48 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.700.89 –1.320.51 1.00 4995 1.32 56900.45 0.55 6.000 6394 42521.04 0.45 – 117.58 0.8700.99 35571.15 1.05 – 133.47 – 0.98 5.500 5927 –0.66 1.24 10.97 57340.94 292.37 3.470 143.82 12.20 61700.91 2.89 – 52.32 4.370 2.050.81 0.86 3.3900.90 0.90 – – 2.25 4146 5544 0.90 64.57 – 0.328 8.01 54281.11 0.79 – 1.900 54900.78 105.90 2.79 – 53090.81 1.55 1.59 2.95 28 – 14.000 1.29 22.500.87 27 0.68 2.66 9.900 51.08 58280.54 1.82 0.93 18.81 4.77 55.64 5144 2.19 20.90 – 1906.78 46.41 28 56381.07 0.56 – 27 – 1.20 5854 8.87 – – – 27 1.47 4263 1.09 62.95 – 1.13 858.05 – 33.58 87.17 6002 147.10 16.91 – 27 75.74 3.131.00 0.641 26 3.630 –0.96 26 – 3.29 1.53 2764.83 –1.22 4.42 0.90 10.80 1.531.13 0.87 2.05 – 1.68 26 5448 1.38 8.47 74.86 5498 1.61 26 26 1.39 26 7.000 207.79 7.88 2.93 57 26 2.000 6150 61.79 893.96 1.49 0.017 5.300 49.62 1.35 25 1.16 – – 1.37 584.75 – 25 1.21 13.06 12.08 25 55.19 25 25 9.86 38.48 51.02 25 2.25 6.96 0.576 1.69 0.00472 24 24 23 24 ⋆ M planet name HD 93083 b Kepler-1447bKepler-154 c TOI-201 b Kepler-54 b Kepler-1360bGJ752Ab Kepler-1233bKepler-466 b Kepler-809 b Kepler-655 b OGLE-2013-BLG-0341LbHIP 71135 b Kepler-19 d 0.97Kepler-82 f HD 20794 e 0.95Kepler-46 b Kepler-1452b 5722 1.51Kepler-23 c GJ 785 b 4.170 0.11 1.16 1.83Kepler-69 c Kepler-108 b 6778 1.25Kepler-52 b – –Kepler-1580b 1.550 6198Kepler-978 b 2.84Kepler-1102b – 2.880Kepler-1128b –Kepler-1060b 56.67Kepler-1326b – – 3.32HD 37605 b 1.41Kepler-468 b 1.49 2.55HIP 67522 1.66 b 40.53 2.06Kepler-117 c 45.13 6101 – 28 0.530 3.240 1.47 1.01 639.93 0.96 27 2.15 – 0.94 6228 1.36 0.99 0.94 27 1.45 0.91 2.64 2.750 5724 0.99 5543 1.74 26 4.370 42.91 5797 – 4.570 6725 4.270 – 1.700 1.09 2.06 – – 2.60 – 56.64 3.58 26 2.33 51.33 4.09 0.784 61.62 46.88 42.35 1.44 1.48 25 1.35 0.547 25 24 24 24 REFERENCES 49 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.070.580.71 1.460.95 – 56000.96 0.681.24 1.11 3564 45511.28 0.93 – 53000.75 1.64 2.900 56101.06 1.98 – 1.000 59601.15 143.33 0.70 3.980 60220.55 1.02 1652.54 – 3.700 45901.20 1.40 – 7.93 2.620 6035 10.970.92 0.56 – 565.04 61990.75 1.28 2.08 – 1.860 37.18 4252 – 0.89 94.40 9.63 61080.93 – 0.72 2.07 – 67.00 2.59 54601.07 479.87 – – 48710.76 94.66 0.91 1.55 – 0.280 6.800 43.03 3.521.00 51.65 1.09 6.99 22.95 0.776 6.030 56631.04 311.44 0.73 2.06 22.00 6248 1.04 1.29 6.51 4.270 2.67 1.22 – 46400.81 23 23 – 1.18 1.04 0.775 – 41.70 1.16 58580.56 23 – 3.800 58600.58 0.75 – 2.11 7.20 4.830 23 1.200.87 1.05 62.44 2.32 68.96 23 0.519 23 23 3.890 22.69 4861 0.57 11.12 3540 – 0.84 58.11 2.81 4.170 56.35 1.17 2.56 40900.95 1.33 23 1.89 – 0.009 2.50 5394 23 4.21 51.301.22 0.88 1.21 – 35.58 1175.85 – 4.790 1.82 2.23 43.84 23 23 55500.79 4.94 1.31 22 60.06 1.300.43 2.08 24.69 1.11 – 0.125 41.81 22 6058 0.75 22 1.40 4.04 1.33 – – 2.820 44.96 4926 12.89 22 – 1.19 22 0.00202 4.470 3371 22 41.41 – 86.53 22 1.18 45.21 – 22 – 21 2.51 16.66 1.21 1.28 21 10.76 7.49 37.81 0.0355 21 30.36 21 – 0.810 21 1.12 96.14 21 21 1.17 20 ⋆ M planet name HD 141399 b GJ229A c Kepler-437 b WASP-162 b Kepler-984 b HD 74156 b Kepler-145 b Kepler-28 b Kepler-906 b HIP 41378 g Kepler-49 b Kepler-364 c Kepler-409 b Kepler-482 b Kepler-1018bKepler-921 b Kepler-359 c GJ 143 b Kepler-106 e Kepler-759 b Kepler-1544bKepler-942 b K2-33 b HD 147379 b Kepler-706 b Kepler-1024bKepler-1458b 0.91TOI-451 d BD-114672c 0.88Kepler-839 b Kepler-1453b 5518Kepler-486 b GJ 180 d 4.470 0.81 0.74 – 4886 0.81 2.52 2.340 0.96 0.78 49.10 0.94 0.57 – 5143 5653 0.97 0.52 5.250 1.34 1.74 4.170 0.94 4475 – 168.81 5665 4.400 22 – 4.270 15.37 3.83 0.647 2.70 – – 66.42 22 47.99 2.61 79.42 1.57 1.21 47.16 1.23 21 21 1.24 21 21 REFERENCES 50 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.870.530.40 0.820.87 0.51 49740.93 – 3722 1.00 0.2121.19 0.94 3.890 52930.74 – 10.80 5574 1.51 13.4001.21 0.76 – 3.000 63021.23 – – 13.03 49140.76 1.53 4.0001.10 1.75 6.80 2.06 58830.76 – 0.73 31.41 – 245.97 6363 –1.09 1.20 5.520 56.06 – 47261.16 0.86 11.04 60601.30 77.80 0.0550 1.12 – 2.41 – 52120.89 1.54 – – 56.40 107.49 4.270 1.08 59951.02 1.49 5.080 6045 3.73 49.92 49.26 20 2.46 – 3.550 64240.86 1.22 2.02 0.757 – 1.22 39.43 –1.01 4.21 – 20 2.240 5605 5688 0.84 58.91 1.22 – 20 49.36 3.900.77 0.96 2.44 2.49 8.000 36.80 20 51941.28 20 – – 5804 –0.89 0.73 1.24 9.47 46.52 1731.99 41.75 20 1.330.58 1.52 50.81 – 1.31 48340.89 1.09 65.88 3.65 – 3.52 – 6182 8.10 0.62 1.44 4.270 20 1.22 59181.10 0.85 1.27 20 – 3.160 40.70 – 4508 48.32 20 39.37 – 5643 0.741 1.74 – – 34.960.97 19 – 20 3.08 0.627 84.33 20 5923 1.31 – 3.75 2.23 6.42 0.89 5.48 19 – 52.22 – 1.27 – 5697 19 55.59 54.27 71.53 19 – 19 2.61 1.780 1.25 2.19 – 1.16 0.897 19 3.13 1.18 59.53 – 57.09 2.94 19 59.53 18 18 1.09 2.95 18 45.37 1.14 1.11 39.31 18 1.21 18 0.456 18 18 17 ⋆ M planet name Kepler-411 e Kepler-705 b GJ 163 f HD 164922 c Kepler-198 c Kepler-1261bK2-290 c Kepler-239 c Kepler-1113bKepler-92 d Kepler-279 c K2-118 b Kepler-509 b HD 95338 b Kepler-714 b K2-196 b Kepler-627 b HD 21411 b 0.82HD 72892 b Kepler-1109b 0.77Kepler-324 c 1.12Kepler-293 c 5006EPIC211939692.02 1.17Kepler-951 b 4.470Kepler-89 e 5931Kepler-288 d Kepler-155 c – 3.550Kepler-351 c HD43691Ab 2.22Kepler-338 d –Kepler-1521bKepler-1474b 48.43 1.05 2.75Kepler-530 b 1.22 1.06 42.30 1.22 1.29 5893 6417 3.800 1.01 20 – – 1.38 20 0.81 – 2.14 – 1.04 0.76 2.55 37.65 1.04 6200 5042 5870 2.800 39.55 4.470 1.03 3.800 816.74 1.19 – – 19 – 2.45 18 2.12 36.10 47.15 36.43 0.754 1.14 0.957 18 17 17 REFERENCES 51 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.001.050.96 1.001.04 1.12 57720.58 0.93 59190.60 0.94 4.070 55351.35 0.53 4.900 6074 – 4.270 39000.92 5.15 – – – 3785 54330.85 0.82 – –0.95 2.58 52140.87 651.48 0.88 3.71 – – 1302.970.74 1.13 9.11 1.510 40.61 1.08 57971.13 0.79 2.15 50.29 6099 0.66 19.66 – 53150.82 8.03 1.16 13.42 – – 1.03 4655 5.36 – – 5.400 1.27 57000.81 0.72 7.401.13 0.788 2.03 – 1.05 5.100 25.11 – 4954 441.74 1.35 0.784 17 74.020.88 1.47 33.71 17 222.46 34.17 2.72 2.59 57111.19 – 17 3.31 6175 –1.40 17 0.84 17 1.090.95 – 0.958 1.65 10.22 – 30.40 0.317 53601.01 1.66 59.01 – 1.92 5946 –0.86 0.93 4.570 66130.53 70.01 1.02 17 17 1.08 1.28 5647 –0.98 107.41 16 0.83 1.08 – 2.23 1.860 – 58441.02 0.51 – 4.370 5409 1.31 0.90 3.50 0.851 38130.54 16 1.17 15 43.62 87.39 – – 2.44 4.470 16 5576 2.51 – 3.600 6031 0.51 52.87 2.86 15 0.210 14.13 244.70 15 40.90 1.05 – 42.95 3914 2.49 – – 120.13 17.32 1.06 – 24.67 0.995 2.58 – 5.98 40.11 15 1.03 1.80 0.948 – 0.339 68.90 43.32 15 8.35 15 136.59 0.987 – 14 2.15 14 1.12 14 1.01 0.0455 0.683 2.36 14 45.16 14 51.29 14 14 14 0.904 0.924 14 13 ⋆ M planet name Kepler-1255bKepler-581 b Kepler-803 b Kepler-856 b Kepler-59 b Kepler-32 b GJ 96b K2-11 b TYC-3667-1280-1bKepler-969 b Kepler-1185bKepler-310 c Kepler-58 b 1.08K2-229 d HD 283869 b 1.12WASP-134 c Kepler-1517b 6018Kepler-306 e Kepler-1116b 3.550 1.87Kepler-104 d Kepler-342 d 6.26Kepler-1419b –Kepler-549 b 0.96 5130Kepler-277 b 2.27Kepler-470 b 0.87Kepler-902 b –HD 109246 b 36.29 5622Kepler-944 b 1716.10KOI-4427.01 1.550 1.58Kepler-63 b 0.902 –Kepler-84 f 0.95 1.95Kepler-1467b –Kepler-26 e 7010 17 25.70 0.93 1.01 1.31 1.380 5641 1.01 1.08 104.35 4.900 – 5796 0.344 – 4.370 16 9.56 2.49 – 16 5.55 0.86 41.70 2.80 0.233 0.82 42.52 1.14 5332 15 4.370 1.04 15 – 15 3.23 47.06 0.976 14 REFERENCES 52 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.950.541.03 0.92 0.56 5627 1.10 42631.06 4.070 58350.880.91 – – 0.89 – –0.95 0.89 3308.26 5911 51940.99 52001.32 0.88 2.45 1.80 4.300 3.140 –1.06 0.91 6.200 55501.54 1.55 38.38 25.10 5464 16.39 7.94 1.07 3209.75 2.44 0.125 61580.33 1.98 0.600 5887 11.520.99 2.00 – 0.879 0.867 63920.88 41.26 – – – 3.550 29.870.99 1.27 8.96 1.700 42.90 0.86 49.74 3600 3.30 57901.02 0.942 13 1.22 3.02 13 – – 52500.91 – 0.513 2.000 1.27 60501.17 0.98 0.868 – 8.241.10 8.85 1.06 6.28 – 13 3.26 57840.93 5.10 1.30 6.76 – 57081.12 1.30 13 13 13 0.112 53.45 0.0255 5997 – 39.50 – 10.600 – – 38.58 4970 – 1.76 3.720 –1.00 2.12 0.774 7.37 0.023 5460 55220.84 0.960 13 13 1.70 0.342 92.19 – 1.07 – 2.55 8.600 2.301.07 43.70 – – –0.83 13 74.48 13 – 3.11 0.343 249.03 12 1.38 39.70 2.63 45.30 5599 249.15 0.785 0.73 5.48 13.93 5836 0.701 41.47 – 4.400 34.44 5145 0.856 12 – 2.32 75.17 8.500 8.25 12 18.11 0.926 58.16 – 12 0.769 16.81 67.28 12 0.00543 2.07 12 – 2.43 2208.69 – 12 12 0.983 1.51 12 6.32 12 49.81 49.18 11.61 12 0.886 0.782 1.54 0.787 12 11 11 11 ⋆ M planet name Kepler-672 b Kepler-52 c Kepler-265 d Kepler-1455bHD16141AbHD 10180 e Kepler-48 d Kepler-75 b Kepler-1666cTOI-451 c K2-105 b Kepler-264 b Kepler-891 b Kepler-522 b Kepler-1043bGJ667Cd 0.62Kepler-142 d 1.01Kepler-260 c 0.60Kepler-122 e Kepler-1599b 1.00 4075K2-186 b 1.08 5533Kepler-10 c 4.170Kepler-512 b 7.760 1.21V 1298 Tau c HIP 65407 – c 5819 68.33HD 163607 b Kepler-1118b 0.92 2.12Kepler-1137b – –Kepler-416 b 0.90HD 90156 b 49.28Kepler-1684b 75.25 5629 –HD 34445 e 0.99Kepler-57 c 0.787 4.470 3.17 1.64 0.99 – 5767 13 40.81 13 4.270 2.49 0.96 0.977 1.50 – 38.51 0.97 1.84 13 5688 0.67 1.59 0.883 6807 4.070 0.60 122.36 1.580 4787 12 – 0.813 – – 2.68 2.15 12 38.67 – 23.92 2.81 0.835 0.311 47.84 12 12 0.883 11 REFERENCES 53 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.941.121.03 0.99 1.77 5666 1.03 56440.80 58350.96 – 7.5001.09 0.78 4.1700.80 0.94 1719.28 56980.93 1.13 5646 – 10.590.96 0.74 – 0.780 60200.16 1.23 4.270 49500.77 1.05 9.50 1.74 3.310 56670.81 0.18 8.18 – 0.360 61050.99 0.72 – 3278 0.78 65.97 – – 1.48 46731.43 7.89 8.29 1.22 1.85 – 8.500 5330 6.81 2.570 60501.29 0.637 1.43 3.86 2.59 4.570 39.69 –0.91 0.507 3.23 16.53 11 58.36 5751 1.82 – – 40.07 24.371.17 0.84 2.84 30.44 11 – 0.117 – 59040.93 – 11 0.866 53220.91 1.49 2.29 35.91 0.0663 0.630 20.57 4.270 31.880.93 13.82 0.91 232.80 3.020 58841.11 169.70 11 0.88 1.71 33.87 56021.17 11 0.91 27.81 – 0.833 0.868 11 5.49 54441.01 11 1.28 – 1.23 – 4.370 56.27 56120.57 1.49 0.459 5.620 59790.50 1.47 4.37 0.622 23.65 4.270 58840.77 10 10 0.56 2.16 – 0.780 – 60120.54 10 0.75 – – 41.05 41341.02 10 1.03 0.779 – – 10 31.00 3700 0.52 5.51 – 3.18 1.300 5739 10 1.02 2.62 0.811 0.022 – 3755 5.80 0.531 10 51.93 – 5792 35.89 – – 4.000 38.65 14.71 – 3.57 4.270 52.31 10 1.76 0.774 3.44 0.758 10 1.87 – 2.38 0.925 – 39.72 – 0.739 110.79 18.87 57.59 36.48 1.14 9 1.71 9 0.820 2.51 9 0.723 0.00315 9 141.13 0.144 0.690 73.24 33.39 9 9 9 0.624 0.530 9 9 0.701 9 9 9 ⋆ M planet name Kepler-371 c TOI-172 b Kepler-855 b Kepler-1444bKepler-1620bK2-13 b Kepler-561 b Kepler-874 b K2-233 d KOI-120.01 Kepler-276 c Barnard’s b Kepler-925 b Kepler-699 b Kepler-122 f Kepler-1052b 1.03Kepler-238 e 1.15Kepler-1641c 1.05Kepler-33 f 1.23Kepler-632 b 5810Kepler-1628b 6157Kepler-430 b 4.790Kepler-827 b 3.020Kepler-487 c Kepler-943 b –K2-194 b –Kepler-430 c 2.13Kepler-147 c 1.03 1.58Kepler-440 b AU Mic c 33.42 1.12 1.03Kepler-215 e 101.95Kepler-186 f 5888 1.19Kepler-879 b 0.923 0.55 0.543 3.550 6152 0.52 3.020 11 – 11 3724 – 5.130 2.86 2.89 – 34.85 32.66 6.30 0.612 0.535 76.38 10 0.881 10 9 REFERENCES 54 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.820.971.51 0.76 0.94 48120.78 2.05 58710.59 63950.93 0.83 – 2.950 0.55 2.200 5036 – 42550.81 2669.49 – – – 5441 12.470.86 0.90 –0.76 2.22 8.01 6.360 54900.84 1.08 6.79 –0.75 0.72 14.000 673.73 29.91 5526 –0.94 1.06 8.67 48811.24 0.73 0.335 3.36 3.53 57311.00 – 1.02 – 2.17 0.473 4.4700.99 1.38 0.438 – 60120.48 2.52 50.46 – – 61650.99 44.27 46.74 9 – – – 4908 9 – – –1.15 0.712 9 0.91 88.96 – 12.020 5790 – 0.657 1.07 9.96 2.70 3600 56400.94 1.40 17.18 –0.61 – – 1.72 2.95 9 0.414 15.38 6199 –1.28 0.90 38.17 2.10 – 9 9 0.90 0.60 1.95 9.94 59861.00 1.47 43.67 16.40 – – 3.26 0.533 1569.92 44020.67 29.56 0.656 1.54 8 6346 1.28 44.85 16.34 – – 2.900 – 57270.95 0.630 0.64 34.77 2.65 2.630 0.590 – 5721 8 8 0.576 1.13 – 1.42 – – 40.49 8.710 20.44 – 39.59 0.719 – 2.50 8 6099 8 1.32 0.0594 – 2.21 – 0.639 8 0.657 – 31.70 3.14 8 – 8 122.32 42.10 8.22 2.51 30.23 8 0.676 – 8 8 – 0.427 15.46 0.575 36.52 30.84 0.417 2.88 8 0.837 8 0.676 8.71 8 42.96 8 0.727 8 8 0.664 8 8 ⋆ M planet name K2-281 b Kepler-649 b Kepler-14 b Kepler-1026bKepler-357 d Kepler-235 e HD 147018 b Kepler-1175bKepler-1673bHD 20794 d Kepler-1010bKepler-172 e Kepler-693 b Kepler-180 c HD 23472 c Kepler-341 e 0.79Kepler-275 d Kepler-643 b 0.75HD 164595 b GJ 433 d 4948 0.90HD 63433 c 1.10Kepler-1162b 4.570 0.86HIP 41378 c 0.86 1.04Kepler-1077b 5453Kepler-300 c – 6221 0.82Kepler-442 b 4.170Kepler-483 b 5253 2.16Kepler-313 – c Kepler-628 b – 4.790Kepler-415 c 36.52Kepler-1484b – 2.93Kepler-58 d –Kepler-1451b 0.760 2.88 37.95 0.89 2.27 1.02 0.84 33.85 9 0.659 34.27 5390 1.02 0.717 0.723 4.370 5816 8 4.170 – 8 0.94 8 – 1.00 0.92 2.16 5730 0.99 2.71 32.56 3.980 5782 34.35 0.681 4.170 – 0.668 – 2.06 8 3.28 8 30.45 35.62 0.626 0.585 8 7 REFERENCES 55 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.790.790.97 0.780.97 0.95 46991.05 1.47 51730.94 0.95 55521.16 1.41 – 5.130 56641.17 0.86 5620 1.46 – 4.790 73.09 55441.19 1.24 16.64 9.500 58520.93 1.900 6195 1.65 – – – –1.09 0.90 – – 2.880 61120.99 8.40 55070.91 1.30 3.53 65.84 2.71 43.75 4.270 12.07 0.98 2.17 – 4.680 – 63270.79 0.88 40.43 57770.79 33.67 0.682 – 6.52 0.606 4.480 5444 9.34 4.13 – 2.68 – 3.9800.87 – 0.759 5.620 12.600.12 0.650 2.83 0.878 35.18 4881 7 0.292 1.00 31.94 3.47 7 – 4969 2.391.34 0.14 – 30.86 57520.89 7 – 7 0.433 4.330 40.06 30810.86 0.635 1.54 8.34 7 9.56 7 0.97 11.18 0.80 – 0.594 59.11 64141.04 1.09 12.71 – 0.688 52600.33 5.01 0.97 7 15.36 7 0.655 2.700 52740.98 – – – 1.910 5718 –0.74 146.19 0.36 7 2777.540.97 0.339 0.90 0.567 7 – 4.470 5767 3350 10.441.05 – 7 55.80 – 2.73 – 41.54 57231.03 1.03 3.380 2.500 1.06 5.52 – 7 5079 – 5617 7 1.03 40.41 203.74 2.05 0.487 – 0.549 615.89 17.57 5901 5.390 5861 2.58 – 0.337 7.52 3.720 24.31 0.615 – 0.515 – 3.550 95.34 6 – 6 31.00 20.85 – 0.229 – 60.09 6 – 34.36 6 – 5.20 6 0.540 0.368 2.38 1.83 0.314 36.78 8.84 0.390 6 70.47 27.67 38.27 6 6 3.99 0.485 0.646 6 6 0.452 0.374 0.239 6 6 5 5 5 ⋆ M planet name HD 219134 d HD 3651 b Kepler-449 c Kepler-869 b Kepler-730 b Kepler-19 b Kepler-212 c Kepler-584 b Kepler-1051bKepler-805 b Kepler-802 b Kepler-1236bHD 106315 b Kepler-719 b Kepler-487 b TVLM513-46546bHIP 35173 b HD 104067 b Kepler-1389bKepler-325 d GJ 3512 b 1.43Kepler-1325bHAT-P-2 b 1.73Kepler-519 b 0.86Kepler-118 c 6675Kepler-945 b 0.82 0.08HD 204313 c 1.740GJ 876 b 5337Kepler-281 c –HD 101930 – b 4.070Kepler-299 e 0.81Kepler-765 b – 3.32Kepler-817 b – 0.74 0.93 25.96 5078 – 2.10 0.91 2.090 120.76 0.237 31.06 5550 – 4.790 – 0.602 7 1.73 – 212.19 7 99.25 2.80 0.500 0.248 33.88 6 0.583 6 6 REFERENCES 56 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.440.92 0.421.23 0.94 35480.96 54270.86 1.29 0.800 0.95 7.000 63100.90 0.81 530.72 56800.91 2.190 5279 3.80 – – 3.8901.33 0.87 4.4700.89 – 5303 53270.96 10.11 1.51 3.09 –1.04 0.85 – 9.100 4.680 61740.89 0.88 2.89 0.0725 38.23 56431.04 1.03 2.13 2.340 31.14 58421.04 1.00 2.70 – 55820.95 9.94 1.04 – 0.853 1.350 27.07 56901.29 0.94 5 – – 4.470 33.20 58491.04 0.92 4.63 60741.04 0.237 0.90 – – 0.443 4.070 – 56180.82 1.01 2.59 5 47.84 – 0.507 41.44 55261.12 1.32 – 3.630 60641.00 0.76 2.06 – 3.00 5 23.45 5952 –0.95 8.73 0.893 5 – – 0.530 5014 435.38 0.97 5 – – 5.7300.80 8.51 0.93 38.33 2.12 2.22 0.271 3.310 1.94 5797 57321.02 4.23 5 21.80 5616 – 0.80 8.23 5 5.600 –0.50 9.93 0.453 0.134 1.06 34.11 20.39 – – 4.900 2.47 5100 0.299 5 2.24 66.74 58490.95 4.71 0.48 3.04 1445.981.18 0.473 0.433 7.56 0.506 – 21.22 – 5 5 5.500 3740 0.95 26.84 – 2.01 5 0.232 1.27 35.21 17.28 5908 3.09 0.721 – – 5 5 – 6185 5 0.462 2.40 48.15 0.454 – 0.186 5 2.690 34.19 2.15 2.96 – 5 0.585 0.255 5 – 5 0.567 28.86 – 37.07 5 1.77 5 5 8.03 2.67 0.680 0.546 66.51 5 4.58 36.06 0.314 5 5 0.449 0.169 5 5 5 ⋆ M planet name K2-95 b HD 191939 d Kepler-1177bKepler-465 b Kepler-797 b Kepler-819 b Kepler-1126bHD 103197 b Kepler-667 b EPIC211939692.01Kepler-635 b Kepler-351 b Kepler-518 b Kepler-491 b Kepler-154 b 0.98Kepler-745 b Kepler-59 c 0.97Kepler-720 b Kepler-319 d 5712 0.92Kepler-175 c 1.22Kepler-109 c 4.470 0.93Kepler-489 b 1.29HD 107148 b 5798HD 110113 – b 6417Kepler-569 b 5.500Kepler-1056b 1.87Kepler-245 d –Kepler-513 b –Kepler-1388e 106.25Kepler-296 f – 1.69Kepler-1249b 0.486Kepler-358 b Kepler-703 b 108.59 2.55 5 0.610 26.85 1.12 0.498 5 1.20 0.63 5 6127 1.19 0.61 2.950 4098 1.28 – 4.470 6202 2.820 2.95 – – 27.50 2.40 2.33 0.319 37.63 24.33 0.508 5 0.335 5 5 REFERENCES 57 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.850.94 0.81 5242 0.990.99 4.470 57130.780.90 0.910.96 0.81 – – 56401.06 0.86 50721.29 0.87 0.414 54190.90 1.11 2.32 6.900 5597 –1.11 1.82 4.470 59582.24 0.85 – 0.040 29.01 5904 8.47 1.15 2.52 3.390 5286 1.38 – 4.270 27.97 58880.94 2.10 0.433 – 4.170 5757 28.48 – 5.581.49 0.86 8.98 – –1.16 7.08 – – 41.23 55440.58 0.433 1.80 2.84 4 8.36 10.531.03 1.22 3.94 1.900 0.0382 – 67331.25 10.03 0.53 9.90 0.656 27.51 62060.64 1.53 0.00625 4 0.320 1.580 31.79 13.10 39000.65 1.41 10.51 2.40 2.37 2.630 6186 0.62 4 0.316 62111.12 0.68 4 – – 4 – 0.466 3926 28.03 0.282 4 7.30 – – 2.900 4120 2.180.95 158.90 14.65 4 28.73 – 12.400 26.69 5248 0.423 14.94 2.07 4 0.357 1.95 4 0.34 0.96 5.01 8.78 9.560 2.52 2.74 0.179 6.80 21.42 5495 0.34 12.95 4 2.89 25.11 4 0.0907 2.05 5.79 7.600 26.14 3505 0.264 4 0.324 – 53.27 19.96 33.94 – 0.411 0.256 4 4 – 37.74 1.41 4 0.337 7.21 4 4 0.783 34.91 – 4 4 0.492 4 57.55 3 0.324 3 ⋆ M planet name Kepler-558 b Kepler-1551bK2-195 c Kepler-1679bKepler-1093cHD 63433 b HD 26965 b Kepler-702 b DS TucAb Kepler-875 b Kepler-33 e Kepler-816 b Kepler-164 d K2-38 c 1.14Kepler-1639bKepler-1432b 1.00 1.22Kepler-19 c 1.13Kepler-1273b 6136 0.90Kepler-471 b 1.20Kepler-544 b 2.880 5358Kepler-32 c 6166Kepler-350 d Kepler-65 – c – 2.950K2-286 b GJ414Ab 2.60Kepler-1202b – –HD 11964 c 1.12Kepler-1183b 24.50 1.09 1.92Kepler-1159b 2.03 1.18Kepler-20 g 0.94 1.13Kepler-1309b 0.273 89.72 6150GJ 9.75 357 d 6031 0.91Kepler-1487b 3.160 0.296 3.470 5566 4 0.444 – 4.470 – 4 1.03 4 2.52 – 2.17 1.00 1.04 1.19 9.88 2.44 23.91 5834 0.99 0.85 1.28 4.170 28.63 5765 0.307 0.360 6217 1.38 0.80 4.270 – 0.458 2.750 5235 1.63 4 4 – 4.270 6541 2.88 – 4 1.950 2.77 – 28.69 2.32 – 28.51 2.32 0.382 22.71 2.08 0.402 28.84 0.279 4 7.32 0.360 4 4 0.144 3 3 REFERENCES 58 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.990.951.05 0.971.00 0.94 56720.63 1.08 55311.00 1.13 4.470 5948 0.61 8.960 5884 1.13 3.550 40440.33 – 18.21 58840.55 –1.15 0.32 – –0.83 0.56 3.20 – – 33411.34 1.14 4252 –0.91 0.99 2.55 1.000 29.91 6509 –0.80 1.46 38.01 5644 –1.02 0.86 – 1.60 64061.01 9.92 0.92 – – 2.24 0.364 5421 1.17 0.724 – 2.84 1.780 49420.42 228.81 0.94 84.55 4.370 6031 0.293 32.71 1.87 2.49 – 56530.98 0.40 27.43 3 – – – 30.91 0.347 – – 2.090 42.23 34660.94 0.324 0.96 10.91 1.66 3 1.33 0.355 0.89 3.12 7.12 5715 –0.94 0.99 2.02 – 0.0524 – 3 5526 –1.62 1.70 30.69 0.433 3 4.270 22.21 56660.77 0.87 8.57 3.53 3 60371.02 9.77 2.02 2.50 7.63 – 2.55 5528 3 0.90 0.237 1.03 – – 0.149 2.000 7099 3 1.03 34.62 0.134 5.000 22.25 57390.77 0.361 – 0.87 27.82 225.64 1.320 – 58900.90 9.56 3 – 54411.04 0.287 9.79 3 – – 0.159 3.720 – 0.386 3 0.87 48.16 – 2.71 3 3.90 0.94 2.80 – 1.85 4977 5508 – 3 – 6018 0.295 35.62 29.73 5.62 3 3 4.270 29.76 0.240 33.70 – 0.300 – 2.53 2.34 24.85 0.166 0.354 – 3 0.418 0.293 4.13 3.62 2.50 3 25.86 33.12 0.101 2.23 8.81 3 3 – 28.87 3 3 0.328 0.362 26.96 85.23 3 0.407 51.56 3 0.0429 3 0.334 0.295 3 3 3 3 ⋆ M planet name Kepler-576 b 61 Vir c Kepler-990 b Kepler-130 d K2-152 b Kepler-130 c Kepler-1381bKepler-1083bK2-288 B b Kepler-49 c Kepler-372 d K2-271 b Kepler-521 b Kepler-958 b Kepler-258 c Kepler-84 e Kepler-640 b Kepler-1176bGJ 3293 d 0.96Kepler-1656b 0.81Kepler-688 b 0.94Kepler-251 d 0.77Kepler-371 b 5747HD 224693 b 5049HD 3167 c 4.070Kepler-516 b 4.680Kepler-215 d Kepler-604 b –K2-80 d –Kepler-1154c 1.01 2.21HD 40307 f 3.29Kepler-947 b 1.03 1.02Kepler-51 c 25.38 33.42 5844 1.10 0.364 3.800 5731 0.351 6.310 – 3 48.59 3 2.40 4.92 1.26 24.17 1.43 31.47 6327 0.294 0.610 2.290 3 – 3 2.32 8.46 0.197 3 REFERENCES 59 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.101.040.98 1.74 0.97 59231.46 0.97 59620.97 57530.71 1.74 – 1.000 0.96 3.890 67610.88 – 14.94 58500.71 1.660 –0.97 0.89 – 2.740.88 2.02 – – 51940.69 0.96 – 2.29 55020.94 1.22 2.38 17.80 3.140 57721.16 – – – 59491.27 1.02 24.84 2.60 – 10.00 14.610.93 0.0916 1.42 – 4715 6012 1.51 11.44 – 2.45 2.66 62281.34 7.71 0.384 0.87 0.325 5.610 – 60790.87 – 3 3.800 – – 55690.96 1.99 30.67 9.67 3.380 –1.04 3.50 0.110 0.83 3.19 3 6112 1.06 3 – 1015.36 – 2.61 35.05 5315 – 0.329 1.36 2.02 – 0.335 3.550 5663 12.020.54 34.77 3 4.5700.83 28.65 2.07 – 1.81 0.320 8.500 – 0.56 30.23 21.15 – 3 58.290.95 0.316 0.80 3 – 20.50 4263 0.0171.10 0.354 1.91 29.25 3.14 52061.01 0.266 0.89 0.245 2.55 3 0.344 549.790.75 1.74 2.57 2.44 – 3 0.256 5.010 54361.04 0.197 1.02 29.63 3 20.31 5923 – 0.73 3 26.85 2 46.60 5870 1.26 3 – – – 0.322 2 – – 2 0.200 3.720 6474 10.90 0.286 0.559 2.64 14.78 1.91 30.60 – – – 2 0.00111 1.93 2 28.27 38.59 2.39 2 2 2.07 17.92 2 – 8.31 0.317 13.94 0.190 1.83 8.64 2.30 0.205 0.299 17.75 2 2 0.241 23.14 2 0.146 2 0.286 2 2 2 ⋆ M planet name HD87646AbKepler-338 c Kepler-66 b Kepler-616 b Kepler-1230bKepler-880 b K2-6 b GJ676A e Kepler-1676bKepler-48 c Kepler-368 b K2-7 b Kepler-377 c 1.12HD 85512 b Kepler-341 d Kepler-758 1.55 d HD 17156 b 1.06 5770K2-172 c Kepler-1407b 1.08Kepler-911 b –Kepler-977 b 5961 1.07Kepler-11 f 3940.68TAP 26 b 3.470 0.88Kepler-1666b –Kepler-1192b 5893Kepler-52 d –Kepler-995 b 13.81Kepler-1041b – 2.66Kepler-85 b Kepler-338 b 0.339Kepler-789 b – 1.10 9.96HD 23472 b Kepler-457 b 1.15 3.30 3 0.265 6010 1.08 29.96 3.240 0.86 3 1.21 0.387 0.83 – 5819 1.06 5438 1.08 2.21 – 3 4.470 5957 20.07 – 3.550 – 0.188 2.32 – 2.82 25.20 25.92 2.88 2 0.247 24.76 0.316 0.225 2 2 2 REFERENCES 60 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.040.93 1.001.29 60881.64 0.860.87 1.39 53780.78 2.56 – 65700.50 0.79 60960.97 0.73 – 54171.05 0.75 – 2.190 4984 –1.02 0.90 6.000 37000.89 4.29 – 3.800 58750.91 1.03 – 1.71 0.022 –0.91 3.18 1.36 2.95 1.480 5783 56851.13 0.90 – 16.84 56271.10 0.87 28.04 4.65 0.29 1.96 7.300 3.660 54280.95 1.47 42.05 – 4.29 54610.98 1.26 2.49 – 23.21 12.44 24.15 61751.13 0.183 8.26 0.93 24.91 – 4.070 60071.17 0.391 0.91 1.72 8.46 25.70 56520.92 332.10 1.22 0.82 – – 0.134 0.359 4.790 56600.93 0.233 1.23 13.90 – 2 70.70 61611.05 0.89 0.00210 – – 0.198 2 3.000 25.52 60651.03 0.90 5.22 30.97 – 2.880 5559 –1.01 1.37 2.60 2 2 2 0.109 921.61 5535 1.07 39.86 – 2 0.211 3.980 51.52 5809 –1.15 0.98 6.99 0.350 2 11.07 – 1.92 4.370 60200.72 9.98 8.130 51961.40 1.23 0.272 2 – 1.99 0.385 4.270 9.05 –1.16 8.03 0.68 27.34 3.24 2 – 10.200 2 61600.77 0.223 1.63 – 45510.90 1.23 27.86 7.22 56.69 – 2.40 3.090 24.32 2 6771 0.264 0.237 11.74 0.115 0.72 2 6159 0.79 2.21 – 2 12.61 5788 – 0.245 24.72 3.92 – – 4.45 0.189 3.020 5309 2 2 2 24.99 – 0.112 9.900 29.67 – 0.302 41.92 3.01 – 2 0.174 – 2 0.503 119.49 7.34 0.269 0.456 – 9.43 2.49 2 3.82 2 – 2 2 5.18 1.42 8.40 0.187 25.36 2 2 56.95 39.20 0.103 0.255 0.171 2 0.547 0.151 2 2 2 2 2 ⋆ M planet name Kepler-1396bKepler-347 c Kepler-1266bK2-138 g K2-243 c Kepler-637 b Kepler-37 b Kepler-577 b AU Mic b Kepler-888 b HD 109271 c Kepler-131 c HD 143761 b 1.18Kepler-82 c Kepler-963 b 0.80 1.27Kepler-342 c Kepler-494 b 6195 0.76K2-84 c CoRoT-30 b 2.750 5044Kepler-606 b Kepler-201 b 5.130Kepler-682 b –Kepler-548 b Kepler-467 b – 2.03Kepler-647 c 55 Cnc c 2.52Kepler-1405b 18.22Kepler-750 b K2-121 b 28.47K2-63 c 0.166Kepler-788 b Kepler-362 c 0.318Kepler-46 c 2 2 1.05 1.07 5925 3.630 – 3.87 28.23 0.219 2 REFERENCES 61 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.971.02 0.95 5710 1.83 3.980 59080.360.551.03 0.41 – –0.84 0.53 34571.08 1.06 39310.33 0.81 2.34 5849 –1.08 1.25 – 3.160 52790.95 0.32 3.800 5700 9.38 1.10 2.77 4.570 33412.11 0.86 8.92 – 6.410 60270.98 – 1.000 55451.03 0.244 1.85 9.98 – 2.32 10.550.87 0.96 2.55 – 66200.84 13.58 1.04 – – 5744 0.85 32.88 2.84 – 0.260 2 27.52 5839 0.78 – 3.86 3.890 – 56030.27 1.67 4.370 23.68 – 50680.83 0.146 9.64 0.113 4.2701.16 2 12.40 0.0750 – – 42.23 –0.72 0.83 12.18 – – 0.1341.35 1.56 – 0.198 1 3028 5460 4.00 0.66 2.96 1 0.0253 3.30 5995 1 1.21 3.90 1.50 2.34 4575 –1.11 2.72 1 – – 64661.14 9.61 0.140 1.22 18.88 1 – 1 1.02 8.05 0.112 1.14 – 2.63 1.790 63401.11 9.80 1.15 8.70 – 5993 0.189 0.162 1.03 1147.25 1 – 6250 0.146 1.55 9.34 – 1 3.470 – 5685 11.92 – 0.167 2.04 5828 – 2.61 1 1 3.660 14.59 0.141 – 8.20 1 – 51.90 25.66 – 1 16.21 7.82 – 0.0636 3.67 3.59 5.39 2.36 0.188 0.120 1 17.48 0.121 3.36 22.05 21.25 0.0818 2.15 1 16.09 1 1 21.28 0.112 15.14 0.0791 1 0.181 1 0.105 0.270 1 1 1 1 1 ⋆ M planet name Kepler-575 b Kepler-1103bK2-167 b Kepler-1605bKepler-1369bKepler-1543bK2-18 b Kepler-505 b Kepler-731 b Kepler-600 b mu Ara c K2-288B b K2-253 b KOI-217 b 1.11Kepler-1460bKepler-340 c 0.86 1.15Kepler-498 b 0.99Kepler-897 b 6092 1.39 0.82Kepler-894 b 0.99K2-268 c 3.310 5280 1.65Kepler-1229b 5761Kepler-1337b 4.680 6561GJ 682 – c 4.070Kepler-151 c 1.910K2-75 b – 2.23K2-127 b –TOI-558 b – 0.70 1.05Kepler-1172b 19.79 2.63Kepler-31 b 0.67 2.66Kepler-871 b 85.76Kepler-182 c 0.191 25.87 4422Kepler-131 b 6.97Kepler-23 d 0.330 3.980 0.54 0.296 0.70 2 0.0650 0.51 – 0.67 2 3784 2 4523 1.92 1 3.720 4.270 0.92 29.96 – 0.89 – 0.111 5558 1.37 2.36 4.370 86.83 1 24.40 – 0.142 0.145 3.13 1 26.02 1 0.204 1 REFERENCES 62 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.560.81 0.561.02 42580.95 1.170.33 1.03 53840.95 0.93 – 58131.35 – 57430.82 0.90 – 4.370 1.57 3.980 3600 5440 –0.81 0.78 61520.41 17.80 – 2.000 50960.95 0.76 – – 2.231.40 0.42 5.19 – 4.790 4909 2.70 0.99 2.52 34130.88 1.63 29.50 2.10 1.410 43.78 – 54161.21 – – – 67711.01 8.51 0.85 – 8.710 19.130.80 0.221 8.90 1.32 2.73 0.215 54311.01 1.01 5.16 – 6.01 62.50 62671.01 0.159 0.76 18.43 2.17 – 0.138 4.470 58081.01 1.06 22.12 1 2.690 35.62 50211.08 1.01 28.45 1 0.0463 – 4.170 16.24 5807 –1.07 1.02 4.13 – 1 5.010 58081.02 0.149 1.12 1 – 0.209 5.500 58571.01 0.190 0.0563 – 3.15 – 37.58 4.370 32.91 1 60450.78 1.17 2.08 – 3.8000.86 1.24 3.39 – 1 3.470 60310.80 0.75 20.26 3.45 1 – – 0.128 1 0.361 57470.87 1 9.59 0.82 3.02 – 21.30 4893 2.04 – – – 7.940 24.54 53270.78 0.140 0.79 2.59 – 7.760 26.39 0.173 2.72 1 1 0.114 4.570 19.78 4875 5098 11.40 0.72 – 0.163 21.05 – – 1 0.168 3.900 21.36 4758 – – – 3.27 0.205 1 2.64 1 2.18 0.152 3.240 51.48 2.72 1 0.133 2.14 2.45 1 0.0661 23.58 – 1 – 8.64 – 29.88 1 8.87 24.59 1 1.95 0.277 1 3.31 35.98 0.228 0.363 0.212 0.220 24.13 28.51 0.147 1 1 1 0.105 1 1 0.162 1 1 1 ⋆ M planet name EPIC212424622bKepler-267 d Kepler-1641bKepler-396 c Kepler-500 b Kepler-813 b GJ667Ce K2-319 b Kepler-450 b Kepler-747 b Kepler-1410bKepler-102 e 1.11GJ 687 b Kepler-953 b K2-63 – b 1.12Kepler-1677bKepler-971 b 1.19 –Kepler-596 b Kepler-657 b 6152Kepler-681 b –Kepler-528 b 3.020Kepler-603 b Kepler-870 b 0.63Kepler-490 b – –K2-166 b 0.60Kepler-84 b 3.04Kepler-811 2.13 b 4092Kepler-531 b 1.20Kepler-738 b 4.070 19.67 18.10HD 27894 c 1.20Kepler-261 c Kepler-1135b 0.0898 – 0.153 5804Kepler-533 b 1.74 – 1 1 60.87 – 0.0566 2.64 1 22.07 0.96 0.242 0.94 5656 1 4.470 – 1.81 76.96 0.178 1 REFERENCES 63 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.871.111.07 0.790.71 1.15 5417 1.09 59671.00 0.75 6.000 62481.04 3.310 52620.85 1.05 12.201.21 1.43 – 54931.00 0.89 – – 1.90 58071.19 1.19 57201.21 1.21 – 6200 –1.24 1.19 6.85 – 37.04 5.800 5979 – 1.35 0.250 6236 435.38 1.33 3.46 61871.21 4.15 0.0703 – – 2.49 18.11 1.740 – 61851.21 – 3.1600.99 1.53 26.52 2.510 0.03640.90 1.53 26.89 7.79 1.97 – 2.36 1 – 58831.21 1.22 3.13 – 58831.18 0.200 0.98 – 5.520 29.15 60500.97 0.216 0.0594 1.26 2.68 1 9.35 2.55 5.520 12.61 57741.04 1.27 2.45 61960.81 6.04 1.02 2.84 – 1 0.189 64.19 61631.08 6.88 1.43 0.00945 9.37 0.186 – 1 1 2.010 18.11 6033 0.83 2.55 2.950 17.98 3.43 5807 1.10 0.0462 24.27 5326 –0.98 1 0.184 – 0.0991 1 26.72 5967 –1.13 1 – 13.75 0.0835 – 10.0001.06 0.91 – 5.75 3.6300.99 1.09 1 11.95 2.56 0.344 – 5634 1 0.96 1 1.08 3.68 0.216 – 5846 1 1.22 13.03 18.56 2.48 – 2.510 5944 1.24 23.04 3.01 2.100 20.55 6050 1 1.98 3.800 0.0433 5812 1 25.62 0.0497 2.81 – 425.21 0.0990 25.54 – 0.0887 24.44 – 8.53 – 21.22 0.417 2.52 1 1 0.157 1 1 – 0.181 12.41 16.25 0.139 – 8.31 1 2.15 3.77 1 0.0826 1.76 1 0.104 1 22.40 0.101 26.82 1 1 0.150 0.121 1 1 1 ⋆ M planet name Kepler-1045bKepler-37 d Kepler-546 b Kepler-359 b K2-241 b Kepler-1364bKepler-447 b Kepler-343 b HD 108236 f TOI-1098 b Kepler-115 c Kepler-506 b Kepler-885 b 0.86Kepler-631 b Kepler-1073b 0.82Kepler-1489bKepler-92 c 5301Kepler-92 b 1.49Kepler-122 c 4.470Kepler-344 b 1.79HD 38677 b Kepler-873 b – 6805Kepler-346 c Kepler-343 c 1.580 2.63TOI-561 d Kepler-593 b Kepler-1188b – 26.41 1.00Kepler-1170b 0.93Kepler-461 b 1.00 2.11HATS-17 b 0.253 0.90Kepler-762 b 5792Kepler-122 d 13.32 5655Kepler-204 c 3.720 1 4.070 0.0564 – – 1 2.25 1.04 1.73 0.80 8.68 1.06 82.29 0.76 5913 5069 0.193 0.217 4.170 4.900 – 1 1 – 2.04 2.36 17.14 9.99 0.113 0.218 1 1 REFERENCES 64 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R ] ⊕ M [ p M ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 0.920.92 0.871.05 55221.05 0.940.81 1.19 3.550 54271.05 1.07 58610.62 1.35 7.000 61841.00 0.98 – 3.880 57110.86 0.59 58840.99 1.09 – – 55.30 40351.05 0.83 2.32 – 1.580 57251.05 1.02 5050 1.01 3.15 – – 6.800 21.39 5746 – 1.27 – 3.900 5757 –0.79 5.890 28.60 24.50 58540.96 27.22 2.66 0.161 117.58 –0.99 0.74 2.19 – 3.06 2.580.88 0.98 – 9.03 – 0.317 48970.92 0.0889 0.95 26.99 2.70 15.96 60600.89 0.83 24.29 1 17.12 3.630 – 54981.05 35.19 0.89 2.73 – 5299 0.217 1.30 31.06 1 – 0.0645 1 2.000 55390.75 0.129 0.98 0.321 – 2.51 22.18 5867 0.146 – 2.38 4.570 11.44 57410.80 0.212 0.76 1 1 –1.00 2.13 8.68 – 1 0.178 1.820 3.82 50540.87 1 0.92 8.59 1 – –1.00 0.97 2.26 1 21.68 4942 0.82 0.178 – 28.03 – – 57040.76 11.94 0.93 1 0.201 2.30 4974 19.57 – 0.123 5667 3.15 0.100 – 2.32 – 4.08 0.212 – 1 20.61 0.126 1 – 17.42 4908 26.40 – 23.40 1 1.85 0.128 – 1 0.129 3.530 4.32 0.0447 3.97 1 – 0.147 31.65 2.07 13.35 1 1 7.87 13.50 2.50 1 0.146 – 8.27 1 0.0146 0.0515 8.36 0.222 9.67 1 1 1 0.144 0.0882 1 1 1 ⋆ M planet name Kepler-651 b EPIC249893012dHD 191939 c HD 117618 b Kepler-355 c Kepler-104 c Kepler-534 b K2-123 b K2-292 b NGTS-11 b Kepler-573 b K2-218 b K2-214 b 1.05Kepler-1129bKepler-1160b 1.71Kepler-662 b K2-74 b 5430Kepler-30 b Kepler-292 f 9.000Kepler-723 b Kepler-336 d 10.18Kepler-648 b Kepler-1187b 3.86K2-47 b Kepler-1685b 36.78Kepler-258 b 1.00K2-215 b 0.92Kepler-411 c 0.357 1.00K2-197 b 0.89Kepler-1329b 5831HD 125595 b 5519Kepler-1015b 1 4.070EPIC211822797b 4.570 – 1.06 – 1.04 1.09 2.90 2.10 5975 0.79 24.34 3.390 5379 7.97 0.72 0.202 – – 0.66 1.49 0.143 0.69 0.57 4500 1.81 2.56 1 – 4148 1 5.620 6769 18.87 0.800 2.52 1.580 – 0.112 20.52 – – 2.13 1.94 0.159 3.48 1 9.34 21.32 16.00 1 0.157 0.0205 0.0400 1 1 1 REFERENCES 65 [Gyr] surv. rate[%] mean t [days] p P ] ⊕ R [ p R system is lrate. Only s non-zero. ] s but where ⊕ M [ p M ) which is the mean value mean t ] age[Gyr] K [ ff e T ] ⊙ R [ ⋆ R ] ⊙ M [ 1.201.10 1.280.93 6108 1.30 0.97 4970 – 5519 0.023 – – – 1.51 – 6.28 25.04 2.80 12.41 0.0553 22.60 0.00105 0.150 1 1 1 ⋆ M is very short. mean Table A1: List of planets ordered by decreasing moon surviva those cases are listedNote where also the the mean of survival the integration rate time ( (surv. rate) i of the lengths of thebelieved simulations. to In be some very cases short the which age of results the in high survival rate t planet name Kepler-364 b Kepler-1280bV 1298 Tau d K2-183 d 1.20 1.32 6227 2.820 – 1.83 66.56 0.133 1