Fundimentals of Photolithography

Total Page:16

File Type:pdf, Size:1020Kb

Fundimentals of Photolithography FUNDIMENTALS OF PHOTOLITHOGRAPHY One of the most widely used methods for creating nanoscale circuit components is Photolithography. The word lithography is derived from the Greek words lithos (stone) and graphein (to write) and finds its roots in a process invented by Aloys Senefelder in 1796. By treating a piece of limestone with certain chemicals, Senefelder was then able to transfer an image carved into the stone onto a piece of paper. This was done by coating certain parts of the porous limestone with a water repellant substance. When ink was applied to the stone it would only adhere to the untreated hydrophilic areas, and hence the image carved into the rock could be transferred repeatedly onto paper. Senefelder's technique is still used in some artistry applications today. As time progressed and technology improved, lithography methods evolved. In the 1820's a French scientist by the name of Nicephore Niepce developed the first photoresist, a component fundamental to photolithography. A photoresist is a substance that undergoes a chemical reaction when it is eXposed to light. Niepce's photoresist was a material known as Bitumen of Judea, a kind of naturally occurring asphalt. A sheet of stone, metal, or glass was coated with a thin layer of this bitumen, which became less soluble where it was eXposed to light. Areas that were uneXposed could then be removed using a solvent, and the resultant exposed areas of the sheet were etched using a chemical bath. After the remaining photoresist was removed, the sheet could then be used as a printing plate. Photolithography today is in many ways similar to the original process invented by Niepce. In general, modern photolithography involves a procedure with five steps; wafer preparation, application of photoresist, pre-exposure bake, exposure, post-exposure bake, and development. In photolithography, a wafer is a thin slice of semi conductive material, such as crystalline silicon, that forms the base for the photolithographic process. Before the wafer can be used it must first undergo several steps of cleaning and preparation to remove organic contaminants and prepare it chemically for application of a photoresist. Figure 1- Two silicon wafers, 12" and 6" respectively, commonly used in photolithography. https://en.wikipedia.org/wiki/Wafer_(electronics) In general laboratory applications, the wafer is cleaned using a chemical agent, such as acetone, to remove contaminants. This can be done in several ways. One method is to completely submerge the wafer in a chemical bath for ten or so seconds before blow drying it with nitrogen. Another method involves dripping the cleaning agent onto the wafer to create a small puddle, and then rotating the wafer in a spin coater to spread and remove the cleanser. After the cleaning stage is complete, the wafer is baked using an oven or hot plate to remove eXcess water. This step, called a dehydration bake, helps improve adhesion of the photoresist in the neXt phase of the photolithographic procedure. After the wafer has been properly prepared, it is ready for the application of a photoresist. There are two different types of photoresist, positive and negative. A positive resist, when eXposed to light, becomes soluble in a photoresist developer. That is, after the resist coated wafer is eXposed to electromagnetic radiation (usually deep UV), any portion of the resist that has been touched by the light will be chemically removed, and the finished product will resemble the pattern on the photomask. A negative resist has the eXact opposite response so that all portions of the negative resist eXposed become insoluble to the developer, and the remaining resist is removed during development. The resultant pattern will be the inverse of the photomask. Figure 1, which includes the steps of exposure and development, shows the difference between positive and negative resists. Figure 2- Diagram of the basic photolithography process displaying the difference between positive and negative photoresists. Photoresist can be applied to the wafer in several ways, most of which make use of a device know as a "spin coater". A spin coater is composed of a small drum with a rotating disk inside. The wafer is placed on the disk, where suction from a vacuum holds it in place, and the wafer is rotated at a predetermined speed. In most laboratory applications, resist is added before rotation by applying a few drops of resist to the center of the wafer using a pipette. The spin coater is then activated, and the photoresist is dispersed across the wafer using a two step process. In the first step the wafer is rotated at a speed of about 500 rpm for about 30 seconds. This evenly distributes the resist across the entire surface of the wafer. At this point the spin coater accelerates, and the rotation speed and spin time of the wafer, combined with the viscosity of the photoresist, determine the final thickness of the resist coating. Photoresist coatings are generally 1-6 microns thick, though thicker coatings are sometimes used in commercial applications. After application of the photoresist, the wafer undergoes a post-apply bake(also termed a "softbake" or "prebake") to Figure 3- Use of spin coater to apply photoresist. stabilize the photoresist prior to eXposure. This step also increases adhesion between the resist and the wafer, and helps prevent contamination of the sample by airborne particles. The prebake process is often performed using a hotplate. Though temperature and bake time differ slightly depending on the photoresist used, typical prebake conditions require a temperature between 90 and 100 degrees Celsius for a period of 60-90 seconds. A common method used to test if the post- apply bake is complete is performed by touching the edge of the sample with tweezers. If the surface of the wafer is tacky or if a gentle touch by the tweezers leaves a mark on the surface of the sample, the bake process is not yet complete. Once the prebake is complete, the wafer is ready for alignment and exposure. In most forms of photolithography, the design to be created on the resist coated wafer is dictated using a photomask. A photomask generally consists of a transparent glass sheet on which is printed the pattern to be copied to the wafer surface. Darkened areas of the photomask prevent penetration of light to the resist below, while transparent areas of the mask allow the resist beneath to react chemically. In the alignment stage of photolithography, the photomask is carefully aligned with the resist coated wafer. In some commercial applications the mask is elevated a few nanometers above the surface of the mask so as to prevent long term damage to the mask by chemicals in the resist, but in most laboratory settings the mask is placed in direct contact with the wafer so as to achieve the minimum feature size in the resist pattern. Figure 4- Chromium photomask https://upload.wikimedia.org/wikipedia/commons/1/18/Chromium_photomask _%28details%29.JPG Feature size in the photolithography sample is also limited by the wavelength of light generated by the optical mask aligner. Ultra-violet wavelengths commonly used in many laboratory and commercial applications are g-line(436 nm), h-line(405 nm), i-line(365 nm), and broadband (280-315 nm). It is important to note that some photoresists only react when eXposed to a specific wavelength (or range of wavelengths) of light. In this case, a resist that reacts normally under g-line radiation, for example, may not react at all when exposed to i-line wavelengths. Most photoresists, however, are designed to respond to various wavelengths of light, though exposure time will vary. As a general rule, the smaller the wavelength of light used, the smaller the mask components can be. For this reason many technology industries make use of lensing techniques to focus light and decrease feature size. Figure 5- ABM optical mask aligner during use. Entire mask surface is simultaneously eXposed to an even spread of UV light. http://www.abmusainc.com/indeX.php/products/product_one Other forms of photolithography use an electron beam instead of UV light. Because the wavelength of electrons can be 100,000 times smaller than that of visible light, advances in electron beam photolithography have enabled industries to produce photomasks with components less than 10nm in resolution. Alignment and eXposure are performed using an optical mask aligner (see figure 5). The prepared wafer is positioned in the center of the wafer chuck (usually found in the center of the aligner) and the photomask is carefully laid on top of it. Adjustments to the chuck can be made so that the mask maintains firm but gentle contact with the surface of the wafer. Once alignment is complete, the sample is ready for eXposure. In photolithography exposure times will vary with a number of factors including the photoresist used, the wavelength of light from the optical mask aligner, and the thickness of the resist. Exposure time may be anywhere from a few seconds to nearly a minute depending on the resist and thickness. Though photoresists instructions will specify the total energy required to successfully expose the resist, trial and error is generally required to find near perfect exposure time in any given laboratory. If eXposure time is insufficient, areas of the resist may be only partially eXposed, and the developed wafer will contain gaps in the pattern (positive resist) or eXcess resist in between pattern lines (negative resist) therefore ruining the sample. If eXposure time is too great, features of the resist will have diminished size and structural integrity after development. Figure 6 outlines the basic effects of under or over eXposure in a typical positive photoresist.
Recommended publications
  • High-End EUV Photomask Repairs for Advanced Nodes
    High-end EUV Photomask Repairs for advanced nodes Dr. Michael Waldow Product Manager vZTech - Virtual SMS Tech Conference, 18.05.2021 Agenda 1 Introduction 2 High-end EUV photomask repairs 3 Summary Carl ZEISS SMT GmbH, Dr. Michael Waldow, Semiconductor Mask Solutions 18.05.2021 2 Agenda 1 Introduction 2 High-end EUV photomask repairs 3 Summary Carl ZEISS SMT GmbH, Dr. Michael Waldow, Semiconductor Mask Solutions 18.05.2021 3 Introduction EUV High-Volume manufacturing ramping up SAMSUNG newsroom C. C. Wei – TSMC - CEO & Vice Chairman* MAY 21, 2021 JULY 16, 2020 “…new production line in Pyeongtaek, Korea…will produce 14- ‚Next, let me talk about our N5 ramp up and N4 introduction. N5 is the foundry nanometer DRAM and 5-nanometer logic, …based on EUV...” industry's most advanced solution with best PPA. N5 is already in volume Anandtech.com - APRIL 02, 2021 production with good yield, while we continue to improve the “… South Korea authorities this week gave SK Hynix a green light to build We are seeing robust productivity and performance of the EUV tools. a new, 120 trillion won ($106.35 billion) fab complex…. using demand for N5 and expect a strong ramp of N5 in the second half of this year, driven by both 5G smartphones and HPC applications.‘ process technologies that rely on extreme ultraviolet lithography (EUV)…’ ▪ EUV is becoming more and more important and Intel: The Empire Strikes Back** MAY 21, 2021 amount of EUV lithographic layers is rising ‚while the outlook on EUV was still quite uncertain. Hence, Intel's initial 7nm ▪ First consumer products based on EUV seems to have used EUV quite conservatively, in relatively few layers.
    [Show full text]
  • Paper 73-3 Has Been Designated As a Distinguished Paper at Display Week 2018
    Distinguished Student Paper 73-3 / T. Ji Paper 73-3 has been designated as a Distinguished Paper at Display Week 2018. The full- length version of this paper appears in a Special Section of the Journal of the Society for Information Display (JSID) devoted to Display Week 2018 Distinguished Papers. This Special Section will be freely accessible until December 31, 2018 via: http://onlinelibrary.wiley.com/page/journal/19383657/homepage/display_week_2018.htm Authors that wish to refer to this work are advised to cite the full-length version by referring to its DOI: https://doi.org/10.1002/jsid.640 SID 2018 DIGEST Distinguished Student Paper 73-3 / T. Ji Tingjing Ji- Full Color Quantum Dot Light-Emitting Diodes Patterned by Photolithography Technology Full Color Quantum Dot Light-Emitting Diodes Patterned by Photolithography Technology Tingjing Ji (student), Shuang Jin, Bingwei Chen, Yucong Huang, Zijing Huang, Zinan Chen, Shuming Chen*, Xiaowei Sun Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, PR China, 518055 *Corresponding author: [email protected] Abstract the traditional patterning processes. The QLED device achieved Photolithography is a high resolution and mature patterning maximum electroluminescence intensity of 23 770 cd/m2. [13] technique which has been widely used in semiconductor industry. For display application, a pixel consists of red (R), green (G) and In this work, we use photolithography to fine pattern the QD blue (B) side-by-side sub-pixels, which thereby requires a high layers. Because it is difficult to etch the QD layer, lift-off is used resolution patterning of the light-emission layers.
    [Show full text]
  • Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography
    Nanofabrication 2015; 2: 19–26 Research Article Open Access Soma Biswas*, Falko Brinkmann, Michael Hirtz, Harald Fuchs Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography Abstract: We present a direct way of patterning CdSe/ lithography and photolithography, these direct techniques ZnS quantum dots by dip-pen nanolithography and do not rely on resist layers and multi-step processing, but polymer pen lithography. Mixtures of cholesterol and allow the precise deposition of ink mixtures. Spot sizes in phospholipid 1,2-dioleoyl-sn-glycero-3 phosphocholine commercially widespread inkjet printing and other related serve as biocompatible carrier inks to facilitate the transfer spotting techniques are usually in the range of 50 to 500 of quantum dots from the tips to the surface during µm [5–7], while high resolution approaches (µCP, DPN and lithography. While dip-pen nanolithography of quantum PPL) reach sub-µm features. dots can be used to achieve higher resolution and smaller Microcontact printing utilises a predesigned pattern features (approximately 1 µm), polymer pen poly(dimethylsiloxane) (PDMS) stamp that is first coated lithography is able to address intermediate pattern scales with ink and subsequently pressed onto the surface in the low micrometre range. This allows us to combine manually. A total area up to cm2 can be patterned retaining the advantages of micro contact printing in large area and a lateral resolution of approximately 100 nm [8]. Dip-pen massive parallel patterning, with the added flexibility in nanolithography (Figure 1a) employs an atomic force pattern design inherent in the DPN technique. microscopy tip (AFM) as a quill pen.
    [Show full text]
  • Gray-Scale Photolithography Using Microfluidic Photomasks
    Gray-scale photolithography using microfluidic photomasks Chihchen Chen, Danny Hirdes, and Albert Folch* Department of Bioengineering, University of Washington, Seattle, WA 98195 Edited by George M. Whitesides, Harvard University, Cambridge, MA, and approved December 23, 2002 (received for review September 23, 2002) The ability to produce three-dimensional (3D) microstructures is of Here we demonstrate a type of gray-scale photomasks that increasing importance in the miniaturization of mechanical or allow for patterning large areas (Ͼ3 inches in diameter) using fluidic devices, optical elements, self-assembling components, and standard photolithographic equipment (i.e., a contact mask tissue-engineering scaffolds, among others. Traditional photoli- aligner with a collimated UV source). Our photomasks contain thography, the most widely used process for microdevice fabrica- light-absorbing features that are liquid (i.e., dyes) and can be tion, is ill-suited for 3D fabrication, because it is based on the addressed (i.e., altered) by means of microfluidic channels. We illumination of a photosensitive layer through a ‘‘photomask’’ term them ‘‘microfluidic photomasks’’ (␮FPMs). The ␮FPMs (a transparent plate that contains opaque, unalterable solid-state are advantageous in that (i) they contain a virtually unlimited features), which inevitably results in features of uniform height. number of gray scales as given by variations in dye concentration, We have devised photomasks in which the light-absorbing fea- (ii) they can be manufactured rapidly and inexpensively, and tures are made of fluids. Unlike in conventional photomasks, the (iii) the fluidic patterns can be changed in the time scale of a opacity of the photomask features can be tailored to an arbitrary few seconds, thus allowing for rapid reconfiguration of the number of gray-scale levels, and their spatial pattern can be photomask.
    [Show full text]
  • Integrated Circuit (Ic) and Photomask Images Processing Technology
    INTEGRATED CIRCUIT (IC) AND PHOTOMASK IMAGES PROCESSING TECHNOLOGY A. Doudkin, D. Vershok Laboratory of System Identification of United Institute of Informatics Problems of NASB, 6, Surganova str., BY-220012, Minsk, Belarus e-mails: doudkin{vershok}@newman.bas-net.by Abstract. The integrated circuit and photomask images processing technology is proposed. This technology allows to perform the restoration of the integrated-circuit metallization layout and the mask artwork from the images of IC metallization layers or photomask set correspondingly. It can be applied for the tasks of integrated circuits redesign and automated visual inspection of integrated circuits and photomask production. 1. Introduction The modern semiconductor manufacturing needs to control all of the critical process modules that drive IC manufacturing success. Several factors inherent in the semiconductor industry drive the critical need for comprehensive yield management and process control solutions. Among the most significant of these are: increasing device complexity; shrinking geometries; reduced product life cycles. The visual or optical inspec- tion is the important part of such control solutions. It implies the presence of some operative analysis system [1] providing image registration, visual information processing and analysis. In this paper the main attention is paid to image processing technology which was developed for this sort of the systems. 2. Problem formulation The proposed technology has the following objectives: 1 restoration of the integrated-circuit metalli- zation layout from the images of IC metallization layers; 2 restoration of the mask artwork from the images of photomask set. Thus, the objects of processing are raster patterns of IC metallization layers and IC pho- tomasks, represented as the collection of partially overlapping images (frames) without any reference marks (Fig 1.).
    [Show full text]
  • Projection Photolithography-Liftoff Techniques for Production of 0.2-Pm Metal Patterns
    IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-28, NO. 11, NOVEMBER 1981 1375 Projection Photolithography-Liftoff Techniques for Production of 0.2-pm Metal Patterns MARK D. FEUER AND DANIEL E. PROBER, MEMBER, IEEE GLASS FILTER Abstract-A technique whichallows the useof projection photo- \ yPHOTORESIST lithography with the photoresist liftoff process, for fabrication of sub- micrometer metal patterns, is described. Through-the-substrate (back- \II a projection) exposure of the photoresist produces the undercut profiles necessary forliftoff processing. Metal lines andsuperconducting microbridges of 0.2-pm width have been fabricated with this technique. I Experimental details and process limits are discussed. II OBJECTIVE IMMERSION OIL ECENT DEVELOPMENTS inmicrolithography have SUBSTRATE - (d) R made possible the production ofa variety of devices with PHOTORESIST %- I-l submicrometer (submicron) dimensions [ 11 , [2] , offering the (a) advantages of higherspeed and packing density.For many Fig. 1. Schematicdiagram of back-projectionand metal-liftoff pro- Josephson-effect devices in particular, submicron dimensions cedure. (a) Exposure system, employing a Zeiss optical microscope. Image of the mask is projected through the substrate, which is shown are essential for achieving optimalperformance over awide in sideview. (b) Schematic contours of constant exposure intensity. range of operatingconditions [3] . Forsubmicron pattern (c) After photoresist development and metallization. (d) After liftoff. transfer, liftoff processing [ 11 generally
    [Show full text]
  • And Nanolithography Techniques and Their Applications
    Review on Micro- and Nanolithography Techniques and their Applications Alongkorn Pimpin* and Werayut Srituravanich** Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand E-mail: [email protected]*, [email protected]** Abstract. This article reviews major micro- and nanolithography techniques and their applications from commercial micro devices to emerging applications in nanoscale science and engineering. Micro- and nanolithography has been the key technology in manufacturing of integrated circuits and microchips in the semiconductor industry. Such a technology is also sparking revolutionizing advancements in nanotechnology. The lithography techniques including photolithography, electron beam lithography, focused ion beam lithography, soft lithography, nanoimprint lithography and scanning probe lithography are discussed. Furthermore, their applications are summarized into four major areas: electronics and microsystems, medical and biotech, optics and photonics, and environment and energy harvesting. Keywords: Nanolithography, photolithography, electron beam lithography, focused ion beam lithography, soft lithography, nanoimprint lithography, scanning probe lithography, dip-pen lithography, microsystems, MEMS, nanoscience, nanotechnology, nano-engineering. ENGINEERING JOURNAL Volume 16 Issue 1 Received 18 August 2011 Accepted 8 November Published 1 January 2012 Online at http://www.engj.org DOI:10.4186/ej.2012.16.1.37 DOI:10.4186/ej.2012.16.1.37 1. Introduction For decades, micro- and nanolithography technology has been contributed to the manufacturing of integrated circuits (ICs) and microchips. This advance in the semiconductor and IC industry has led to a new paradigm of the information revolution via computers and the internet. Micro- and nanolithography is the technology that is used to create patterns with a feature size ranging from a few nanometers up to tens of millimeters.
    [Show full text]
  • Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems
    micromachines Review Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems Jessica Ortigoza-Diaz 1, Kee Scholten 1 ID , Christopher Larson 1 ID , Angelica Cobo 1, Trevor Hudson 1, James Yoo 1 ID , Alex Baldwin 1 ID , Ahuva Weltman Hirschberg 1 and Ellis Meng 1,2,* 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; [email protected] (J.O.-D.); [email protected] (K.S.); [email protected] (C.L.); [email protected] (A.C.); [email protected] (T.H.); [email protected] (J.Y.); [email protected] (A.B.); [email protected] (A.W.H.) 2 Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA * Correspondence: [email protected]; Tel.: +1-213-740-6952 Received: 31 July 2018; Accepted: 18 August 2018; Published: 22 August 2018 Abstract: Parylene C is a promising material for constructing flexible, biocompatible and corrosion- resistant microelectromechanical systems (MEMS) devices. Historically, Parylene C has been employed as an encapsulation material for medical implants, such as stents and pacemakers, due to its strong barrier properties and biocompatibility. In the past few decades, the adaptation of planar microfabrication processes to thin film Parylene C has encouraged its use as an insulator, structural and substrate material for MEMS and other microelectronic devices. However, Parylene C presents unique challenges during microfabrication and during use with liquids, especially for flexible, thin film electronic devices. In particular, the flexibility and low thermal budget of Parylene C require modification of the fabrication techniques inherited from silicon MEMS, and poor adhesion at Parylene-Parylene and Parylene-metal interfaces causes device failure under prolonged use in wet environments.
    [Show full text]
  • Photolithography for the Investigation of Nanostructures
    Photolithography for the Investigation of Nanostructures ---------------------------------------------------------- A Thesis Presented to the Honors Tutorial College, Ohio University ---------------------------------------------------------- In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Physics ---------------------------------------------------------- Helen M. Cothrel April 2015 This thesis has been approved by the Honors Tutorial College and the Department of Physics and Astronomy ________________________________________________ Dr. Eric Stinaff Professor, Physics and Astronomy Thesis adviser ________________________________________________ Dr. David Drabold Distinguished Professor, Physics and Astronomy Honors Tutorial College Director of Studies, Physics and Astronomy ________________________________________________ Dr. Jeremy Webster Dean, Honors Tutorial College 2 Table of Contents List of Figures ................................................................................................................. 4 Abstract ........................................................................................................................... 8 Introduction and Background ....................................................................................... 10 Photolithography ....................................................................................................... 11 Quantum Dots ..........................................................................................................
    [Show full text]
  • Molecular Scale Imaging with a Smooth Superlens
    Molecular Scale Imaging with a Smooth Superlens Pratik Chaturvedi1, Wei Wu2, VJ Logeeswaran3, Zhaoning Yu2, M. Saif Islam3, S.Y. Wang2, R. Stanley Williams2, & Nicholas Fang1* 1Department of Mechanical Science & Engineering, University of Illinois at Urbana- Champaign, 1206 W. Green St., Urbana, IL 61801, USA. 2Information & Quantum Systems Lab, Hewlett-Packard Laboratories, 1501 Page Mill Rd, MS 1123, Palo Alto, CA 94304, USA. 3Department of Electrical & Computer Engineering, Kemper Hall, University of California at Davis, One Shields Ave, Davis, CA 95616, USA. * Corresponding author Email: [email protected] RECEIVED DATE Abstract We demonstrate a smooth and low loss silver (Ag) optical superlens capable of resolving features at 1/12th of the illumination wavelength with high fidelity. This is made possible by utilizing state-of-the-art nanoimprint technology and intermediate 1 wetting layer of germanium (Ge) for the growth of flat silver films with surface roughness at sub-nanometer scales. Our measurement of the resolved lines of 30nm half-pitch shows a full-width at half-maximum better than 37nm, in excellent agreement with theoretical predictions. The development of this unique optical superlens lead promise to parallel imaging and nanofabrication in a single snapshot, a feat that are not yet available with other nanoscale imaging techniques such as atomic force microscope or scanning electron microscope. λ = 380nm 250nm The resolution of optical images has historically been constrained by the wavelength of light, a well known physical law which is termed as the diffraction limit. Conventional optical imaging is only capable of focusing the propagating components from the source. The evanescent components which carry the subwavelength information exponentially decay in a medium with positive permittivity (ε), and positive permeability (µ) and hence, are lost before making it to the image plane.
    [Show full text]
  • Contact Photolithography
    Contact Photolithography Overview Contact photolithography is performed using a Mask Aligner. A mask aligner has two main tooling structures: the Mask Holder and the Wafer Chuck. The mask holder is machined to have an extremely flat surface, and the photomask is held in place on this surface by vacuum. The wafer chuck, which is also machined to be very flat, holds the wafer in place also by using vacuum. This tooling is carefully mounted so that during operation the surfaces of the two parts are kept parallel to each other. The wafer chuck can be moved up to the mask holder in order to bring the wafer into contact with the photomask using variable force. The wafer chuck surface position can also be adjusted to be as planar as possible with the mask in order to yield the best results; this is called Wedge Error Compensation. Once the wafer and mask are positioned an exposure can be performed by opening a shutter on the Lamp Housing. Inside the lamp housing there is a Mercury (Hg) arc lamp and associated optics which will allow a selected controlled band of UV light to expose the mask and wafer. There is an optical system incorporated into the tooling which can be used to view alignment marks on the wafer through complimentary marks on the photomask. Micrometers on the wafer chuck tooling allow the operator to move the wafer into alignment with the mask before exposure. Mask aligners are typically manually operated but some versions are nearly fully automated. Design Contact photolithography has the advantage of exposing the entire wafer surface in one process cycle.
    [Show full text]
  • Nanolithography
    Chapter 8 Nanolithography Gunasekaran Venugopal and Sang-Jae Kim Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55527 1. Introduction Nanolithography is the branch of nanotechnology concerned with the study and application of the nanofabrication of nanometer-scale structures, meaning nanopatterning with at least one lateral dimension between the size of an individual atom and approximately 100 nm. The term nanolithography is derived from the Greek words “nanos”, meaning dwarf; “lithos”, meaning rock or stone; and “graphein” meaning to write. Therefore the literal translation is "tiny writing on stone", however nowadays one understands something different whenever this term is associated with nanotechnology. Nanolithography is used e.g. during the nano‐ fabrication of leading-edge semiconductor integrated circuits (nanocircuitry), for nanoelec‐ tromechanical systems (NEMS) or for almost any other fundamental application across various scientific disciplines in nanoresearch. This technology can be suitable to use in nanofabrication of various semiconducting Integrated Circuits (ICs), NEMS and for various applications in research. The modification in semicon‐ ductor chips at the nano-scale (in the range of 10-9 meter) is also possible. This method is contrasting to various existing nanolithographic techniques like Photolithography (Venugo‐ pal, 2011), Nanoimprint lithography (NIL), Scanning Probe Lithography (SPL), Atomic Force Microscope (AFM) nanolithography, Extreme Ultraviolet Lithography (EUVL) and X-ray Lithography. In this chapter, the various nanolithographic fabrication techniques will be discussed in detail in which we will focus the various nano-patterning techniques/procedures suitable for device fabrication and their engineering applications. This technique is mainly used for nanofabrica‐ tion.
    [Show full text]