Sirius Astronomer

Total Page:16

File Type:pdf, Size:1020Kb

Sirius Astronomer FEBRUARY 2013 Free to members, subscriptions $12 for 12 Volume 40, Number 2 Jupiter is featured often in this newsletter because it is one of the most appealing objects in the night sky even for very small telescopes. The king of Solar System planets is prominent in the night sky throughout the month, located near Aldebaran in the constellation Taurus. Pat Knoll took this image on January 18th from his observing site at Kearney Mesa, California, using a Meade LX200 Classic at f/40 with a 4X Powermate. The image was compiled from a two-minute run with an Imaging Source DFK 21AU618.AS camera . OCA CLUB MEETING STAR PARTIES COMING UP The free and open club meeting The Black Star Canyon site will open The next session of the Beginners will be held February 8 at 7:30 PM on February 2. The Anza site will be Class will be held at the Heritage in the Irvine Lecture Hall of the open on February 9. Members are en- Museum of Orange County at Hashinger Science Center at couraged to check the website calen- 3101 West Harvard Street in San- Chapman University in Orange. dar for the latest updates on star par- ta Ana on February 1st. The fol- This month, UCSD’s Dr. Burgasser ties and other events. lowing class will be held March will present “The Coldest Stars: Y- 1st Dwarfs and the Fuzzy Border be- Please check the website calendar for tween Stars and Planets.” the outreach events this month! Volun- GOTO SIG: TBA teers are always welcome! Astro-Imagers SIG: Feb. 19, Mar. NEXT MEETINGS: March 8, April 19 You are also reminded to check the 12 Remote Telescopes: TBA web site frequently for updates to Astrophysics SIG: Feb. 15, Mar. the calendar of events and other 15 club news. Dark Sky Group: TBA The Art of Space Imagery/Diane K. Fisher When you see spectacular space images taken in infrared light by the Spitzer Space Telescope and other non-visible-light telescopes, you may wonder where those beautiful colors came from? After all, if the telescopes were recording infrared or ultraviolet light, we wouldn’t see anything at all. So are the images “colorized” or “false colored”? No, not really. The colors are translated. Just as a foreign language can be translated into our native language, an image made with light that falls outside the range of our seeing can be “translated” into colors we can see. Scientists process these images so they can not only see them, but they can also tease out all sorts of in- formation the light can reveal. For example, wisely done color translation can reveal relative temperatures of stars, dust, and gas in the im- ages, and show fine structural details of galaxies and nebulae. Spitzer’s Infrared Array Camera (IRAC), for ex- This image of M101 combines images from four different ample, is a four-channel camera, meaning that it telescopes, each detecting a different part of the spectrum. has four different detector arrays, each measur- Red indicates infrared information from Spitzer’s 24-micron ing light at one particular wavelength. Each im- detector, and shows the cool dust in the galaxy. Yellow age from each detector array resembles a gray- shows the visible starlight from the Hubble telescope. Cyan scale image, because the entire detector array is is ultraviolet light from the Galaxy Evolution Explorer space responding to only one wavelength of light. How- telescope, which shows the hottest and youngest stars. And ever, the relative brightness will vary across the magenta is X-ray energy detected by the Chandra X-ray Ob- array. So, starting with one detector array, the servatory, indicating incredibly hot activity, like accretion first step is to determine what is the brightest around black holes. thing and the darkest thing in the image. Soft- ware is used to pick out this dynamic range and to re-compute the value of each pixel. This process produces a grey-scale image. At the end of this pro- cess, for Spitzer, we will have four grayscale images, one for each for the four IRAC detectors. Matter of different temperatures emit different wavelengths of light. A cool object emits longer wave- lengths (lower energies) of light than a warmer object. So, for each scene, we will see four grayscale im- ages, each of them different. Normally, the three primary colors are assigned to these gray-scale images based on the order they appear in the spectrum, with blue assigned to the shortest wavelength, and red to the longest. In the case of Spitzer, with four wavelengths to represent, a secondary color is chosen, such as yellow. So images that combine all four of the IRAC’s infrared detectors are remapped into red, yellow, green, and blue wavelengths in the visible part of the spectrum. Download a new Spitzer poster of the center of the Milky Way. On the back is a more complete and color- fully-illustrated explanation of the “art of space imagery.” Go to spaceplace.nasa.gov/posters/#milky- way. This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. 2 AstroSpace Update February 2013 Gathered by Don Lynn from NASA and other sources Largest spiral – NGC 6872 has long been known to be a very large barred spiral galaxy. New analysis of GALEX (ultraviolet space telescope) observations shows hot star formation regions farther out in this galaxy’s arms than are seen in visible light. From tip to tip of the 2 arms measures 522,000 light-years, making it the largest known spiral galaxy. It is about 5 times the size of our Milky Way. The gal- axy’s unusual size and very elongated arms stem from its interaction with a much smaller disk galaxy (IC 4970), which has only about 1/5 the mass of NGC 6872. Computer simulations match the current state best for a close approach by IC 4970 about 130 million years ago, following a path that took it nearly along the plane of the spiral’s disk in the same direction it rotates. The pair is located 212 million light-years away in Pavo. The youngest stars are at the end of the arms, and stellar ages get progressively older toward the galaxy’s center. No recent star formation was found along the bar, indicating it formed at least a few billion years ago. The galaxy’s bar is also large, measuring about 26,000 light-years in radius. Galaxy outburst – While conducting a long-term study of molecules in galaxies using the Arecibo radiotelescope, astrono- mers were surprised to find a massive out- burst in one of the galaxies (NGC 660), a spiral 44 million light-years away in Pisces. An array of radiotelescopes was used to get a high-resolution image of the outburst. The result was more complex than ex- pected. They thought they would see either the ring of an expanding supernova or a jet of superfast material from the galaxy’s core. Instead, they saw 5 sites of bright radio emission, 1 near the center of the galaxy and 2 on either side. The best ex- planation is there are jets coming from the central black hole, but the jets are precess- ing, or wobbling. Continued observations will be made to try to confirm this. Another – In 2011 Fermi (gamma-ray space telescope) and VLBA (radiotelescope array) observed a blast of energy from a galaxy so distant that its light has been traveling 10.6 billion years to reach us. Theorists expect gamma-ray bursts occur very close to a gal- axy’s central black hole. The 2011 flare showed that the gamma-ray emission originated about 70 light-years from the galaxy’s cen- tral black hole, much farther than theory. The host galaxy has been known as a source of radio emission since the 1960s. Gamma rays had been detected from it in the 1990s, but this is the 1st time it erupted since Fermi was launched. At the height of the out- burst, the galaxy was more than 10,000 times brighter than the luminosity of the entire Milky Way. At the galaxy’s core lies a super- massive black hole weighing 2.6 billion times the Sun’s mass. Some of the matter falling toward the black hole is accelerated outward at almost the speed of light, creating dual particle jets. 1 jet happens to point almost directly toward Earth. The 2011 blast revealed a bright knot moving at a calculated 99.87% the speed of light. It was noted that visible light emissions were changing in step with gamma rays. During the most intense flaring the polarization of light and radio waves was found to change in sync. Putting this all 3 together allowed pinpointing the source of the gamma rays. The astronomers think that the gamma rays were produced when elec- trons moving near the speed of light within the jet collided with visible and infrared light. Such a collision can kick the light up to much higher energies. The source of the visible and infrared light is unclear so far. Milky Way outflow – Astronomers made radio observations of the giant bubble structures at the center of the Milky Way to deter- mine what causes them. Enormous outflows of charged particles, stretching more than halfway across the sky and moving at super- sonic speeds, have been detected. The source of the energy has been somewhat of a mystery, since it is about 1 million times the energy of a supernova explosion.
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • 1D Atmospheric Study of the Temperate Sub-Neptune K2-18B D
    A&A 646, A15 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039072 & © D. Blain et al. 2021 Astrophysics 1D atmospheric study of the temperate sub-Neptune K2-18b D. Blain, B. Charnay, and B. Bézard LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France e-mail: [email protected] Received 30 July 2020 / Accepted 13 November 2020 ABSTRACT Context. The atmospheric composition of exoplanets with masses between 2 and 10 M is poorly understood. In that regard, the sub-Neptune K2-18b, which is subject to Earth-like stellar irradiation, offers a valuable opportunity⊕ for the characterisation of such atmospheres. Previous analyses of its transmission spectrum from the Kepler, Hubble (HST), and Spitzer space telescopes data using both retrieval algorithms and forward-modelling suggest the presence of H2O and an H2–He atmosphere, but have not detected other gases, such as CH4. Aims. We present simulations of the atmosphere of K2-18 b using Exo-REM, our self-consistent 1D radiative-equilibrium model, using a large grid of atmospheric parameters to infer constraints on its chemical composition. Methods. We compared the transmission spectra computed by our model with the above-mentioned data (0.4–5 µm), assuming an H2–He dominated atmosphere. We investigated the effects of irradiation, eddy diffusion coefficient, internal temperature, clouds, C/O ratio, and metallicity on the atmospheric structure and transit spectrum. Results. We show that our simulations favour atmospheric metallicities between 40 and 500 times solar and indicate, in some cases, the formation of H2O-ice clouds, but not liquid H2O clouds.
    [Show full text]
  • Planet Hunters. VI: an Independent Characterization of KOI-351 and Several Long Period Planet Candidates from the Kepler Archival Data
    Accepted to AJ Planet Hunters VI: An Independent Characterization of KOI-351 and Several Long Period Planet Candidates from the Kepler Archival Data1 Joseph R. Schmitt2, Ji Wang2, Debra A. Fischer2, Kian J. Jek7, John C. Moriarty2, Tabetha S. Boyajian2, Megan E. Schwamb3, Chris Lintott4;5, Stuart Lynn5, Arfon M. Smith5, Michael Parrish5, Kevin Schawinski6, Robert Simpson4, Daryll LaCourse7, Mark R. Omohundro7, Troy Winarski7, Samuel Jon Goodman7, Tony Jebson7, Hans Martin Schwengeler7, David A. Paterson7, Johann Sejpka7, Ivan Terentev7, Tom Jacobs7, Nawar Alsaadi7, Robert C. Bailey7, Tony Ginman7, Pete Granado7, Kristoffer Vonstad Guttormsen7, Franco Mallia7, Alfred L. Papillon7, Franco Rossi7, and Miguel Socolovsky7 [email protected] ABSTRACT We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting . 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period 1This publication has been made possible through the work of more than 280,000 volunteers in the Planet Hunters project, whose contributions are individually acknowledged at http://www.planethunters.org/authors.
    [Show full text]
  • NGC 6872 in the Constellation of Pavo 23 September 2014
    Image: NGC 6872 in the constellation of Pavo 23 September 2014 of free hydrogen, which is the basis material for new stars, meaning that if it weren't for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation. Provided by NASA Credit: ESA/Hubble & NASA / Acknowledgement: Judy Schmidt This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth. From tip to tip, NGC 6872 measures over 500,000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100,000 and 120,000 light-years across, making NGC 6872 about five times its size. The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm—although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms 1 / 2 APA citation: Image: NGC 6872 in the constellation of Pavo (2014, September 23) retrieved 23 September 2021 from https://phys.org/news/2014-09-image-ngc-constellation-pavo.html This document is subject to copyright.
    [Show full text]
  • Sydney Observatory Night Sky Map September 2012 a Map for Each Month of the Year, to Help You Learn About the Night Sky
    Sydney Observatory night sky map September 2012 A map for each month of the year, to help you learn about the night sky www.sydneyobservatory.com This star chart shows the stars and constellations visible in the night sky for Sydney, Melbourne, Brisbane, Canberra, Hobart, Adelaide and Perth for September 2012 at about 7:30 pm (local standard time). For Darwin and similar locations the chart will still apply, but some stars will be lost off the southern edge while extra stars will be visible to the north. Stars down to a brightness or magnitude limit of 4.5 are shown. To use this chart, rotate it so that the direction you are facing (north, south, east or west) is shown at the bottom. The centre of the chart represents the point directly above your head, called the zenith, and the outer circular edge represents the horizon. h t r No Star brightness Moon phase Last quarter: 08th Zero or brighter New Moon: 16th 1st magnitude LACERTA nd Deneb First quarter: 23rd 2 CYGNUS Full Moon: 30th rd N 3 E LYRA th Vega W 4 LYRA N CORONA BOREALIS HERCULES BOOTES VULPECULA SAGITTA PEGASUS DELPHINUS Arcturus Altair EQUULEUS SERPENS AQUILA OPHIUCHUS SCUTUM PISCES Moon on 23rd SERPENS Zubeneschamali AQUARIUS CAPRICORNUS E SAGITTARIUS LIBRA a Saturn Centre of the Galaxy Antares Zubenelgenubi t s Antares VIRGO s t SAGITTARIUS P SCORPIUS P e PISCESMICROSCOPIUM AUSTRINUS SCORPIUS Mars Spica W PISCIS AUSTRINUS CORONA AUSTRALIS Fomalhaut Centre of the Galaxy TELESCOPIUM LUPUS ARA GRUSGRUS INDUS NORMA CORVUS INDUS CETUS SCULPTOR PAVO CIRCINUS CENTAURUS TRIANGULUM
    [Show full text]
  • An Independent Determination of Fomalhaut B's Orbit and The
    A&A 561, A43 (2014) Astronomy DOI: 10.1051/0004-6361/201322229 & c ESO 2013 Astrophysics An independent determination of Fomalhaut b’s orbit and the dynamical effects on the outer dust belt H. Beust1, J.-C. Augereau1, A. Bonsor1,J.R.Graham3,P.Kalas3 J. Lebreton1, A.-M. Lagrange1, S. Ertel1, V. Faram az 1, and P. Thébault2 1 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France e-mail: [email protected] 2 Observatoire de Paris, Section de Meudon, 92195 Meudon Principal Cedex, France 3 Department of Astronomy, University of California at Berkeley, Berkeley CA 94720, USA Received 8 July 2013 / Accepted 13 November 2013 ABSTRACT Context. The nearby star Fomalhaut harbors a cold, moderately eccentric (e ∼ 0.1) dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion, Fomalhaut b (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit (e = 0.8 ± 0.1) that appears to cross the belt in the sky plane projection. Aims. We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible.
    [Show full text]
  • Studies on the Formation, Evolution, and Destruction of Massive Star Clusters Cover: Photograph Taken at White Sands, New Mexico
    Studies on the Formation, Evolution, and Destruction of Massive Star Clusters Cover: Photograph taken at White Sands, New Mexico. Courtesy of Matt Robertson. Printed by MultiCopy, Utrecht ISBN 90–393–0502–1 Studies on the Formation, Evolution, and Destruction of Massive Star Clusters Studie van de Vorming, Evolutie, en Destructie van Massieve Sterclusters (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op donderdag 21 april 2005 des middags te 12.45 uur door Nathan John Bastian geboren op 22 March 1978, te Milwaukee Promoter: prof. dr Henny J.G.L.M. Lamers Sterrenkundig Instituut, Universiteit Utrecht Co-Promoter: dr Markus Kissler-Patig European Southern Observatory This research has been supported in part by the Nether- lands Organization for Scientific Research (NWO). Additional support has come from the European South- ern Observatory (ESO). Contents 1 Introduction 1 1.1 Introduction to Extragalactic Star Clusters . 1 1.1.1 The Milky Way Bias . 1 1.1.2 The copious environments of young star clusters . 2 1.2 This Thesis . 5 1.2.1 Cluster Populations . 5 1.2.2 Dynamical Studies of the Massive Star Cluster W3 in the Merger Remnant NGC 7252 . 10 1.2.3 Cluster Complexes . 10 1.2.4 Future Plans . 13 Part A: The Cluster Population of M 51 15 2 Clusters in the Inner Spiral Arms of M 51: The cluster IMF and the formation history 17 2.1 Introduction .
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Download This Article in PDF Format
    A&A 574, A120 (2015) Astronomy DOI: 10.1051/0004-6361/201424944 & c ESO 2015 Astrophysics High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and Eridani Markus Janson1, Sascha P. Quanz2, Joseph C. Carson3, Christian Thalmann2, David Lafrenière4, and Adam Amara2 1 Department of Astronomy, Stockholm University, 106 91 Stockholm, Sweden e-mail: [email protected] 2 Institute for Astronomy, ETH Zurich, 9093 Zurich, Switzerland e-mail: [email protected], [thalmann;adam.amara]@phys.ethz.ch 3 Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 , USA e-mail: [email protected] 4 Department of Physics, University of Montreal, Montreal, QC H31T 1J4T, Canada e-mail: [email protected] Received 8 September 2014 / Accepted 13 December 2014 ABSTRACT Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120–330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion.
    [Show full text]
  • Dynamics of Dust Particles Near Sun, Vega and Fomalhaut
    Geophysical Research Abstracts Vol. 20, EGU2018-9532-1, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Dynamics of Dust Particles near Sun, Vega and Fomalhaut Johann Stamm (1), Carsten Baumann (1), Andrzej Czechowski (2), Ingrid Mann (1), and Margaretha Myrvang (1) (1) UiT The Arctic University of Norway, Institute for physics and Technology, Faculty of Science and Technology, Tromsø, Norway, (2) Polish Academy of Sciences, Space Research Center, Warsaw, Poland Several stars with debris disks show an unresolved excess emission at wavelengths shorter than 30 micrometer. It is believed that the excess emission origins from warm dust near the star. The dust is produced near the star and by collisions of planetesimals. When it is close to the star, it gets heated. In a similar way, the Sun is surrounded by hot dust of the inner planetary dust cloud. The orbits of the dust are influenced by gravitation, radiation pressure and also by the Lorentz force, since stellar wind impacts and photoionization by stellar photons charge the dust particles. The ratio of charge-to-mass (q/m) increases with decreasing dust grain radius, so that the Lorentz force is more important for the smaller dust sizes. The vicinity of the Sun will be explored with the ESA mission Solar Orbiter and these model calculations provide a basis for predicting the dust fluxes at the spacecraft. We consider here the dust trajectories around three stars: The Sun, Vega and Fomalhaut. The stellar mag- netic field is approximated as a Parker spiral in all cases. While the magnetic field strengths of the Sun and Vega are derived from observational data, the magnetic field strength of Fomalhaut is estimated.
    [Show full text]
  • Antanamo Bay 'Ocr'' Er T "
    1 rC'y!0'% %04 -0 Guantanamo Bay 'ocr'' er t ". ~ O " ~al kr "" Vol. 58 No. 3 Friday, January 19, 2001 Base residents take part Lassiter, Kochan selected in Candlelight March Naval Base SOY, JSOY GUANTANAMO BAY - EM1(SW) Wilbur A. Lasseter from the U.S. Naval Brig was recently selected as 2000 Sailor of the Year for Naval Station and Naval Base. He was also selected as Sailor of the Quarter for the fourth quarter for Naval Station and Naval Base. Lasseter will now compete for Southeast Region Sailor of the Year in Jacksonville the week of Feb. 11. Lasseter served as brig guard and recently elevated to brig administra- tive supervisor because of his un- matched leadership and managerial a skills. Through his superb leadership and hard work, Lasseter achieved a Com- bined Federal Campaign contribution for the Naval Station in excess of $21,000, 55 percent of the Naval +. Base's total goal of $38,000. As a brig career counselor, his efforts yielded three reenlistments, three Overseas Tour Extension Incen- tive Program requests and one con- version package. In addition, Lasseter performed a host of formal and HMI Tim Hill delivers a "moving" version of Dr Martin Luther informal counseling sessions. King famous "IHave A Dream" speech at POW/MIA Memorial - continued on page two (top). More than 320 GTMO residents marched in the 2nd annual CandlelightMarch in honor ofDr Martin Luther King Jr. GUANTANAMO BAY - BU3 Joseph J. Kochan was recently se- Photos by JOC Walter T Ham IV (top) lected as the Naval Station and Naval Base 2000 Junior Sailor of the and PH2 Emnitt J Hawks (bottom) Year and the 4th quarter Sailor of the Quarter.
    [Show full text]
  • The European Space Agency
    Teachers Notes Booklet 6: Galaxies and the Expanding Universe Page 1 of 18 The European Space Agency The European Space Agency (ESA) was formed on 31 May 1975. It currently has 17 Member States: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland & United Kingdom. The ESA Science Programme currently contains the following active missions: Venus Express – an exploration of our Cluster – a four spacecraft mission to sister planet. investigate interactions between the Rosetta – first mission to fly alongside Sun and the Earth's magnetosphere and land on a comet XMM-Newton – an X-ray telescope Double Star – joint mission with the helping to solve cosmic mysteries Chinese to study the effect of the Sun Cassini-Huygens – a joint ESA/NASA on the Earth’s environment mission to investigate Saturn and its SMART-1 – Europe’s first mission to moon Titan, with ESA's Huygens probe the Moon, which will test solar-electric SOHO - new views of the Sun's propulsion in flight, a key technology for atmosphere and interior future deep-space missions Hubble Space Telescope – world's Mars Express - Europe's first mission most important and successful orbital to Mars consisting of an orbital platform observatory searching for water and life on the Ulysses – the first spacecraft to planet investigate the polar regions around the INTEGRAL – first space observatory to Sun simultaneously observe celestial objects in gamma rays, X-rays and visible light Details on all these missions and others can be found at - http://sci.esa.int. Prepared by Anne Brumfitt Content Advisor Chris Lawton Science Editor, Content Advisor, Web Integration & Booklet Design Karen O'Flaherty Science Editor & Content Advisor Jo Turner Content Writer © 2005 European Space Agency Teachers Notes Booklet 6: Galaxies and the Expanding Universe Page 2 of 18 Booklet 6 – Galaxies and the Expanding Universe Contents 6.1 Structure of the Milky Way .............................................
    [Show full text]