Planetary Systems and the Hidden Symmetries of the Kepler Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Three Body Problem
PHYS 7221 - The Three-Body Problem Special Lecture: Wednesday October 11, 2006, Juhan Frank, LSU 1 The Three-Body Problem in Astronomy The classical Newtonian three-body gravitational problem occurs in Nature exclusively in an as- tronomical context and was the subject of many investigations by the best minds of the 18th and 19th centuries. Interest in this problem has undergone a revival in recent decades when it was real- ized that the evolution and ultimate fate of star clusters and the nuclei of active galaxies depends crucially on the interactions between stellar and black hole binaries and single stars. The general three-body problem remains unsolved today but important advances and insights have been enabled by the advent of modern computational hardware and methods. The long-term stability of the orbits of the Earth and the Moon was one of the early concerns when the age of the Earth was not well-known. Newton solved the two-body problem for the orbit of the Moon around the Earth and considered the e®ects of the Sun on this motion. This is perhaps the earliest appearance of the three-body problem. The ¯rst and simplest periodic exact solution to the three-body problem is the motion on collinear ellipses found by Euler (1767). Also Euler (1772) studied the motion of the Moon assuming that the Earth and the Sun orbited each other on circular orbits and that the Moon was massless. This approach is now known as the restricted three-body problem. At about the same time Lagrange (1772) discovered the equilateral triangle solution described in Goldstein (2002) and Hestenes (1999). -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Laplace-Runge-Lenz Vector
Laplace-Runge-Lenz Vector Alex Alemi June 6, 2009 1 Alex Alemi CDS 205 LRL Vector The central inverse square law force problem is an interesting one in physics. It is interesting not only because of its applicability to a great deal of situations ranging from the orbits of the planets to the spectrum of the hydrogen atom, but also because it exhibits a great deal of symmetry. In fact, in addition to the usual conservations of energy E and angular momentum L, the Kepler problem exhibits a hidden symmetry. There exists an additional conservation law that does not correspond to a cyclic coordinate. This conserved quantity is associated with the so called Laplace-Runge-Lenz (LRL) vector A: A = p × L − mkr^ (LRL Vector) The nature of this hidden symmetry is an interesting one. Below is an attempt to introduce the LRL vector and begin to discuss some of its peculiarities. A Some History The LRL vector has an interesting and unique history. Being a conservation for a general problem, it appears as though it was discovered independently a number of times. In fact, the proper name to attribute to the vector is an open question. The modern popularity of the use of the vector can be traced back to Lenz’s use of the vector to calculate the perturbed energy levels of the Kepler problem using old quantum theory [1]. In his paper, Lenz describes the vector as “little known” and refers to a popular text by Runge on vector analysis. In Runge’s text, he makes no claims of originality [1]. -
Sunqm-1S2: Comparing to Other Star-Planet Systems, Our Solar System Has a Nearly Perfect {N,N} QM Structure 1
Yi Cao, SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n} QM structure 1 SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n//6} QM structure Yi Cao Ph.D. of biophysics, a citizen scientist of QM. E-mail: [email protected] © All rights reserved The major part of this work started from 2016. Abstract The Solar QM {N,n//6} structure has been successful not only for modeling the Solar system from Sun core to Oort cloud, but also in matching the size of white dwarf, neutron star and even black hole. In this paper, I have used this model to further scan down (and up) in our world. It is interesting to find that on the small end, the r(s) of hydrogen atom, proton and quark match {-12,1}, {-15,1} and {-17,1} respectively. On the large end, our Milky way galaxy, the Virgo super cluster have their r(s) match {8,1}, and {10,1} respectively. In a second estimation, some elementary particles like electron, up quark, down quark, … may have their {N,n} QM structures match {-17,1}, {-17,2}, {-17,3} … respectively. In a third estimation, the r(s) of super-massive black hole of Andromeda galaxy and Milky way galaxy match {2,1} and {1,1} respectively. However, so far the Solar QM {N,n} structure has not been re-produced in other exoplanetary systems (like TRAPPIST-1, HD 10180, Kepler-90, Kelper-11, 55-Cacri). -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Cosmological Aspects of Planetary Habitability
Cosmological aspects of planetary habitability Yu. A. Shchekinov Department of Space Physics, SFU, Rostov on Don, Russia [email protected] M. Safonova, J. Murthy Indian Institute of Astrophysics, Bangalore, India [email protected], [email protected] ABSTRACT The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmo- sphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. How- ever along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one – the age — has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on planets in habitable zones, due to variations in their albedo, orbits, diameters and other crucial parameters, the onset of photosynthesis may arXiv:1404.0641v1 [astro-ph.EP] 2 Apr 2014 take much longer time than the planetary age. Recently, several exoplanets orbiting Population II stars with ages of 12–13 Gyr were discovered. -
A Super-Earth Transiting a Naked-Eye Star
A Super-Earth Transiting a Naked-Eye Star The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Winn, Joshua N. et al. “A SUPER-EARTH TRANSITING A NAKED-EYE STAR.” The Astrophysical Journal 737.1 (2011): L18. As Published http://dx.doi.org/10.1088/2041-8205/737/1/l18 Publisher IOP Publishing Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/71127 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ ACCEPTED VERSION,JULY 6, 2011 Preprint typeset using LATEX style emulateapj v. 11/10/09 A SUPER-EARTH TRANSITING A NAKED-EYE STAR⋆ JOSHUA N. WINN1, JAYMIE M. MATTHEWS2,REBEKAH I. DAWSON3 ,DANIEL FABRYCKY4,5 , MATTHEW J. HOLMAN3, THOMAS KALLINGER2,6,RAINER KUSCHNIG6,DIMITAR SASSELOV3,DIANA DRAGOMIR5,DAVID B. GUENTHER7, ANTHONY F. J. MOFFAT8 , JASON F. ROWE9 ,SLAVEK RUCINSKI10,WERNER W. WEISS6 ApJ Letters, in press ABSTRACT We have detected transits of the innermost planet “e” orbiting55Cnc(V =6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the +0.051 crossing of a Sun-like star by a hot super-Earth. Assuming the star’s mass and radius to be 0.963−0.029 M⊙ and 0.943 ± 0.010 R⊙, the planet’s mass, radius, and mean density are 8.63 ± 0.35 M⊕,2.00 ± 0.14 R⊕, and +1.5 −3 5.9−1.1 g cm . -
1 the Atmosphere of Pluto As Observed by New Horizons G
The Atmosphere of Pluto as Observed by New Horizons G. Randall Gladstone,1,2* S. Alan Stern,3 Kimberly Ennico,4 Catherine B. Olkin,3 Harold A. Weaver,5 Leslie A. Young,3 Michael E. Summers,6 Darrell F. Strobel,7 David P. Hinson,8 Joshua A. Kammer,3 Alex H. Parker,3 Andrew J. Steffl,3 Ivan R. Linscott,9 Joel Wm. Parker,3 Andrew F. Cheng,5 David C. Slater,1† Maarten H. Versteeg,1 Thomas K. Greathouse,1 Kurt D. Retherford,1,2 Henry Throop,7 Nathaniel J. Cunningham,10 William W. Woods,9 Kelsi N. Singer,3 Constantine C. C. Tsang,3 Rebecca Schindhelm,3 Carey M. Lisse,5 Michael L. Wong,11 Yuk L. Yung,11 Xun Zhu,5 Werner Curdt,12 Panayotis Lavvas,13 Eliot F. Young,3 G. Leonard Tyler,9 and the New Horizons Science Team 1Southwest Research Institute, San Antonio, TX 78238, USA 2University of Texas at San Antonio, San Antonio, TX 78249, USA 3Southwest Research Institute, Boulder, CO 80302, USA 4National Aeronautics and Space Administration, Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA 5The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 6George Mason University, Fairfax, VA 22030, USA 7The Johns Hopkins University, Baltimore, MD 21218, USA 8Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA 9Stanford University, Stanford, CA 94305, USA 10Nebraska Wesleyan University, Lincoln, NE 68504 11California Institute of Technology, Pasadena, CA 91125, USA 12Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany 13Groupe de Spectroscopie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, 51687 Reims, France *To whom correspondence should be addressed. -
Geodynamics and Rate of Volcanism on Massive Earth-Like Planets
The Astrophysical Journal, 700:1732–1749, 2009 August 1 doi:10.1088/0004-637X/700/2/1732 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS E. S. Kite1,3, M. Manga1,3, and E. Gaidos2 1 Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA; [email protected] 2 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2008 September 12; accepted 2009 May 29; published 2009 July 16 ABSTRACT We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25–25 M⊕, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing—volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. -
The New Horizons Spacecraft
The New Horizons Spacecraft Glen H. Fountaina , David Y. Kusnierkiewicz a, Christopher B. Hersmana , Timothy S. Herdera , Thomas B. Coughlin a, William C. Gibsonb , Deborah A. Clancya , Christopher C. DeBoya , T. Adrian Hilla , James D. Kinnisona , Douglas S. Mehoke a, Geffrey K. Ottmana , Gabe D. Rogers a, S. Alan Sternc , James M. Strattona , Steven R. Vernona , Stephen P. Williams a aThe Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723 bSouth west Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, cSouth west Research Institute, 1050 Walnut St., Suite 400, Boulder, CO 80302 Abstract. The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AOOSS01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the oneway light time during the Pluto flyby is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. -
The Spitzer Search for the Transits of HARPS Low-Mass Planets II
A&A 601, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201629270 & c ESO 2017 Astrophysics The Spitzer search for the transits of HARPS low-mass planets II. Null results for 19 planets? M. Gillon1, B.-O. Demory2; 3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3; 4, S. Seager7, D. Ségransan4, and S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85478 Garching bei München, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received 8 July 2016 / Accepted 15 December 2016 ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits. -
A Naprendszer-Hasonlósági Index
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Szakdolgozat A Naprendszer-hasonlósági index Készítette: Mészáros Richárd Fizika BSc szakos hallgató Témavezető: Dr. Szatmáry Károly egyetemi tanár Szeged 2020 Tartalomjegyzék 1. Bevezetés……………………………………………………………………..2 2. Az exobolygók felfedezési módszerei………………………………………..2 2.1. Közvetlen módszerek………………………………………………..2 2.2. Közvetett módszerek………………………………………..……….3 3. Az exobolygók osztályozása………………………………………...……….6 4. A Föld-hasonlósági index…………………………………………………….7 5. A Naprendszer-hasonlósági index……………………………………………8 5.1. Első verzió……………………………………………….…………..8 5.2. Második verzió……………………………………………………..11 5.3. Eredmények……………………………………………………...…13 6. Összefoglalás………………………………………………………………..24 Köszönetnyilvánítás……………………………………………………………24 Irodalomjegyzék………………………………………………………………..25 1 1. Bevezetés A felfedezett exobolygók asztrobiológiai potenciáljának vizsgálatára 2011-ben bevezetésre került a Föld-hasonlósági index (ESI, Schulze-Makuch et al. 2011,[2]). Dolgozatom témájául a felfedezett exobolygó rendszerek hasonló módon való vizsgálatát választottam. A második és harmadik fejezetben összefoglalom az exobolygók keresési módszereit és ezen bolygók típusait. A negyedik fejezetben röviden bemutatom a Föld-hasonlósági indexet. Az ötödik fejezetben a Föld-hasonlósági index mintájára bevezetem a Naprendszer-hasonlósági index fogalmát. Ismertetem kiszámításának módját, és alkalmazom a legalább 4 bolygót tartalmazó exobolygó rendszerekre. A kapott eredményekből