Cryptic Diversity and Taxonomic Revision Within the Speciose Genus Hipposideros (Hipposideridae)

Total Page:16

File Type:pdf, Size:1020Kb

Cryptic Diversity and Taxonomic Revision Within the Speciose Genus Hipposideros (Hipposideridae) Acta Chiropterologica, 19(1): 1–18, 2017 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/15081109ACC2017.19.1.001 Towards navigating the Minotaur’s labyrinth: cryptic diversity and taxonomic revision within the speciose genus Hipposideros (Hipposideridae) NICOLE M. FOLEY1, STEVEN M. GOODMAN2, 3, CONOR V. W HELAN1, SEBASTIEN J. PUECHMAILLE1, 4, and EMMA TEELING1, 5 1School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland 2Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, USA 3Association Vahatra, BP 3972, Antananarivo 101, Madagascar 4Applied Zoology and Nature Conservation, Greifswald University, Greifswald, Germany 5Corresponding author: E-mail: [email protected] Recent molecular evidence has shown that the largest genus of the family Hipposideridae, Hipposideros, is paraphyletic with respect to H. commersonii sensu lato and H. vittatus, both belonging to a species complex referred to as the commersonii group. The taxonomic issues at the generic level of certain species of Hipposideros remain unresolved in part related to insufficient material in previous molecular studies. Herein, we expand sampling of the commersonii group and include H. commersonii sensu stricto from its type locality, Madagascar. Our phylogenetic analysis revealed that the commersonii group forms a highly supported monophyletic clade with H. cyclops, which is sister taxa to Aselliscus and Coelops. A combination of phylogenetic and comparative morphological analyses, as well as divergence time estimates, were used to provide compelling evidence to support the placement of the clade containing the commersonii group and that with H. cyclops in two resurrected genera, Macronycteris and Doryrhina, respectively. Divergence time estimates indicated that Macronycteris and Doryrhina diverged 19 mya and separated from Coelops and Aselliscus in the Oligocene, about 31 mya. The commersonii group underwent a rapid radiation as recently as 3 mya likely in response to favourable climatic conditions during the Late Pliocene in Africa. Phylogenetic analysis of Cyt-b could not resolve relationships within this morphologically conserved complex. Further sampling is necessary to fully elucidate the evolutionary history of Doryrhina. Given that cryptic species are widespread among bats, including within the genus Hipposideros, this study highlights the shortcomings of current chiropteran taxonomy to describe hidden diversity. Key words: cryptic diversity, taxonomy, Doryrhina, Macronycteris, Hipposideros, phylogeny, molecular clock dating INTRODUCTION widespread in echolocating bats (Jones, 1997). In - deed, this has been found to be true of species across Morphologically similar or identical cryptic the bat phylogenetic tree, which despite cryptic taxa species pose a challenge to traditional systematics, being almost identical morphologically, have been which typically has relied on discrete morphological shown to be distinct at the molecular level (Castella differences to delimit species. However, since the et al., 2000; Khan et al., 2010; Puech maille et al., advent of PCR, DNA sequence data has meant that 2014b; Dool et al., 2016; Gager et al., 2016). Fur - the detection of speciation in the absence of evident thermore, these studies also highlight how current morphological change has become possible (Bick - taxonomy, which is often central to management ford et al., 2007; Tsang et al., 2016). Cryptic speci- and conservation planning, may be insufficient to ation is thought to be particularly prevalent in taxa describe the diversity of extant species (Bickford et which communicate by non-visual means or are al., 2007). subject to evolutionary constraints induced by ex- For many years the relationships within the treme environmental conditions (Bickford et al., Hipposideridae have been considered a grand chal- 2007). Particularly, due to their use of echoloca- lenge in chiropteran systematics with Bogdanowicz tion as a complex and non-visual means of com- and Owen (1998) comparing the phylogeny of munication (Schuchmann et al., 2012; Puechmaille the Hipposideridae with the mythological Mino- et al., 2014a), cryptic diversity is expected to be taur’s labyrinth of ancient Greece. Their seminal Acta Chiropterologica, 19(1): 19–39, 2017 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/15081109ACC2017.19.1.002 A taxonomic revision of the Kerivoula hardwickii complex (Chiroptera: Vespertilionidae) with the description of a new species HAO-CHIH KUO1, 6, PIPAT SOISOOK2, YING-YI HO3, GABOR CSORBA4, CHUN-NENG WANG1, and STEPHEN J. ROSSITER5 1Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan 2Princess Maha Chakri Sirindhorn Natural History Museum, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand 3Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan 4Department of Zoology, Hungarian Natural History Museum, Baross u. 13, H-1088 Budapest, Hungary 5School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom 6Corresponding author: E-mail: [email protected] Since its discovery, the taxonomic status of the only species of Kerivoula (Chiroptera: Vespertilionidae: Kerivoulinae) to be found on Taiwan has been confused. Previous studies have assigned this species to either Kerivoula hardwickii or K. titania, both of which occur on continental SE Asia. This uncertainty supports repeated suggestions in the literature that specimens of K. hardwickii collected and/or sampled across SE Asia are likely to represent multiple cryptic taxa. To address these issues, we combined new and existing data from the genus Kerivoula on Taiwan and continental Asia, and performed diagnostic analyses in steps. First, phylogenetic reconstructions based on mitochondrial and nuclear DNA revealed a well-supported group comprising all taxa currently recognized as K. hardwickii, together with the Taiwanese Kerivoula and Kerivoula kachinensis to the exclusion of all other congeneric species. Second, focusing on all members of this monophyletic clade (i.e., K. hardwickii complex) together with K. titania, we used multivariate statistical methods to separate taxa based on morphometric data. Our results provide strong evidence that among these bats, the Taiwanese Kerivoula is a new species that also occurs on continental Asia, for which we provide a formal description and name. In addition, we show that the subspecies K. hardwickii depressa should be elevated to species status. We discuss our findings and the caveats of this and similar studies. Key words: Kerivoula, new species, systematics, taxonomic revision, woolly bats INTRODUCTION inventories until the introduction and establishment of the harp trap as the preferred method for survey- The genus Kerivoula contains species that are ing forest-interior bat species in the Old World commonly referred to as woolly bats. This genus, to- (Fran cis, 1989). gether with its sister genus Phoniscus, is classified Although the taxonomy and systematics of under the subfamily Kerivoulinae. Woolly bats Kerivoula species have remained poorly known for occur in both the Indomalaya-Australasia and Afro - many years, several recent studies have gathered tropic ecozones, where, respectively, 12 and seven morphological and/or molecular evidence from mul- distinct species were recognized by Simmons tiple Kerivoula specimens from Indo-Malaya, pro- (2005), although three additional species have been viding some valuable insights into species delimita- described from the former region since then (Bates tion. For example, the systematics and taxonomy of et al., 2004, 2007; Francis et al., 2007). All Keri - Kerivoula from peninsular Malaysia and Borneo voula species appear to forage in dense vegetation have been explored by combining evidence from using broadband calls (Kingston et al., 1999, 2003; mito chondrial (mt) DNA, nuclear (nc) DNA, kary- Schmieder et al., 2012) and roost in foliage or tree otypes and morphological characters (Khan et al., cavities (e.g., Rossiter et al., 2012). The apparent 2010) as well as by multivariate morphometric anal - ability of Kerivoula species to detect and avoid mist yses (Hasan and Abdullah, 2011). Similarly, Dou an g- nets explains their poor representation in species boubpha et al. (2016) combined mitochondrial DNA Acta Chiropterologica, 19(1): 41–50, 2017 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/15081109ACC2017.19.1.003 Comparative chromosomal studies in Rhinolophus formosae and R. luctus from China and Vietnam: elevation of R. l. lanosus to species rank MARIANNE VOLLETH1, 10, NGUYEN TRUONG SON2, YI WU3, YUCHUN LI4, WENHUA YU3, LIANG-KONG LIN5, SATORU ARAI6, VLADIMIR TRIFONOV7, THOMAS LIEHR8, and MASASHI HARADA9 1Department of Human Genetics, Otto von Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany 2Department of Vertebrate Zoology, Institute of Ecology and Biological Resources and Graduate University of Sciences and Technology, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam 3College of Life Sciences, Guangzhou University, 230 Wei Huan Xi Road, Guangzhou, 510006, China 4Marine College, Shandong University, Weihai, 264209, China 5Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, No. 1727, Sec. 4. Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan 6Infectious
Recommended publications
  • Morphometrical Variations of Malaysian Hipposideros Species
    Malaysian Journal of Mathematical Sciences 6(1): 47-57 (2012) Morphometrical Variations of Malaysian Hipposideros Species Siti Nurlydia Sazali, Charlie J. Laman and M.T. Abdullah Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia E-mail: [email protected] ABSTRACT A study on the morphometrical variations among four Malaysian Hipposideros species was conducted using voucher specimens deposited in Universiti Malaysia Sarawak (UNIMAS) Zoological Museum and the Department of Widlife and National Park (DWNP) Kuala Lumpur. Twenty two individuals from four species of Hipposideros ater , H. bicolor , H. cineraceus and H. dyacorum were morphologically measured, in which a total of 27 linear parameters of body, skull and dentals of each were appropriately recorded. The statistical data were later subjected to discriminant function analysis (DFA) and canonical variate analysis (CVA) using SPSS version 15.0 and unweighted pair-group method average (UPGMA) cluster analysis using Minitab version 14.4. The highest character loadings observed in Function l, Function 2 and Function 3 were the forearm length (FA), the third digit second phalanx length (D3P2L) and the palatal length (PL) with standardised canonical discriminant function coefficient values of 21.910, 5.770 and 5.095, respectively. These three characters were identified as the best diagnostic features for discriminating these closely related species of Hipposideros . Hence, this morphometric approach could be a promising tool as an alternative to the molecular DNA analysis for identification of Chiroptera species. Keywords: Hipposideros , morphometric, discriminant function analysis cluster analysis, species identification. 1. INTRODUCTION Bats belong to the order Chiroptera and can be distinguished from all other mammals by their ability to fly, which is a result of the modification of their forelimbs into wings (Payne et al .
    [Show full text]
  • Four Species in One: Multigene Analyses Reveal Phylogenetic
    Published by Associazione Teriologica Italiana Volume 29 (1): 111–121, 2018 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00017-2017 Research Article Four species in one: multigene analyses reveal phylogenetic patterns within Hardwicke’s woolly bat, Kerivoula hardwickii-complex (Chiroptera, Vespertilionidae) in Asia Vuong Tan Tu1,2,3,4,∗, Alexandre Hassanin1,2,∗, Neil M. Furey5, Nguyen Truong Son3,4, Gábor Csorba6 1Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN CNRS UPMC, Muséum national d’Histoire naturelle, Case postale N°51–55, rue Buffon, 75005 Paris, France 2Service de Systématique Moléculaire, UMS 2700, Muséum national d’Histoire naturelle, Case postale N°26–43, rue Cuvier, 75005 Paris, France 3Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam 4Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam 5Fauna & Flora International, Cambodia Programme, 19 Street 360, Boeng Keng Kang 1, Chamkarmorn, Phnom Penh, Cambodia 6Department of Zoology, Hungarian Natural History Museum, Baross u. 13., H-1088, Budapest, Hungary Keywords: Abstract Kerivoulinae Asia We undertook a comparative phylogeographic study using molecular, morphological and morpho- phylogeography metric approaches to address systematic issues in bats of the Kerivoula hardwickii complex in Asia. taxonomy Our phylogenetic reconstructions using DNA sequences of two mitochondrial and seven nuclear cryptic species genes reveal a distinct clade containing four small-sized species (K. hardwickii sensu stricto, K. depressa, K. furva and Kerivoula sp.
    [Show full text]
  • A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape As A
    A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape as a Chiropteran Diversity Hotspot in Sumatra Author(s): Joe Chun-Chia Huang, Elly Lestari Jazdzyk, Meyner Nusalawo, Ibnu Maryanto, Maharadatunkamsi, Sigit Wiantoro, and Tigga Kingston Source: Acta Chiropterologica, 16(2):413-449. Published By: Museum and Institute of Zoology, Polish Academy of Sciences DOI: http://dx.doi.org/10.3161/150811014X687369 URL: http://www.bioone.org/doi/full/10.3161/150811014X687369 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Acta Chiropterologica, 16(2): 413–449, 2014 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/150811014X687369 A recent
    [Show full text]
  • Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam
    viruses Article Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam Satoru Arai 1, Fuka Kikuchi 1,2, Saw Bawm 3 , Nguyễn Trường Sơn 4,5, Kyaw San Lin 6, Vương Tân Tú 4,5, Keita Aoki 1,7, Kimiyuki Tsuchiya 8, Keiko Tanaka-Taya 1, Shigeru Morikawa 9, Kazunori Oishi 1 and Richard Yanagihara 10,* 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] (S.A.); [email protected] (F.K.); [email protected] (K.A.); [email protected] (K.T.-T.); [email protected] (K.O.) 2 Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 3 Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 4 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam; [email protected] (N.T.S.); [email protected] (V.T.T.) 5 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam 6 Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 7 Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 8 Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan; [email protected] 9 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 10 Pacific Center for Emerging Infectious Diseases Research, John A.
    [Show full text]
  • New Records of Bats and Terrestrial Small Mammals from the Seli River in Sierra Leone Before the Construction of a Hydroelectric Dam
    Biodiversity Data Journal 7: e34754 doi: 10.3897/BDJ.7.e34754 Research Article New records of bats and terrestrial small mammals from the Seli River in Sierra Leone before the construction of a hydroelectric dam Natalie Weber‡, Ricarda Wistuba§§, Jonas J Astrin , Jan Decher§ ‡ Independent Research Consultant, Fuerth, Germany § ZFMK, Bonn, Germany Corresponding author: Natalie Weber ([email protected]) Academic editor: Ricardo Moratelli Received: 21 Mar 2019 | Accepted: 23 May 2019 | Published: 18 Jun 2019 Citation: Weber N, Wistuba R, Astrin J, Decher J (2019) New records of bats and terrestrial small mammals from the Seli River in Sierra Leone before the construction of a hydroelectric dam. Biodiversity Data Journal 7: e34754. https://doi.org/10.3897/BDJ.7.e34754 Abstract Sierra Leone is situated at the western edge of the Upper Guinean Forests in West Africa, a recognised biodiversity hotspot which is increasingly threatened by habitat degradation and loss through anthropogenic impacts. The small mammal fauna of Sierra Leone is poorly documented, although bats and rodents account for the majority of mammalian diversity. Based on morphological, genetic and echolocation data, we recorded 30 bat (Chiroptera), three shrew (Soricomorpha) and eleven rodent (Rodentia) species at the Seli River in the north of the country in 2014 and 2016, during a baseline study for the Bumbuna Phase II hydroelectric project. In 2016, 15 bat species were additionally documented at the western fringe of the Loma Mountains, a recently established national park and biodiversity offset for the Bumbuna Phase I dam. Three bat species were recorded for the first time in Sierra Leone, raising the total number for the country to 61.
    [Show full text]
  • Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand
    A Systematic Review of Kerivoula Gray, 1842 (Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand Bounsavane Douangboubpha A Thesis Submitted in Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Biology Prince of Songkla University 2014 Copyright of Prince of Songkla University i A Systematic Review of Kerivoula Gray, 1842 (Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand Bounsavane Douangboubpha A Thesis Submitted in Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Biology Prince of Songkla University 2014 Copyright of Prince of Songkla University ii Thesis Title A Systematic Review of Kerivoula Gray, 1842 (Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand Author Mr. Bounsavane Douangboubpha Major Program Doctor of Philosophy in Biology Major Advisor Examining Committee …………………………………… …………………………………… (Assist. Prof. Dr. Sara Bumrungsri) (Dr. Yodchaiy Chuaynkern) …………………………………… Co-advisor (Assist. Prof. Dr. Sara Bumrungsri) …………………………………… …………………………………… (Dr. Paul J. J. Bates) (Dr. Paul J. J. Bates) …………………………………… …………………………………… (Assoc. Prof. Dr. Chutamas Satasook) (Assist. Prof. Dr. Warapond Wanna) …………………………………… …………………………………… (Assist. Prof. Dr. Warapond Wanna) (Assist. Prof. Dr. Supiyanit Maiphae) The Graduate School, Prince of Songkla University, has approved this thesis as fulfillment of the requirements for the Doctor of Philosophy Degree in Biology. ………………………………… (Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School iii This is to certify that the work here submitted is the result of the candidate’s own investigations. Due acknowledgement has been made of any assistance received. …………………………………… (Assist. Prof. Dr. Sara Bumrungsri) Major Advisor …………………………………… (Mr. Bounsavane Douangboubpha) Candidate iv I hereby certify that this work has not already been accepted in substance for any degree, and is not being concurrently submitted in candidature for any degree.
    [Show full text]
  • Microchiroptera: Hipposideridae) from the Australian Miocene
    Journal of Vertebrate Paleontology l8(2)::130 '139. June l99lt O 1998 by the Society of Vertebrate Paleontology XENORHINO.S, A NEW GENUS OF OLD WORLD LEAF-NOSED BATS (MICROCHIROPTERA: HIPPOSIDERIDAE) FROM THE AUSTRALIAN MIOCENE SUZANNE HAND School of Biological Scicnce. University of New South Wales, Sydney, New South Wales 2052, Australia ABSTRACT-A new genus and spcciesol'hipposidcrid is describcd fl-om thc Bitesantenn.rrvSitc. Riversleigh,north w,esternQueensland, Austr:rlia. Xenorhino.s hulli. gen. ct sp. nov.. diff'erstionr all othcr hipposideridsin. alrtlttg tlther 1'eatures.its broad rostrum and interorbital rcgion. exceptionallv short palate.constrictccl sphenoidll bridge. and pro- nOuncedrotation of thc rostrunr.lts precisc phylogeneticrclatronships remain obscurc. but it lippearslo hc part ot an early hipposidcridradiation that includesspecics ol' (-oelt4ts.Clocoti.s.'l-riuenttp.s, ltcl Rhitrortt'ttt'ri.r.attd that is u'iclely distributedthroughout the Old World tropics. Fror-nanalogy with liring hipposidcrids.Lhe peculiar rcstral and palatal n.rorphologyol'X. lrulli is probably correlatedwith ultrasounclproduction anclentission. ancl. lt-ss certainly. with size and structureol thc noseleirt. INTRODUCTION Museum, Brisbane. Stratigraphic nomenclature tor the River- sleigh region lbllows Archer et al. (1994). Acetic acid-processing of Tertiary freshwater limestones from the Riversleigh World Heritage property, Lawn Hill Na- SYSTEMATIC PALEONTOLOGY tional Park, northwestern Queensland, Australia, has produced a number of new late Oligocene of early Pliocene microchirop- Suborder MlcnocHrtt<.rp'nr.RADobson. 1875 teran species(Archer et al., 1994). These bats include hippos- Superfamily RHr^-or.opsotoEnBell, 1836 (Weber, 1928) iderids, megadermatids,molossids, vespertilionids, and embal- Family HtppostoentorEMiller, 1907 lonurids (Sig6 et al., 1982; Hand.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • A Checklist of the Mammals of South-East Asia
    A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east
    [Show full text]
  • Phylogeography and Population Genetics of the Endemic Malagasy Bat, Macronycteris Commersoni S.S
    Phylogeography and population genetics of the endemic Malagasy bat, Macronycteris commersoni s.s. (Chiroptera: Hipposideridae) Andrinajoro R. Rakotoarivelo1,2,3, Steven M. Goodman4,5, M. Corrie Schoeman6 and Sandi Willows-Munro2 1 Department of Zoology, University of Venda, Thohoyandou, Limpopo, South Africa 2 School of Life Sciences, University of Kwa-Zulu Natal, Pietermaritzburg, Kwa-Zulu Natal, South Africa 3 Natiora Ahy, Antananarivo, Madagascar 4 Field Museum of Natural History, Chicago, IL, United States of America 5 Association Vahatra, Antananarivo, Madagascar 6 School of Life Sciences, University of Kwa-Zulu Natal, Westville, Kwa-Zulu Natal, South Africa ABSTRACT Macronycteris commersoni (Hipposideridae), a bat species endemic to Madagascar, is widespread across the island and utilizes a range of habitat types including open woodland, degraded habitats, and forested areas from sea level to 1,325 m. Despite being widely distributed, there is evidence that M. commersoni exhibits morphological and bioacoustic variation across its geographical range. We investigated the fine- scale phylogeographic structure of populations in the western half of the island using extensive spatial sampling and sequence data from two mitochondrial DNA regions. Our results indicated several lineages within M. commersoni. Individuals collected from northern Madagascar formed a single monophyletic clade (clade C). A second clade (clade B) included individuals collected from the south-western portion of the island. This second clade displayed more phylogeographical partitioning with differences in mtDNA haplotypes frequency detected between populations collected in different bioclimatic regions. Lineage dispersal, genetic divergence, and timing of expansion Submitted 13 August 2018 Accepted 3 October 2018 events of M. commersoni were probably associated with Pleistocene climate fluctuations.
    [Show full text]
  • Investigating the Role of Bats in Emerging Zoonoses
    12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.
    [Show full text]
  • This Electronic Thesis Or Dissertation Has Been Downloaded from Explore Bristol Research
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Venugopal, Parvathy Title: An integrated approach to the taxonomy of hipposiderid bats in South Asia General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. An integrated approach to the taxonomy of hipposiderid bats in South Asia Parvathy Venugopal A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy (PhD) in the Faculty of Life Sciences School of Biological Sciences January 2020 39,380 words Abstract Cryptic diversity has been well documented in several bat families and particularly in the Old-World families such as the Hipposideridae and Rhinolophidae which exhibit high levels of acoustic divergence.
    [Show full text]