Phd Thesis Magnetic Fields and Habitability in Super Earths

Total Page:16

File Type:pdf, Size:1020Kb

Phd Thesis Magnetic Fields and Habitability in Super Earths University of Antioquia Faculty of Exact and Natural Sciences Institute of Physics PhD Thesis to obtain the title of: Doctor in Physics By: Pablo Cuartas Restrepo Magnetic Fields and Habitability in Super Earths Computational Physics and Astrophysics Group - FACom Defended on October 18, 2013 2 Thesis Advisor: Dr. Jorge I. Zuluaga Callejas Universidad de Antioquia Thesis Referies: Dr. Mario Daniel Melita Instituto de Astronom´ıa y F´ısica del Espacio - IAFE Dr. Natalia Gomez Perez Universidad de los Andes Dr. Gaspar Monsalve Mejia Universidad Nacional de Colombia 3 4 To my crew... Adriana, Aleja and Emilia. 5 6 Aknowledgements After four years this is the result of the joint work of a lot of people that I need to thank for. First I want to thank Dr. Jorge Zuluaga, I am a product of his support, without him nothing of this had been possible. Thank you for be my teacher, my partner and my friend. I want to thank my colleague, Dr. Ignacio Ferrin for his ideas, advice and comments about my work, his reviews of my posters and text was very useful. Thanks to Dr. Mario Daniel Melita, researcher at Astronomy and Space Physics Institute - IAFE in Buenos Aires, Argentina. His suport and help during my research internship was essential for me. I want to thank specially our student Sebastian Bustamante, his help working on the thermal evolution models was fundamental for our research. Thanks to Dr. Juan Fernando Salazar, our discussion, together with Jorge, on the role of life in the habitability of terrestrial planets ends in a proposal of an Astrobiology paper. The main ideas from our debate are included in chapter 2. Thanks to Dr. Johans Restrepo, head of the physics institute for all his support on my work, specially my participations in international meetings and my research internship. Thanks to Dr. Nora Eugenia Restrepo, Dean of the Natural and Exact Sciences Faculty, She helps me to reach this trough her support to my travels and research work. Finally I want to thank the offices in the University involved in this work: Vicerrectoria de Docencia, they help me a lot with my travels to participate in meetings and internship. Centro de Investigacion´ de Ciencias Exactas y Naturales - CIEN, for their support to my research projects. Comite´ para el Desarrollo de la Investigacion´ - CODI, for their support to my research and help with my travels to participate in the meetings. Thank you all for your support, your trust and your commitment with me, I am very grateful. 7 8 Articles Related with this Thesis • Zuluaga, Jorge I.; Cuartas-Restrepo Pablo A. 2012. The role of rotation in the evolution of dynamo-generated magnetic fields in Super Earths. Icarus, Volume 217, Issue 1, p. 88- 102. • Zuluaga, Jorge I.; Bustamante, Sebastian; Cuartas-Restrepo, Pablo A.; Hoyos, Jaime H. 2013. The Influence of Thermal Evolution in the Magnetic Protection of Terrestrial Planets. The Astrophysical Journal, Volume 770, Issue 1, article id. 23, 23 pp. • Zuluaga, Jorge I.; Salazar, Juan F.; Cuartas-Restrepo, Pablo A.; Poveda G. Towards the defini- tion of an Inhabitated Habitable Zone: including the key role of life at assessing planetary habitability. In preparation. Clarifying Note The main contents of this thesis comes from two papers published by me and colaborators, and one more article in preparation (see above). I thank all the co-authors their permission to use the text and figures from the papers. 9 10 Abstract During the past 20 years the search and discovery of exoplanets come turns in one of the most ex- citing field in research for astronomers. A lot of these new worlds are Earth-like planets, rocky, iron and water rich objetcs. Some of them are inside the Habitable Zone of their host stars. This is our first step to find a place that looks like ours. Many conditions are required before a planet can be consider suitable to engender and sustain life during billions of years as our planet do. There are a lot of criteria to define a habitable planet, the most of them related only with the surficial temperature and the presence of liquid water on the surface. To sustain the environment for life, the planet needs an atmosphere and additionally, it must have a magnetic field to protect the atmosphere. The rotation and thermal evolution of a planet plays a main role in the planetary magnetic field evo- lution. The rotation period determines properties like the regime of the planetary dynamo and its intensity. This is crucial for a planet to keep its reservoir of volatile material like water, protected against the erosive action of the stellar wind and cosmic rays. Planets orbiting dwarf stars are tidally afected by their host, this detemines the final rotation period (resonance) or the tidal locking of the planet, especially during the very first Myr. At the same time this first period of the planet history is the most afected by the magnetic activity of the host star. We calculate the rotation and tidal evolution of planets and combine this with a thermal evolution model to know how this very first stages of the planetary evolution finish with an stable and protective planetary magnetic field or with an unprotected planet. 11 12 Contents Aknowledgements 6 1 An Introduction to Super Earths 1 1.1 The Planetary Taxonomy .................................. 2 1.1.1 Planetary Formation ................................. 4 1.1.2 Formation of Super Earths ............................. 5 1.2 Mass-Radius Relationship for Super Earths ........................ 6 1.3 Habitability of Super Earths ................................. 7 1.3.1 Dynamics of the Orbit and Spin ........................... 9 1.3.2 The Interior of the Terrestrial Planets ........................ 12 1.3.3 Tectonic Activity ................................... 12 1.3.4 Magnetic Fields and Habitability .......................... 13 1.3.5 Planetary Atmosphere and Habitability ....................... 14 1.4 Potentially Habitable Super Earths ............................. 15 1.4.1 Gliese 581 d ..................................... 15 1.4.2 GJ 667C c ...................................... 16 1.4.3 HD 40307 g ...................................... 16 1.4.4 HD 85512 b ...................................... 16 2 Habitability and the Habitable Zone 19 2.1 Habitability and Limits of the Classical Habitable Zone .................. 19 2.1.1 Planet Temperature ................................. 19 2.1.2 Limits of the Habitable Zone ............................. 21 2.2 Habitable Zone Around Other Stars ............................ 23 2.2.1 Other Factors Affecting Habitability ......................... 25 2.3 Life and Habitability ..................................... 28 2.3.1 Habitable Zone Affected by Life Itself ........................ 30 3 Planetary Magnetic Fields 35 3.1 Planetary Properties Related with the Magnetic Field ................... 36 3.1.1 The Interior of Massive Terrestrial Planets ..................... 36 3.2 Dynamo Generated Magnetic Fields ............................ 38 3.2.1 The Geodynamo ................................... 39 3.2.2 Magnetic Scaling Laws ............................... 40 3.2.3 Dynamo Regimes .................................. 41 i ii 4 Thermal Evolution 47 4.1 Review of Previous Models of Thermal Evolution ..................... 47 4.1.1 The Core Thermal Evolution Model - CTE ..................... 48 4.1.2 The Mantle Thermal Evolution Model - MTE .................... 49 4.1.3 Comparison of the Models ............................. 50 4.2 Hybrid Reference Thermal Evolution Model - RTEM ................... 51 4.3 Internal Structure ....................................... 53 4.4 Core Thermal Evolution ................................... 54 4.5 Mantle Thermal Evolution .................................. 58 4.5.1 Initial Conditions ................................... 59 4.6 Rheological Model ...................................... 60 5 The Role of Rotation 65 5.1 Rotation and the Core Magnetic Field Regime ....................... 65 5.2 Scaling the Magnetic Field Intensity ............................ 66 5.2.1 From the Core Magnetic Field to the Planetary Magnetic Field Intensity .... 70 5.3 Evolution of the Rotation Rate ................................ 71 5.3.1 Role of Rotation in the CTE Model ......................... 73 5.3.2 Role of Rotation in the MTE Model ......................... 77 5.4 Classification of Super Earths Depending on its Rotation ................. 82 5.4.1 Application to Already Discovered Super Earths ................. 82 6 Magnetic Protection of Super Earths 89 6.1 Critical Properties of an Evolving Magnetosphere ..................... 91 6.2 Revisiting the Scaling Laws of the Planetary Magnetic Field ............... 94 6.3 Planet-Star Interaction .................................... 96 6.3.1 The Habitable Zone and Tidally Locking Limits .................. 96 6.3.2 Stellar Wind ...................................... 100 6.4 Magnetosphers of Terrestrial Planets ............................ 104 6.4.1 Toward an Estimation of the Atmospheric Mass-loss ............... 109 6.4.2 Sensitivity Analysis .................................. 112 7 Discusion and Conclusions 117 7.1 Magnetic Fields in Super Earths .............................. 117 7.2 The Thermal Evolution of Super Earths .......................... 118 7.3 Magentic Habitability of Super Earths ........................... 120 7.4 Observational Support .................................... 122 7.5 Conclusions .......................................... 123 7.5.1 In Relation to the Planetary Magnetic Field ...................
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • Apus Constellation Visible at Latitudes Between +5° and -90°
    Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise".
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • An Upper Boundary in the Mass-Metallicity Plane of Exo-Neptunes
    MNRAS 000, 1{8 (2016) Preprint 8 November 2018 Compiled using MNRAS LATEX style file v3.0 An upper boundary in the mass-metallicity plane of exo-Neptunes Bastien Courcol,1? Fran¸cois Bouchy,1 and Magali Deleuil1 1Aix Marseille University, CNRS, Laboratoire d'Astrophysique de Marseille UMR 7326, 13388 Marseille cedex 13, France Accepted XXX. Received YYY; in original form ZZZ ABSTRACT With the progress of detection techniques, the number of low-mass and small-size exo- planets is increasing rapidly. However their characteristics and formation mechanisms are not yet fully understood. The metallicity of the host star is a critical parameter in such processes and can impact the occurence rate or physical properties of these plan- ets. While a frequency-metallicity correlation has been found for giant planets, this is still an ongoing debate for their smaller counterparts. Using the published parameters of a sample of 157 exoplanets lighter than 40 M⊕, we explore the mass-metallicity space of Neptunes and Super-Earths. We show the existence of a maximal mass that increases with metallicity, that also depends on the period of these planets. This seems to favor in situ formation or alternatively a metallicity-driven migration mechanism. It also suggests that the frequency of Neptunes (between 10 and 40 M⊕) is, like giant planets, correlated with the host star metallicity, whereas no correlation is found for Super-Earths (<10 M⊕). Key words: Planetary Systems, planets and satellites: terrestrial planets { Plan- etary Systems, methods: statistical { Astronomical instrumentation, methods, and techniques 1 INTRODUCTION lation was not observed (.e.g.
    [Show full text]
  • Badw · 003197966
    Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften Philosophisch - philologische und historische Klasse XXX. Band, 1. Abhandlung Antike Beobachtungen farbiger Sterne von Franz Boll Mit einem Beitrag von Carl Bezold , Vorgelegt am 1. Juli 1916 München 1916 Verlag der Königlich Bayerischen Akademie der Wissenschaften in Kommission des G. Franz'schen Verlags (J. Roth) ,. j / Einleitung. Die Geschichte der antiken Astronomie beruhte bis gegen den Ausgang des vorigen Jahrhunderts auf einer Anzahl von griechischen und einigen römischen Schriftstellern, unter denen Claudius Ptolemäus mit seiner "GroElen Syntaxis" als der letzten und um- fassendsten Kodifizierung des antiken Wissens vom Sternhimmel den ersten Platz einnimmt. Auf dem Almagest fuElten einst Delambre und fast drei Menschenalter später Tannery bei ihren Gesamtdarstellungen 1). Es ist klar, daEl mit diesen Quellen auch eine ganz bestimmte Auswahl und Abgrenzung des Stoffes notwendig gegeben war. Nur neues Material konnte aus diesem Bann herausführen. Das hat sich in den letzten zwei Jahrzehnten aus zwei verschiedenen Quellen unerwartet reich eingestellt. Die babylonischen 'rafein, so sporadisch sie immer noch geblieben sind, und so schwierig oft ihre Verwertung ist, geben gute Hoffnung, einmal zu einer von vorgefaElter Meinung nach beiden Seiten unabhängigen Vorstellung von den sachlichen Unterlagen des ionischen Weltbildes im 6. und 5. Jahr- hundert zu gelangen; und die Erforschung der griechischen astrologischen Handschriften, deren überwiegender Teil zum Glück vor
    [Show full text]
  • Cosmological Aspects of Planetary Habitability
    Cosmological aspects of planetary habitability Yu. A. Shchekinov Department of Space Physics, SFU, Rostov on Don, Russia [email protected] M. Safonova, J. Murthy Indian Institute of Astrophysics, Bangalore, India [email protected], [email protected] ABSTRACT The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmo- sphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. How- ever along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one – the age — has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on planets in habitable zones, due to variations in their albedo, orbits, diameters and other crucial parameters, the onset of photosynthesis may arXiv:1404.0641v1 [astro-ph.EP] 2 Apr 2014 take much longer time than the planetary age. Recently, several exoplanets orbiting Population II stars with ages of 12–13 Gyr were discovered.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Geodynamics and Rate of Volcanism on Massive Earth-Like Planets
    The Astrophysical Journal, 700:1732–1749, 2009 August 1 doi:10.1088/0004-637X/700/2/1732 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS E. S. Kite1,3, M. Manga1,3, and E. Gaidos2 1 Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA; [email protected] 2 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2008 September 12; accepted 2009 May 29; published 2009 July 16 ABSTRACT We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25–25 M⊕, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing—volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets.
    [Show full text]
  • Fy10 Budget by Program
    AURA/NOAO FISCAL YEAR ANNUAL REPORT FY 2010 Revised Submitted to the National Science Foundation March 16, 2011 This image, aimed toward the southern celestial pole atop the CTIO Blanco 4-m telescope, shows the Large and Small Magellanic Clouds, the Milky Way (Carinae Region) and the Coal Sack (dark area, close to the Southern Crux). The 33 “written” on the Schmidt Telescope dome using a green laser pointer during the two-minute exposure commemorates the rescue effort of 33 miners trapped for 69 days almost 700 m underground in the San Jose mine in northern Chile. The image was taken while the rescue was in progress on 13 October 2010, at 3:30 am Chilean Daylight Saving time. Image Credit: Arturo Gomez/CTIO/NOAO/AURA/NSF National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2010 Revised (October 1, 2009 – September 30, 2010) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 March 16, 2011 Table of Contents MISSION SYNOPSIS ............................................................................................................ IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 2 2.1 Achievements ..................................................................................................... 2 2.2 Status of Vision and Goals ................................................................................
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • The Spitzer Search for the Transits of HARPS Low-Mass Planets II
    A&A 601, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201629270 & c ESO 2017 Astrophysics The Spitzer search for the transits of HARPS low-mass planets II. Null results for 19 planets? M. Gillon1, B.-O. Demory2; 3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3; 4, S. Seager7, D. Ségransan4, and S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85478 Garching bei München, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received 8 July 2016 / Accepted 15 December 2016 ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits.
    [Show full text]