This Electronic Thesis Or Dissertation Has Been Downloaded from Explore Bristol Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Records of Bats and Terrestrial Small Mammals from the Seli River in Sierra Leone Before the Construction of a Hydroelectric Dam
Biodiversity Data Journal 7: e34754 doi: 10.3897/BDJ.7.e34754 Research Article New records of bats and terrestrial small mammals from the Seli River in Sierra Leone before the construction of a hydroelectric dam Natalie Weber‡, Ricarda Wistuba§§, Jonas J Astrin , Jan Decher§ ‡ Independent Research Consultant, Fuerth, Germany § ZFMK, Bonn, Germany Corresponding author: Natalie Weber ([email protected]) Academic editor: Ricardo Moratelli Received: 21 Mar 2019 | Accepted: 23 May 2019 | Published: 18 Jun 2019 Citation: Weber N, Wistuba R, Astrin J, Decher J (2019) New records of bats and terrestrial small mammals from the Seli River in Sierra Leone before the construction of a hydroelectric dam. Biodiversity Data Journal 7: e34754. https://doi.org/10.3897/BDJ.7.e34754 Abstract Sierra Leone is situated at the western edge of the Upper Guinean Forests in West Africa, a recognised biodiversity hotspot which is increasingly threatened by habitat degradation and loss through anthropogenic impacts. The small mammal fauna of Sierra Leone is poorly documented, although bats and rodents account for the majority of mammalian diversity. Based on morphological, genetic and echolocation data, we recorded 30 bat (Chiroptera), three shrew (Soricomorpha) and eleven rodent (Rodentia) species at the Seli River in the north of the country in 2014 and 2016, during a baseline study for the Bumbuna Phase II hydroelectric project. In 2016, 15 bat species were additionally documented at the western fringe of the Loma Mountains, a recently established national park and biodiversity offset for the Bumbuna Phase I dam. Three bat species were recorded for the first time in Sierra Leone, raising the total number for the country to 61. -
Microchiroptera: Hipposideridae) from the Australian Miocene
Journal of Vertebrate Paleontology l8(2)::130 '139. June l99lt O 1998 by the Society of Vertebrate Paleontology XENORHINO.S, A NEW GENUS OF OLD WORLD LEAF-NOSED BATS (MICROCHIROPTERA: HIPPOSIDERIDAE) FROM THE AUSTRALIAN MIOCENE SUZANNE HAND School of Biological Scicnce. University of New South Wales, Sydney, New South Wales 2052, Australia ABSTRACT-A new genus and spcciesol'hipposidcrid is describcd fl-om thc Bitesantenn.rrvSitc. Riversleigh,north w,esternQueensland, Austr:rlia. Xenorhino.s hulli. gen. ct sp. nov.. diff'erstionr all othcr hipposideridsin. alrtlttg tlther 1'eatures.its broad rostrum and interorbital rcgion. exceptionallv short palate.constrictccl sphenoidll bridge. and pro- nOuncedrotation of thc rostrunr.lts precisc phylogeneticrclatronships remain obscurc. but it lippearslo hc part ot an early hipposidcridradiation that includesspecics ol' (-oelt4ts.Clocoti.s.'l-riuenttp.s, ltcl Rhitrortt'ttt'ri.r.attd that is u'iclely distributedthroughout the Old World tropics. Fror-nanalogy with liring hipposidcrids.Lhe peculiar rcstral and palatal n.rorphologyol'X. lrulli is probably correlatedwith ultrasounclproduction anclentission. ancl. lt-ss certainly. with size and structureol thc noseleirt. INTRODUCTION Museum, Brisbane. Stratigraphic nomenclature tor the River- sleigh region lbllows Archer et al. (1994). Acetic acid-processing of Tertiary freshwater limestones from the Riversleigh World Heritage property, Lawn Hill Na- SYSTEMATIC PALEONTOLOGY tional Park, northwestern Queensland, Australia, has produced a number of new late Oligocene of early Pliocene microchirop- Suborder MlcnocHrtt<.rp'nr.RADobson. 1875 teran species(Archer et al., 1994). These bats include hippos- Superfamily RHr^-or.opsotoEnBell, 1836 (Weber, 1928) iderids, megadermatids,molossids, vespertilionids, and embal- Family HtppostoentorEMiller, 1907 lonurids (Sig6 et al., 1982; Hand. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
A Checklist of the Mammals of South-East Asia
A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east -
Phylogeography and Population Genetics of the Endemic Malagasy Bat, Macronycteris Commersoni S.S
Phylogeography and population genetics of the endemic Malagasy bat, Macronycteris commersoni s.s. (Chiroptera: Hipposideridae) Andrinajoro R. Rakotoarivelo1,2,3, Steven M. Goodman4,5, M. Corrie Schoeman6 and Sandi Willows-Munro2 1 Department of Zoology, University of Venda, Thohoyandou, Limpopo, South Africa 2 School of Life Sciences, University of Kwa-Zulu Natal, Pietermaritzburg, Kwa-Zulu Natal, South Africa 3 Natiora Ahy, Antananarivo, Madagascar 4 Field Museum of Natural History, Chicago, IL, United States of America 5 Association Vahatra, Antananarivo, Madagascar 6 School of Life Sciences, University of Kwa-Zulu Natal, Westville, Kwa-Zulu Natal, South Africa ABSTRACT Macronycteris commersoni (Hipposideridae), a bat species endemic to Madagascar, is widespread across the island and utilizes a range of habitat types including open woodland, degraded habitats, and forested areas from sea level to 1,325 m. Despite being widely distributed, there is evidence that M. commersoni exhibits morphological and bioacoustic variation across its geographical range. We investigated the fine- scale phylogeographic structure of populations in the western half of the island using extensive spatial sampling and sequence data from two mitochondrial DNA regions. Our results indicated several lineages within M. commersoni. Individuals collected from northern Madagascar formed a single monophyletic clade (clade C). A second clade (clade B) included individuals collected from the south-western portion of the island. This second clade displayed more phylogeographical partitioning with differences in mtDNA haplotypes frequency detected between populations collected in different bioclimatic regions. Lineage dispersal, genetic divergence, and timing of expansion Submitted 13 August 2018 Accepted 3 October 2018 events of M. commersoni were probably associated with Pleistocene climate fluctuations. -
Bonner Zoologische Beiträge
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 1982 Band/Volume: 33 Autor(en)/Author(s): Hill J. E. Artikel/Article: A review of the leaf-nosed bats Rhinonycteris, Cloeotis and Triaenops (Chiroptera: Hipposideridae) 165-186 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn. zool. Beitr. 165 33 (1982), Heft 2-4 A review of the leaf-nosed bats Rhinonycteris, Cloeotis and Triaenops (Chiroptera: Hipposideridae) by J. E. HILL Department of Zoology, British Museum (Natural History) Introduction The hipposiderid bats Rhinonycteris of northwestern Australia, Cloeotis of Africa and Triaenops of southwestern Asia and Africa form a small group characterised principally by a number of common features of the nasal foli- ations. All have a strap-like projection extending forward from the interna- rial region over the anterior leaf (of which it forms a part) to its edge and all have a strongly cellular posterior leaf, recalling in some of its features the cellular lancet of Rhinolophus. The posterior leaf in Cloeotis and Triaenops is further modified by three upwardly directed processes developed from its upper edge: in Rhinonycteris such processes are lacking, the upper part of the posterior leaf instead divided medianly, the division demarcated lat- erally by the thickened posterior walls of the uppermost cells. The noseleaves of the three genera differ widely from those of the re- maining hipposiderid genera Hipposideros, Anthops, Asellia, Aselliscus, Coelops and Paracoelops. None has an anterior median strap-like process or 'sella' although in Hipposideros jonesi, H. -
Chapter 15 the Mammals of Angola
Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E. -
In the Minotaur's Labyrinth Phylogeny of the Bat Family Hipposideridae WIESLAW BOGDANOWICZ and ROBERT D
Pp. 27-42, In Bat Biology and Conservation (T.H. Kunz and P.A. Racey, eds.). 1998. Smithsonian Institution Press, Washington. - 2 In the Minotaur's Labyrinth Phylogeny of the Bat Family Hipposideridae WIESLAW BOGDANOWICZ AND ROBERT D. OWEN The family Hipposideridae is composed of nine Recent view or have made only minor changes to his 1963 dassi- genera with about 65 species, which are widespread fication. However, the question arises as to what extent throughout warm areas of the Old World from western Hill's carefully arranged, but nevertheless intuitive, species Africa east to the New Hebrides hdextend only marginally groups reflect phylogenetic history into the Palaearaic (Corbet and Hill 1991, 1992; Koopman More importantly, none of the previous studies evalu- 1994). The genus Hipposideros has about 50 speaes; the ated phylogenetic affinities within the entire family The other genera either are monotypic (Anthops, Cloeotis, Para- aim of our chapter is to fill this gap, although the lack of coelops, Rhinonycteris) or have 2 species (Aselliu, Asellism, well-preserved materials for some taxa makes our analysis Coelops, Triaenops). Hipposiderid fossils are known from the incomplete. Nevertheless, it is a first step toward a compre- middle Eocene of Europe (Sigk and Legendre 1983; Sigk hensive revision of phylogenetic relationships among hip- 1991), the early Oligocene of Arabo-Africa (Sigk et al. 1994), posiderids. We also evaluated different hypotheses concern- the late Oligocene of Australia (Archer et al. 1994), and ing the geographic center of origin for the family and the probably the Miocene of Asia (K. E Koopman, in litt.). -
ORIGINAL ARTICLE the Study of Bat Fauna in the South Part of Iran
2720 Advances in Environmental Biology, 6(10): 2720-2725, 2012 ISSN 1995-0756 This is a refereed journal and all articles are professionally screened and reviewed ORIGINAL ARTICLE The study of bat fauna in the south part of Iran: A case study of Jahrom 1Farangis Ghassemi, M.S., 2Hosein Kargar, M.S., 3Azadeh Nemati, Ph.D. 1Department of Biology, Jahrom branch, Islamic Azad University, Jahrom, Iran, 2Department of Biology, Jahrom branch, Islamic Azad University, Jahrom, Iran, 3Department of English language teaching, Jahrom branch, Islamic Azad University, Jahrom, Iran. Farangis Ghassemi, M.S., Hosein Kargar, M.S., Azadeh Nemati, Ph.D.; The study of bat fauna in the south part of Iran: A case study of Jahrom Abstract Bats with nearly 1250 species are a second largest group of mammals and play ecological and economic role in their community. The forgiver bat, disperse seeds and pollinate flowers by feeding on fruit, pollen and nectar and insectivore bat by feeding pest plants playing a significant role in biological defense. Bat populations are declining locally and continentally, due to habitat loss and roost disturbances. To gather basic distributional, ecological data and on each species and recognize the economic benefits of them, seeks to inventory and manage species and habitats are very necessary to conserve bats. Result showed that research station (Jahrom) is area with greater diversity of bats. This local (Jahrom) was agricultural area with richness flora (Palm, Ziziphus, Ficus and Citrus orchards), diversity of insect and warm climate. Presence numerous caves, tunnels and streams and pond in or near the caves due this local to be typical habitat for Thousands of bat that seen roosting there. -
The Evolution of Echolocation in Bats: a Comparative Approach
The evolution of echolocation in bats: a comparative approach Alanna Collen A thesis submitted for the degree of Doctor of Philosophy from the Department of Genetics, Evolution and Environment, University College London. November 2012 Declaration Declaration I, Alanna Collen (née Maltby), confirm that the work presented in this thesis is my own. Where information has been derived from other sources, this is indicated in the thesis, and below: Chapter 1 This chapter is published in the Handbook of Mammalian Vocalisations (Maltby, Jones, & Jones) as a first authored book chapter with Gareth Jones and Kate Jones. Gareth Jones provided the research for the genetics section, and both Kate Jones and Gareth Jones providing comments and edits. Chapter 2 The raw echolocation call recordings in EchoBank were largely made and contributed by members of the ‘Echolocation Call Consortium’ (see full list in Chapter 2). The R code for the diversity maps was provided by Kamran Safi. Custom adjustments were made to the computer program SonoBat by developer Joe Szewczak, Humboldt State University, in order to select echolocation calls for measurement. Chapter 3 The supertree construction process was carried out using Perl scripts developed and provided by Olaf Bininda-Emonds, University of Oldenburg, and the supertree was run and dated by Olaf Bininda-Emonds. The source trees for the Pteropodidae were collected by Imperial College London MSc student Christina Ravinet. Chapter 4 Rob Freckleton, University of Sheffield, and Luke Harmon, University of Idaho, helped with R code implementation. 2 Declaration Chapter 5 Luke Harmon, University of Idaho, helped with R code implementation. Chapter 6 Joseph W. -
A Taxonomic Review of Hipposideros Halophyllus Hill and Yenbutra, 1984
A Taxonomic Review of Hipposideros halophyllus Hill and Yenbutra, 1984, Hipposideros ater Templeton, 1848, and Hipposideros cineraceus Blyth, 1853 (Chiroptera: Hipposideridae) in Thailand and Myanmar Bounsavane Douangboubpha A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Ecology (International Program) Prince of Songkla University 2008 Copyright of Prince of Songkla University i Thesis Title A Taxonomic Review of Hipposideros halophyllus Hill and Yenbutra, 1984, Hipposideros ater Templeton, 1848, and Hipposideros cineraceus Blyth, 1853 (Chiroptera: Hipposideridae) in Thailand and Myanmar Author Mr. Bounsavane Douangboubpha Major Program Ecology (International Program) Major Advisor Examining Committee: ………………………………………. .....………………………...Committee (Asst. Prof. Dr. Sara Bumrungsri) (Assoc. Prof. Dr. Kitichate Sridith) .....………………………...Committee Co-advisor (Dr. Chavalit Vidthayanon) ………………………………………. .....………………………...Committee (Assoc. Prof. Dr. Chutamas Satasook) (Asst. Prof. Dr. Sara Bumrungsri) ………………………………………. .....………………………...Committee (Dr. Paul J. J. Bates) (Assoc. Prof. Dr. Chutamas Satasook) The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Ecology (International Program). ………………………………………... (Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School ii Thesis Title A Taxonomic Review of Hipposideros halophyllus Hill and Yenbutra, 1984, Hipposideros ater Templeton, 1848, and -
AMERICAN MUSEUM NOVITATESI Published by Number 1140 the AMERICAN MUSEUM of NATURAL HISTORY August 20, 1941 New York City
AMERICAN MUSEUM NOVITATESI Published by Number 1140 THE AMERICAN MUSEUM OF NATURAL HISTORY August 20, 1941 New York City RESULTS OF THE ARCHBOLD EXPEDITIONS. No. 36 REMARKS ON SOME OLD WORLD LEAF-NOSED BATS BY G. H. H. TATE When reviewing recently the genus the cochleae (not so large, however, as in Hipposideros,I it became necessary to study H. muscinus). other available hipposiderine genera, to re- Many of the following notes are based examine Rhinolophus, and to some extent upon specimens kindly lent us by the Cu- to study the remaining leaf-nosed bats, the rators of Mammals at Washington, Chicago Megadermidae and Nyeteridae. and Cambridge. Material referable to Asellia, Anthops, Cloeotis, Triaenops, Coelops, Rhinolophus, Anthops ornatus Thomas Megaderma, Lavia, Nycteris, Lyroderma U.S.N.M. 123441, Guadalcanar. was examined. (Rhinonycteris is appar- Ears much as the "emarginate ears" of ently unrepresented in American collec- members of Hipposideros, but with anti- tions.) Notes made upon their compara- tragal fold somewhat larger. Horseshoe tive structures are presented herewith. with two lateral leaflets, the inner quite The hipposiderine genera are considered small, the outer large. Transverse leaf first, then briefly the Nyeteridae and with three raised, rounded processes, each Megadermidae. The isolated position of hollowed out behind and each representing Coelops is pointed out. Only incidental the extension of the three thickened septa remarks are offered on the Rhinolophinae, which in front support the leaf (as in H. reviewed two years ago2 and now in course larvatus). The transverse leaf subtended of extensive revision by C. C. Sanborn. by two small lateral leaflets of its own, A list of materials belonging to these separate from those margining the horse- genera contained in the Archbold collec- shoe.