<<

REDUCTION OF CONTENT IN COMMONLY CONSUMED

PRODUCTS THROUGH RINSING AND

by

Anna Ellington

(Under the direction of Yen-Con Hung)

Abstract

Thecommonlyconsumedmeatproductsground,groundturkey,andwere analyzedforpurinecontentbeforeandafterarinsingtreatment.Therinsingtreatmentinvolved rinsingthemeatsamplesusingawristshakerin5:1ratio:samplefor2or5minutesthen drainingorcentrifugingtoremovewater.Thetotalpurinecontentof25%groundbeef significantlydecreased(p<0.05)from8.58mg/gproteintoarangeof5.177.26mg/g afterrinsingtreatments.Afterrinsingandcookinganevengreaterdecreasewasseenranging from4.596.32mg/gprotein.Thetotalpurinecontentof7%fatgroundbeefsignificantly decreasedfrom7.80mg/gproteintoarangeof5.075.59mg/gproteinafterrinsingtreatments.

Agreaterreductionwasseenafterrinsingandcookingintherangeof4.385.52mg/gprotein.

Groundturkeysamplesshowednosignificantchangesafterrinsing,butsignificantdecreases wereseenafterrinsingandcooking.Baconsamplesshowedsignificantdecreasesfrom6.06 mg/gproteinto4.72and4.49after2and5minuterinsingandto4.53and4.68mg/gprotein after2and5minuterinsingandcooking.Overall,thisstudyshowedthatrinsingfoodsinwater effectivelyreducestotalpurinecontentandsubsequentcookingafterrinsingresultsinaneven greaterreductionoftotalpurinecontent.

INDEXWORDS: Purinecontent,purinebases,waterrinsetreatment,cooking,,ground beef,groundturkey,bacon

REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT

PRODUCTS THROUGH RINSING AND COOKING

by

Anna Ellington

B.S.,UniversityofGeorgia,Athens,GA2005

ThesisSubmittedtotheGraduateFacultyoftheUniversityofGeorgiainPartialFulfillmentof

theRequirementsfortheDegree

MASTEROFSCIENCE

ATHENS,GEORGIA

2007

©2007

AnnaEllington

AllRightsReserved

REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT

PRODUCTS THROUGH RINSING AND COOKING

by

Anna Ellington

MajorProfessor: YenConHung

Committee: RobertD.Phillips RobertL.Shewfelt

Electronicversionapproved:

MaureenGrasso DeanoftheGraduateSchool TheUniversityofGeorgia August2007 iv

Acknowledgments

IwouldliketothankDr.Hungforhisguidanceduringmyresearch.Ihavelearnedalot andappreciateallofyouradvice.IwouldliketosendaveryspecialthankyoutoMs.Joy

Adams,Mr.GlennFarrell,Mr.LaryHitchcock,andMrs.SueEllenMcCullough.Youwerealla hugehelptomeandIhavelearnedsomuchfromyou.Ialsowanttothanktomy“Momma”for herconstantandunwaveringlove,encouragementandsupportofme,andDusty,justforputting upwithmethroughitall!

ThisstudywassupportedbyHatchfundsallocatedtotheUniversityofGeorgia

AgriculturalExperimentStationGriffinCampus.

“IcandoallthingsthroughChristwhostrengthensme.”Philippians4:13 v

TableofContents

Page

Acknowledgements……………………………………………………………………………….iv

ListofTables…………………………………………...…………………………………...... vii

ListofFigures…………………………………………………………………………..…...... viii

Chapter

1 Introduction…………………………………………………………………….….1

2 LiteratureReview………………………………………………………………….2

Purines…………………………………………………………………………...2

PurineCatabolismandGout………………………………………………….....3

PurineContentinFoods...... ……………………..…..8

AnalysisofPurineContentinFoodProducts………………....………….……13

PreviouslyReportedResultsonChangesofPurineContentinFoods...…..…..15

PhysicalPropertiesofGroundBeef,GroundTurkey,andBacon………...…...22

ThePotentialUseofElectrolyzedWaterforReducingPurineContent….…...24

References………………………………………………………………..….…25

3 ReductionofPurineContentinCommonlyConsumedMeatProductsThrough

RinsingandCooking...…………………………………………………..………33

Abstract………………………………………………………………………..34

Introduction……………………………………………………………………35

MaterialsandMethods………………………………………………………...37

ResultsandDiscussion………………………………………………….……..45 vi

Conclusions……………………………………………………………………54

Outlook...... 54

Acknowledgements...... 56

References…………………………………………………………………..…57

4 SummaryandConclusion...... 60 vii

ListofTables

Page

Table2.1:Propertiesofpurinebases……………………………………………………………...4

Table2.2:Totalpurinecontentofcommonlyconsumedfoods…………………………………10

Table2.3:Proximatecompositionofsamples…………………………………………..……….23

Table3.1:Proximatecompositionandpurinecontentsofgroundbeef,groundturkey,and bacon…………...... 46

Table3.2:Changesinpurinecontentof7%and25%groundbeefafterrinsingandcooking....47

Table3.3:Changesinpurinecontentofgroundturkeyandbaconafterrinsingandcooking...... 48

Table3.4:Comparisonofpurinecontentinchickenmeatandgroundbeefrinsedinalkaline electrolyzedwatervs.deionizedwater...... 55 viii

ListofFigures

Page

Figure3.1:Comparisonofcontrolgroundbeefsampletorinsedgroundbeefsamples...... 39

Figure3.2:Comparisonofcontrolsautéedsampletorinsedandsautéedsamples...... 40

Figure3.3:Comparisonofgrilledcontrolsampletorinsedandgrilledsamples...... 41

Figure3.4:HPLCgeneratedchromatogramofthefourpurinebases...... 44 1

CHAPTER 1

INTRODUCTION

AccordingtotheAmericanCollegeofRheumatology,goutaffectsmorethanfivemillion

Americansandisconsideredthemostcommonformofinflammatoryarthritisinadultmen

(Lawrence1998;Rheumatology2005).Goutisaconditionassociatedwiththebuildupofuric

acidcrystalsinthejoints,particularlyinthelowerextremities.Thebuildupiscausedbyeither

anoverproductionorunderofuricacid,whichistheendproductofpurinecatabolism.

Themainsourcesofaredietarypurines,thoseingestedinthefoodsweeat.Hence,gout

attackscanbecontrolledbylimitingtheamountofpurinesconsumed.Purinesaremainly

associatedwithhighproteinfoods,andarefoundathighestconcentrationsinmeatandfish products.

Previousstudieshavebeendonetomeasuretheamountofpurinespresentinfoods beforeandafterprocessing,includingstorage,washing,andcooking.Louandhisgrouphave doneseveralstudiesonpurinecontentoffishproducts,andconcludedthatrinsingandcooking foodsinwatereffectivelyreducestheamountofpurinespresent(Lou1998b;Louandothers

1998;Louandothers2005a).Thegoalofthisresearchwastoreducetheamountsofpurines presentincommonlyconsumedmeatproductswhichwouldmakethesefoodssafertoconsume forpeoplesufferingfromgout.Theobjectivesforthisstudyweretocomparethepurinelevels ofmeatproductsbeforeandafterarinsetreatment,aswellasaftercooking,andtodetermineif thesetreatmentshaveanyimpactonpurinecontent. 2

CHAPTER 2

LITERATURE REVIEW

PURINES

Deoxyribonucleicacid(DNA)functionsasthestorageareaforallgeneticinformation

neededbycellsandribonucleicacid(RNA)functionstoconveytheinformation.DNAand

RNAconsistequallyofnitrogenousbases,fivecarbon(inDNA,2;inRNA,

),andphosphoricacid.Thetermdefinesthecompoundformedwhenabaseis

linkedtoa,andthetermdefinesthecompoundformedwhenthephosphoric

acidlinkstothe.Nucleicacidsaremanynucleotideslinkedtogetherby phosphodiesterbridges,whichformsthebackbonestructureforDNAandRNA.

Purinesandareheterocyclicringstructuresthatfunctionasthenitrogenous basesinDNAandRNA.Thepurinebasesareand,andthebases

are,,and(Garrett2005).andaretwonaturally

occurringpurinederivativesthatarerarelyfoundasbasesinDNAandRNA,butoftenactas

importantintermediatesintheprocessesofmakingandbreakingnucleotides(Angstadt1997;

Garrett2005).Thepurinebaseswillbethemainfocusforthisresearch.Adeninedeaminatesto

formthepurinebasehypoxanthineandguaninedeaminatestofromthepurinebasexanthine.

Thepurineadenineservesanimportantfunctioninitsroleastriphosphate(ATP),

whichmoveschemicalenergybetweenreactions.Freepurinebasesarenotverywatersoluble, butwhentheyareintheformofnucleosidestheyaremuchmorewatersolubleduetothe hydrophilicityofthesugar.Purinenucleosidesareeasilyhydrolyzedinacid,resultinginthefree 3

purinebaseandthesugar.Purinescontain–OHandNH 2substituentswhichcausethemto

undergoketotautomericshifts(Michelson1963;Hurst1980;Garrett2005).

ToformthedoublehelixstructureofDNAandRNAthenitrogenousbasesjoinby

meansoftwoorthreehydrogenbonds.InDNA,theadeninebindstothepyrimidinethymine,

andinRNAadeninebindstothepyrimidineuracil.Guaninebindstothepyrimidinecytosinein

DNAandRNA.Table2.1listssomecharacteristicsaboutthefourpurines.ThepKavaluesfor purinesrangefrom4.15to12.0andallbutguaninearesolubleinwater.

PURINE CATABOLISM AND GOUT

Allfoodsarecomprisedofthreebasiccomponents,,carbohydrates,and.

Proteinsareingeneralmadeupofacombinationoftwentydifferentaminoacidslinkedtogether bypeptidebonds;carbohydratesaremadeupofcarbonatoms,alongwithhydrogenandoxygen bondedtogethertoformmonotopolysaccharides;andfatsaremadeupoffattyacids,whichare basicallychainsofhydrocarbonsterminatinginacarboxylicacidgroup,esterifiedtoglycerol

formingtriacylglycerides(Fennema1996).Nucleicacids,whichcontainpurines,are

importantinthebodybecausetheyarepartofnucleosidediandtriphosphateswhichactas

sourcesofenergy,areusedindifferenttypesofproteinsynthesis,andactasstructural

componentsinsomecoenzymes.Sincepurinescanbesynthesizeddenovoandsalvagedfrom

thebodyandreused,thereisnormallyverylittleneedfordietarypurines.Dietarypurinesthat

areabsorbedbythebodybutnotneededarecatabolizedandtheendproductisurateoruricacid

(Angstadt1997).Afterfoodisingested,thelowpHofthestomachdenaturestheDNAand

RNAintonucleicacids.andphosphodiesterasesfromthepancreashydrolytically

removethegroupsfromthenucleicacids,convertingthemtomononucleotidesthat

areeventuallydegradedintopurinesandpyrimidines(ChampeandHarvey1994). 4

Table2.1.PropertiesofPurineBases(AdaptedfromBendich1955;Budavari1996)

Purine Base Molecular pKa Molecular Melting Formula Values Weight Point (ºC) in H 20

Adenine C5H5N5 4.15,9.80 135.13 360365 Soluble

Guanine C5H5N5O 9.92 151.13 >360 Insoluble

Hypoxanthine C5H4N4O 8.8,12.0 136.11 >300 Soluble

Xanthine C5H4N4O2 7.5,11.6 152.11 >300 Soluble

5

Thepurinebasesarethenconvertedbytheintestinalmucosalcellstouricacidandexcretedin theurine,andthepyrimidinebasesaremetabolizedtoureaand(Henderson1973;

ChampeandHarvey1994).AtapHof7,uricacidusuallyexistsasmonosodiumurate,asalt thatisrelativelyinsolubleinwater.Thelowsolubilityofuricacidisnotusuallyaproblemand isstillexcretedunlesstheurineisveryacidicorhashighconcentration(Kelleyand

Schumacher1993;Angstadt1997).Becauseofandeletioninhumans,wearetheonly mammalsthatdon’tproduceanenzymecalleduricase.Uricasedegradesuricacidinto, amuchmoresolubleendproduct,whichismoreeasilyexcreted(Seegmiller1966).Inhealthy individuals,allofthesebyproductsofpurinewouldbeexcretedasdetailed previously(Henderson1973).However,inhumanswithaconditionknownasgout,theuric acidthatthebodyformsisnotexcretedefficiently,orexcessuricacidisproduced.Itis convertedtomonosodiumuratecrystalsandbuildsupinthebody,inparticularthejoints

(Seegmiller1961).Goutisdefinedas“acuteinflammatorymonarthritis…ofteninmiddleaged man” (RottandAgudelo2003)andisconsideredtobethemostprevalentformofinflammatory arthritisinadultmenwithrecentreportsindicatingthattheincidencesofgoutintheU.S.are increasing(Lawrence1998;Arromdeeandothers2002)

Goutnormallyisexhibitedinthebodyasmonoarthric,meaningitaffectsonlyonejoint, butpolyarthricattackscanoccur.Inmorethan75percentofgoutattacks,thejointsinthelower extremityareaffected,withoverhalfofthosebeinginthefirstmetatarsophalangealjoint,orbig toe(Lawryandothers1988).Goutisanextremelypainfulcondition,andrepeatedgoutattacks canleadtodestructionoftissuesandseveredeformitiesinthejoints(Angstadt1997).Goutcan occurduetoageneticdisorderordecreasedrenalfunction,resultingineitheranoverproduction orunderexcretionoftheuricacid,with90%ofcasescausedbyunderexcretion(Kelleyand 6

Schumacher1993;Wortman1998).Goutistriggeredmostoftenbyadiethighinpurines,which areassociatedwithhighproteinfoods,andthereforearecommoninawidevarietyoffoods

(Curto1998;Lyu2003).Somecausesofoverproductionofuricacidincludeseverepsoriasis, exercise,,dietandobesity.Somecausesofunderexcretionofuricacidincludediabetes insipidus,renalinsufficiency,,acidosis,andtoxemiaofpregnancy(Wortman1998;

PittmanandBross1999).

Oneriskfactorforgoutisaconditioncalled,whichisdiagnosedifthe serumuricacidconcentrationinthebodyisabove7mgperdL,(or420molperL)(deciliter

=10 1L).Whentheuricacidconcentrationreaches8mgperdLorgreater,monosodiumurate beginstoprecipitateinthebody’stissues,causingthetypicalsymptomsofgout(Pittmanand

Bross1999).However,therehavebeencasesofgoutwithoutelevatedserumuricacidlevelsas wellascasesofhyperuricemiathatneverdevelopintogout,whichleadstotheconclusionthat hyperuricemiaisnotthecauseofgout(McCarty1994).

Patientsdiagnosedwithgoutareusuallyencouragedtoloseweight,avoidalcohol consumption,anddecreaseconsumptionoffoodswithhighpurinecontent(PittmanandBross

1999).ObesityisaseriousproblemintheUnitedStatesandpeoplewithahigherBodyMass

Index(BMI)havebeenshowntohaveasignificantlyincreasedriskfordevelopinggout(Choi andothers2005a).Studiesshowthatpeoplewhoareoverweighthaveelevateduricacidlevels inthebodyduetobothanincreasedproductionaswellasdecreasedrenalexcretionofuricacid

(Desseinandothers2000).Alcoholconsumptionisdiscouragedbecausestudieshaveshown thatalcoholleadstoincreaseduricacidproductionduetoacceleratedpurinebreakdown(Faller andFox1982).Certainalcoholicdrinkscontainhighamountsofpurinesandthiswasbelieved tohavebeenthecauseoftheincreaseingoutattacks(Gibsonandothers1984).However,more 7 recentstudieshaveshownthatregardlessofthetypeofalcoholconsumed,thereisstillan increaseintheriskofrecurrentgoutattacks.Itistheorizedthatitisactuallythetotalamountof thatcausesincreasedoccurrenceofattacks,notthecomponentsofthevarioustypesof alcoholicdrinks,thereforeitissuggestedthatpeoplesufferingfromgoutshouldavoiddrinking alcoholicbeveragescompletely(Zhangandothers2006).

Whenlifestylechangeshavenoimpactonreducingtheincidenceofgoutattacks,patients aretreatedwithmedication.Thethreemostcommonmedicationsusedtorelievepainand symptomsafteragoutattackarenonsteroidalantiinflammatorydrugs,colchicine,and coritcosteroids.Medicationisalsousedtopreventrecurrentgoutattacks,themostcommon beinguricosuricdrugs,whichincreaserenalexcretionofuricacid,and,which impairstheconversionofpurinestouricacid.Thedownsideoftreatinggoutwithmedications isthatmanyofthemedicationshaveunpleasantsideeffectssuchasgastrointestinalproblems, skinrash,andeveninsomecasestoxiceffects(PittmanandBross1999).Longtermtreatment withallopurinolhasevenbeenshowntoleadtoproblems(Wortman1993).

Asmentionedpreviously,purinesareingestedintothebodyinthediet,therefore decreasingtheconsumptionofpurinesfromfoodswillleadtoreducedriskofelevateduricacid levelsandgoutattacks.Thedietarypurinesadenineandhypoxanthineinparticularhavebeen showntocauseasignificantincreaseinblooduricacidlevelsinhumans(Clifford1976)and havebeentermedtheuricogenicbasesforthisreason(Bruleandothers1988).Inastudy conductedbyClifford(1976)afteroraladministrationoftheadenineandhypoxanthine,a markedincreaseinuricacidlevelswereseeninbothnormalandgoutyindividuals.However, administrationofguanineandxanthineshowednoeffectsonuricacidlevels.Ithasbeen suggestedthatthismethodmaybeaninaccuratemeansofdeterminingeffectofpurinesbecause 8 of“artificialloadingofpurifiedpurine”asopposedtotheconsumptionofactualfoods containingpurines(Choiandothers2005b).Alaterstudyconductedusingsoy,which havehighlevelsofguanine(99mg/100g),establishedthatguaninedidinfacthaveanimpacton elevatinguricacidlevelsinthebody(VanWaegandothers1986).

AstudyconductedbyBruleandothers(1992)showedthattheconsumptionofthe hypoxanthinerichfoodresultedinahigherincreaseinuricacidlevelsthandidthe adeninerichfoodsliverandsoybean(both120minutesafteringestion).Thisindicatesthat hypoxanthinehasagreaterimpactonincreasesinuricacidthandoesadenine.However,this studyalsoshowedthatafteringestingadeninerichfoods,theuricacidlevelsdidnotdeclineas quicklyastheuricacidlevelsdidafterconsuminghypoxanthinerichfoods,meaningadenineis brokendownbymoreslowlythanhypoxanthine.Otherstudiesalsoindicatethat adenineandhypoxanthinemayhaveadifferentimpactonuricacidlevelsthantheotherpurine basesbecausetheyaremetabolizeddifferently.Forexample,adeninemaybephosphorylatedto its(AMP)beforebeingconvertedtouricacid(Clifford1976;Salatiandothers1984;

Bruleandothers1992).

Inthefuture,dietsthatrestricthighpurinecontentfoodsshouldbegintotakeinto considerationthefoodscontaininghigheradenineandhypoxanthinecontents,insteadofjust focusingonthetotalpurinecontentofthefood.

PURINE CONTENT IN FOODS

Sincegoutcanbecontrolledbylimitingtheamountofdietarypurinesconsumed,itis importanttohaveanunderstandingofwhichfoodshavehigherpurinecontents.Accordingto theAmericanDieteticAssociation,foodsareconsideredtobehighpurinecontentfoodsifthey haveatotalpurinecontentof1501000mg/100ganditisrecommendedthatpeoplesuffering 9 fromgoutavoidthesefoods.AstudydonebyHo(Ho1986)suggeststhatfoodscontaining purinecontentsof025mg/100gbetermedlowpurinecontentfoods,foodcontaining25

100mg/100gbetermedmediumpurinecontentfoods,andfoodscontainingmorethan

100mg/100gbeconsideredhighpurinecontentfoods.

Table2.2liststhetotalpurinecontentsofsomecommonlyconsumedfoodproducts.As seeninthetable,thefoodswithsomeofthehighestpurinecontentaremeatandfishproducts, withtheorganhavingparticularlyhighlevelsofpurines.AccordingtotheUSDA,

Americanconsumptionoftotalmeatproductsfor2007isprojectedtobe220lbsperperson.

Thisdemonstrateshowdifficultitisforpeoplesufferingfromgouttofollowalowpurinediet

AlongtermstudyrecentlycompletedbyDr.HyonChoiandothers(Choiandothers2004;

2005b)showedthathigherconsumptionofmeats(beef,,andlamb)and(fish, ,,and)resultedinanincreasedriskofgoutbuttheconsumptionofpurine richvegetables(,beans,,mushrooms,spinach,cauliflower,andoatmeal)didnot resultinanincreasedriskofgout.Theirstudiesalsoshowedthattherewasnotarelationship betweenhighertotalproteinconsumption(fromanimalandvegetablesources)andincreasedrisk ofgout,indicatingthatproteincontentoffoodshouldnotbeusedasanindicationofpurine contentofafood.Theyalsostudieddairyproductsandtheireffectonuricacidlevels,and concludedthatconsumingdairyproductslowereduricacidlevelsinthebody,andcanactually lowertheriskofgout(Choiandothers2005b).Anotherstudyonthisconcludedthatthemilk proteinscaseinandlactalbuminfunctiontoexertaurateloweringeffect.Thissamestudyalso

revealedthatpeoplethatconsumednodairyproductsintheirdietsufferedfromsignificantly

increasedlevelsofuricacid(Ghadirianandothers1995).

Asmentionedpreviously,adenineandhypoxanthinehavebeenshowntohaveagreater 10

Table2.2:Totalpurinecontentofcommonlyconsumedfoods(AdaptedfromSouciandothers

2006)

Purine Content Food Product mg/100g w.b , brewer’s 1810 Yeast, baker’s 680 Beef liver 460 Fish, 297 Fish, in oil 290 Fish, Tuna 257 Chicken liver 243 Lamb (muscle meat) 182 Fish, 178 Chicken breast (with skin) 175 Fish, Salmon 170 Pork (muscle meat) 166 Turkey (with skin) 150 Shrimp (brown) 147 136 Ground beef (muscle meat) 133 (cooked) 131 , seed 127 Beef, chuck 120 Lobster 118 112 Beef, sirloin 110 Peas, chick (garbanzo) 110 Fish, cod 109 Oats, whole grain 94 90 Frankfurter 89 , green 84 Brocolli 81 Peanuts 79 Crawfish 60 Mushroom 58 Banana 57 Corn 52 Asparagus 23 Potato 16 11 impactonuricacidlevelsthanguanineandxanthine.Thus,whileknowingthetotalpurine contentoffoodsisverybeneficial,itisalsohelpfultoknowthelevelsofindividualpurinebases infoodssothosewithhigheradenineandhypoxanthinecanbeavoidedasmuchaspossible.

Fishproductscontainmoderatetohighlevelsofpurines,withhypoxanthinebeingthemost abundantpurinebaseinfish,crustacean,andmollusca,andadeninethemostabundantbasein shellfish.Sincefishproductsareconsideredhighpurinecontentfoods,studieshavebeen conductedmeasuringthepurinecontentoftheseproducts(Shinodaandothers1981;Louand others1996).Therewassubstantialvariationinlevelsofindividualpurinebasesinsome commonfishandmolluskspecies.Forexample,themiiuycroakerfish,redbream,Spanish mackerel,andhadtotalpurinecontentsof275.8,152.1,119.9,and111.3mg/100g

(wetwt.),respectively,whiletheshark,tuna,andcodhadtotalpurinecontentsof90.1,81.9,and

55.4mg/100g(wetwt.)respectively.Forthemolluskspecies,thepurinecontentsforthehard clam,grassshrimp,andsandshrimpwere200.3,178.1,and128.3mg/100g(wetwt.) respectively,whilethepurinecontentsfortheoyster,octopus,squid,andPelagiccrabwere

108.9,70.3,62.2,and50.9mg/100g(wetwt.)respectively.Anotherinterestingfindwasthe variationoftotalpurinecontentseenamongthedifferentseafishspeciescomparedtothe culturedfishspecies,whereonlyminimumdifferencewasseeninthepurinecontents.For example,culturedfishspeciessuchasthecommon,sea,andhadpurine contentsof116.0,112.1,and106.0mg/100g(wetwt.)respectively.

AnotherstudyconductedbyCliffordandStory(CliffordandStory1976)analyzed variouscommonfoodproductsfortheindividuallevelsofpurinecontent,includingmeat,fish, anddriedlegumes.Thehighestlevelsofpurineswereseeninthemeatandfishproducts,with levelsofindividualpurinebasesvaryinggreatly.Forexample,chickenliverandbeefliverhad 12 purinecontentsof243and197mg/100g(wetwt.)respectively,withguaninebeingthemost abundantpurinebasepresent.Porkliverhadatotalpurinecontentof289mg/100g(wetwt.), andxanthinewasthemostabundantpurinebasepresent.Fortheseafoodproductstested,the freshanchoviesandclamshadtotalpurinecontentsof411and136mg/100g(wetwt.) respectively,withxanthinebeingthemostabundantpurinebasepresent.Whilethecanned anchoviesandclamshadtotalpurinecontentsof321and62mg/100g(wetwt.),respectively, withxanthinebeingthemostabundantpurinebasepresentfortheanchovies,butadeninebeing themostabundantpurinebasepresentfortheclams.Insomecasesthepurinecontentsofdried legumeswereashighassomeofthemeatandfishproducts.Forexample,theblackeyepea, pinto,andgarbanzabeanhadtotalpurinecontentsof230,171,and56mg/100g(wetwt.) respectively,withguaninebeingthemostabundantpurinebasepresentfortheblackeyepea, adeninethemostabundantforthepintobean,andhypoxanthinebeingthemostabundantpurine basepresentforthegarbanzabean.

Bruleandothers(Bruleandothers1988)havealsostudiedthepurinecontentsof commonlyconsumedfoodproducts.Theyalsoanalyzedtheproductsformoisture,fat,and protein.Alloftheirsamplesrepresentthepurinecontentofthecookedproduct.Theproducts werepanfried,boiled,roastedorbroileduntilmediumwelldone.Themeatproductscontained thehighestlevelsofpurines,from12to287mg/100g.Thebread,cerealanddairyproducts containedthelowestlevels,from1to16mg/100g.The,whitefishandcannedfish containedthehighestamountsofhypoxanthine,andtheorganmeatscontainedthehighestlevels ofadenine.Eventhoughthemeatproductsdifferedsubstantiallyintotalpurinecontent,the adenineandhypoxanthinecontentsforallthemeatproductsweresimilar.

13

ANALYSIS OF PURINE CONTENT IN FOOD PRODUCTS

Becauseoftheoftheirringstructures,purinesandpyrimidinesexhibita strongabsorbanceof(UV)lightwhichisveryusefulinquantitativeandqualitative analysisofnucleicacids(Garrett2005).Reversephasehighpressureliquidchromatography

(HPLC)hasproventobeaveryefficientforanalyzingnucleicacids(Titkovaandothers1983), andhasbeencommonlyusedtoseparateandquantifythepurinebases.Themethodwasfirst introducedbyHartwickandBrown(HarwickandBrown1976).Beforethismethodwas commonlyrecognized,HPLCwithcationexchangecolumnwasusedfortheanalysisofpurines infoods(CliffordandStory1976;Young1983).HPLCworksbyusingpressuretopushthe samplethroughnarrowcolumnsthatarepackedwithparticles,usuallynotanylargerthan50 um.Theseparationisbasedonthedifferencesofthespeedofmigrationofthesamplethrough thecolumn.Thesamplesarerepresentedaspeaks,withthefirstpeakbeingthesamplethat elutesoffthecolumnfastest,andthelastpeakbeingthesamplethattakesthelongesttimeto eluteoffthecolumn.Toquantifytheamountofpurinepresent,theareaofthesamplepeakis comparedtothatoftheareaofthepeakofthestandardsolution,wheretheamountusedis alreadyknown,andtheamountofpurinepresentinthesamplecanbequantified.Different levelsofstandardsolutionareinjected,forexample,20um,30um,and40ummaybeinjected, andastandardcurveisgeneratedbasedontheexactamountofstandardused.Theareasofthe samplepeaksaretheninsertedintothestandardcurveequationandthequantityofthesamples areobtained(Engelhardt1979).

ThereversephaseHPLCmethodrequirestheofnucleicacidsintonucleotides andfreebasesbyastrongacid.BruleandSarwar(Bruleandothers1988)modifiedamethod developedbyMarshakandVogel(MarshakandVogel1951)makingiteasierandfaster.11.6N 14 perchloricacidisusedtohydrolyzethesamplesfor1hourat100ºC.Thehighheatinthese acidicconditionsresultsintheeffectivedegradationofnucleicacidstobases,sugars,and .Thesamplesarethencooled,thepHadjustedto4.0usingNH 4OH,distilledwater addedtoadjustthevolumeto50mL,andsamplesarefilteredforanalysisbyHPLC.Thebases wereseparatedisocraticallybyreversephaseHPLCusingaC18columnandamobilephaseof

0.1Mpotassiumphosphatebufferadjustedto4.0pHwithphosphoricacid.Thismethodallows theelutionofallfourpurinebasesin15minutes.Theefficiencyofthemethodatrecovering purinebaseswasdeterminedtobe99102%.

BruleandSarwar(1989)alsomodifiedthismethodtodeterminefreepurinebases.A mildhydrolysisisperformedonsamplesusing1.16Nperchloricacidfor1houratroom temperature.Thismethodcannotbreakdownthenucleicacid,leavingonlythefreebases availableformeasurement.Afterthehour,thepHofthemixtureisadjustedto4.0using ammoniumhydroxide,distilledwaterisaddedtoavolumeof50mL,andsamplesarefilteredfor analysisonHPLC,usingthesameconditionsasthepreviousmethod.Recoveryofthebaseswas reportedat99102%.

AnothermethodforanalyzingpurinecontentinfoodproductsisamethodbyLouand

others(LouandChen1997).Thismethodusesacidhydrolysistoreleaseboundandfreepurines

infoodstodeterminethetotalpurinecontent.Themethodinvolvesfreezedryingtheproduct,

whicheffectivelyremovesallmoisturecausinglittleornochangeinthephysicalandchemical propertiesoftheproduct.Thesamplesaregroundtopowderedformmakingthemamore

uniformmixtureand5mLofa5:5:1mixtureoftriflouroaceticacid,formicacid,andwateris

addedto100mgofsampleinascrubbedglasstube.Themixtureisheatedat100ºCfor35

minutestoeffectivelyhydrolyzethesample.Thesampleisthenrotaryevaporatedtodryness 15 and5mLofwaterisaddedtwice,dryingthesampleeachtime,toremovealloftheacid.10mL potassiumphosphate(pHadjustedto3.2usingphosphoricacid)isthenaddedtothedried residuetodissolvethepurinebases.Afterfiltering,thesampleisanalyzedusingreversephase

HPLCthroughaC18columnwitha0.02Mpotassiumphosphatebuffer(adjustedtopH3.2).

Allpurinebasesareelutedoffthecolumnin8minutes.Theefficiencyofthemethodat recoveringthefourpurinebaseswasdeterminedtobe87100%.

PREVIOUSLY REPORTED RESULTS ON CHANGES OF PURINE CONTENT IN

FOODS

Sincegoutisarelativelycommondiseaseandithasbeenproventhatdietarypurines haveasignificantimpactontheoccurrenceofgoutattacks,severalfoodscientistshavefocused theireffortsonresearchingtheeffectsofdifferentprocessingstepsonthepurinecontentofsome foods,particularlymeatandfishproducts.

Purinecontentsofmechanicallyseparatedmeatproductshavebeenstudied(Arasuand others1981;Savaianoandothers1983;Sarwarandothers1985;Scarboroughandothers1993).

Mechanicallyseparatedmeat(MS)isalsoreferredtoasmechanicallydebonedmeat(MDM)and mechanicallyrecoveredmeat(MRM).Itisproducedbymechanicallyremovingallremaining attachedskeletalmuscletissuefromthebonesofcarcassesandpartsandisusedfor productslikeanddelimeats.Duringtheremovalprocess,smallamountsofboneand bonemarrowareaddedtothemeat,andthishasbeenshowntoelevatethepurinecontentofthe meat(Arasuandothers1981).Astudycomparingthepurinecontentofmechanicallyseparated

(MS)comparedtohandseparated(HS)meatshavebeenconductedwhichcontrastedthe previousconclusions(Sarwarandothers1985).Resultsforthisstudyshowednosignificant differenceinthetwomethods.AfurtherstudyconductedbyScarborough(Scarboroughand 16 others1993)testedthehypothesisthatelevatedlevelsoffreepurinebaseswerepresentin

MRM’sduetorupturedmusclecells,whichdidnotoccurincarcassmeat.Thestudyconcluded thataparticularincreasewasseeninthepurinebasexanthineinpoultryMRMascomparedto handseparatedmeat,withxanthinefromMSmeatatalevelof100ug/gcomparedtoHSmeatat levelsof57ug/g,33ug/g,and14ug/gforneck,leg,andbreastrespectively(Scarboroughand others1993).

StudieshavealsobeenconductedonMSbeefandveal.Theresultsshowthatalthough theadenineandguaninelevelsinMSbeefandvealarehigher,thehypoxanthinelevelsare lower,resultinginthetotalpurinecontentofMSandHSbeefandvealbeingnotsignificantly different(Savaianoandothers1983).TheconclusionofthestudywasthatMSbeefandveal shouldhavenogreatereffectonuricacidlevelsthanHSbeefandveal,becausethetotalpurine levelsarenotsignificantlydifferent.

Onestudyanalyzedtheeffectofstewingonpurinecontentinchickenmeat(Young

1983).Theresearcherinitiallyhypothesizedthatthehotwatermayworktoalterthepurine contentinthechickenmeat.Freshchickenmeat(neverbeforefrozen)wasplacedin wateruntilitreachedaninternaltemperatureof80ºCinthethickestpartofthemeat.Thebreast, thigh,andskinwereseparatedandpurinecontentwasmeasuredforeachindividualsection.

Resultsshowedslightincreasesinadenineandguaninecontentsaftercooking,withsignificant differences(p<0.05)inincreasesseeninadenineinthebreastsampleandguanineinthethigh sample.Hypoxanthinecontentdecreasesinthebreastandthigh,butnotatasignificantlevel.

Significantincreasesinallpurineswereseeninskinsamplesaftercooking,probablyduetothe decreaseincollagen,whichisfoundinlargeamountsinskintissuesandissolubleinhotwater.

Furthermore,sincetheskinonlyrepresents20%oftheweightofthecookedparts,thisincrease 17 isnotasimportantoverall.Thestudyconcludedthatslightincreasesinpurinecontentwereseen inthecookedchickenmeatduetothereductionofothercomponents,suchasfatandmoisture

(Young1983).

AnotherstudyconductedbyBruleandSarwar(Bruleandothers1989)evaluatedthe influenceoftwodifferentcookingmethods,dryheat(broiling)andmoistheat(boilinginwater) onthefreeandtotalpurinebasesinbeef,beef,andhaddockfillets.Thebeefwas freshlycutandthehaddockfilletswerefrozen.Forthedryheatmethod,sampleswerebroiledin anovenuntiltheinternaltemperaturereached75ºCforthebeefproducts,and85ºCforthe haddock.Forthemoistheatmethod,allsampleswereboiledinwateruntiltheinternal temperatureinthethickestpartofthesamplereached80ºC.Sampleswereanalyzedfortotaland freepurinebases.Adenineandguaninelevelsincreasedinthebeefsteakandbeefliverforboth cookingmethods.Allpurinebasesdecreasedintheboiledhaddock,butincreasedinthebroiled haddock.Itwasconcludedtheincreaseswerelikelyduetodecreasesinmoistureandincreases inprotein.Intherawproducts,onlysmallamountsoffreeadenineandguanineweredetected, butlargelevelsoffreehypoxanthineandxanthinewerepresent,constitutingamajorportionof thetotalpurinecontentforthosebases.Thissuggeststhatintherawproductadenineand guanineexistmostlyasnucleotidesandnucleosides,andhypoxanthineandxanthineexistmostly asfreebases.Thecookingjuiceswerealsoanalyzedforpurinecontent.Theresultsshowthat theboundandfreepurinebaseswerereleasedintothecookingmediumwithalargepercentage

(38%to97%)ofthefreebasesreleasedintothecookingmedium.Theresultsofthisstudyalso showedthatfreepurinebasesaremorereadilyreleasedintothecookingmedium(Bruleand others1989). 18

StudieshavealsobeendonebyCollingandWolfram(1987,1989)inGermanyonthe effectsofcookingonpurinecontent.Theirstudiesalsoshowthatthepurinecontentinfoods changesaftercookingandconcludedthatthepurinesarereleasedintothecookingmediumof foodscookedinwater.Forcookedsamples,theysawincreasesinpurinecontentfrom188to

209mg/100gforcalfmeat,andfrom384to451mg/100g,319to400mg/100g,andfrom182to

201mg/100gforswinespleen,liver,andmeatrespectively(CollingandWolfram1987).

Anotherstudybythissamegroupshoweddecreasesinpurinecontentaftercookinginhamand soymeats.Forhamproductsresultsshowdecreasesfrom168to131mg/100gandfrom127to

108mg/100g,andforsoyproductsfrom355mg/100ginthedriedproductto50mg/100ginthe cookedproduct(CollingandWolfram1989).

Louhasdoneextensiveworkonanalyzingthechangesinpurinecontentoffishproducts duringvariousphasesofprocessing(Louandothers1996;Louandothers1997;Lou1998b;Lou

1998;Louandothers1998a;Louandothers2005a;Louandothers2005b).Grassshrimparea popularcommodityinAsiancountriesandcontainahigherleveloftotalpurinesthananyother commercialseafoodproduct(Ho1986;Louandothers1996).InastudyconductedbyLou(Lou andothers1998a)theeffectsofvariouscookingtimesonpurinecontentofgrassshrimpwere analyzed.Grassshrimpwerecookedinwaterat100ºCandpurinecontentwasanalyzedafter0,

5,10,15,and20minutesofcooking.Adecreaseinthetotalpurinecontentwasseen,with levelsreducingingreaterquantitieswitheachadditional5minutesofcooking.Thereductionin totalpurinecontentateachcookingdurationwassignificantlydifferent(p<0.05).Thecooking juicewasalsoanalyzedforpurinecontentanditwasconcludedthatthepurineswerereleased intothecookingmedium.Increasesinpurinecontentinthecookingmediumwereseenasthe cookingtimesincreased,whichcorrelateswiththereductionseenintheshrimpateachcooking 19 time.Itshouldalsobepointedoutthatfortheindividualpurinebases,increaseswereseenat certaincookingtimes.After5minutesofcooking,guaninecontentincreasesfrom7.88to8.57 umol/gandat10minutesand20minutes,hypoxanthineandxanthineincreasefromtheprevious measurementsat5and15minutes(forhypoxanthine,from2.0to2.7umol/g,and1.4to1.65 umol/g,andforxanthine,0.20to0.28umol/gand0.15to0.20umol/g,respectively).Itshould alsobenotedthatthepurinebaseadeninewasseeninthegreatestconcentrations,constituting

82%ofthetotalpurinecontent(Louandothers1998a).

AstudysimilartothepreviousstudywasalsoconductedbyLou(Louandothers1997) inwhichthepurinecontentwasanalyzedinvariousfishspeciesaftercooking(inwater).The resultsweresimilartothoseinthepreviousstudy.Thetotalpurinecontentwasreducedby cookinginallinstances,andalargedecreasewasseenparticularlyinhypoxanthine.Thetotal purinecontentlevelsvarieddependingontheparticularfishspecies.TheCinnamon speciesshowedthegreatestreductioninpurinecontent,losing60%ofthepurinesaftercooking basedonthecontentoftheoriginalsample.Itwasconcludedthatthedecreaseisduemainlyto extractionbythehotwater(Louandothers1997).

AnotherstudyconductedbyLou(Louandothers2001)analyzedthechangesinpurine contentofthecommonlyconsumedfishtilapiaduringstorage,heating,anddrying.Thestorage conditionsforthetilapiaweretemperaturesof20ºC,5ºC,and20ºCattimesof16hours,96 hours,and10weeks,respectively.Therewerenosignificantchangesinadenine,guanine,and xanthineinthefishstoredat5ºC,20ºC,and20ºCfortherespectivetimeframes,buttherewasa slightdecreaseinhypoxanthinecontentinallcases.Inparticularthefishstoredat20ºCfor10 weeks,thehypoxanthinedecreasedfrom4.44mg/gto2.66mg/g(dryweight).Hence,longterm frozenstoragedoeshaveaslightimpactonpurinecontent.Theheatingconditionsforthetilapia 20 includedboiling,,andmicrowaving.Sampleswereanalyzedafterboilingandsteaming at10,20,30,and40minutes,andaftermicrowavingat4,5,6,and7minutes.Asteadydecrease intotalpurinecontentwasseenintheboiledtilapia,withthemostdecreaseseenafter40 minutes,withthepurinehypoxanthinehavingthegreatestdecrease.Thesteamheating treatmentresultedinalowertotalpurinecontentafter30and40minutesofsteaming,butan increaseintotalpurinecontentwasseenafter20minutesofsteamingduetoincreasesinadenine andguanine.Xanthinecontentwasfoundafter30and40minutesofsteaming,afternotbeing previouslydetected.Itishypothesizedthatthismayhavebeenduetothedegradingof hypoxanthinerelatedcompoundsduetotheheat,orcouldhavebeenduetodriplossof nucleotidesduringthesteamingprocess.Therewerenosignificantchangesintotalpurine contentinthemicrowaveheatingmethod.However,adenineandhypoxanthineshowedaslight decreaseof16.6%after7minutesofcooking.Thereweresignificantdecreasesinthe percentagemoistureforallheatingmethods.

Forthedryingmethod,tilapiawasdriedat70ºCand80ºCandmeasuredafter1,2,and3 hours.Significantdecreaseintotalpurinecontentwasseenatbothtemperaturesafter3hours basedonmg/gdryweight.Agreaterdecreaseinpurinecontentwasseenduringthedryingat

70ºCthanat80ºC,whichcouldbeduetodifferencesinlipidcontent,whichwerenotmeasured inthisstudy.Theseresultsarereportedonadryweightbasis,andwhenconvertedtoaweight basis,freshtilapiahastotalpurinecontentof126g/100gandafter3hoursofdryingat70ºCand

80ºC,thetotalpurinecontentincreasesto218and334mg/100grespectively.Itwasconcluded thatmoistheatmethodshaveagreaterimpactonthereductionofpurinecontentthandryheat methods.Boilinghasthegreatestimpactonthereduction,mostlikelyduetoextractionbyhot 21 waterandheatingdegradation.Hypoxanthinedecreasedmorethananyotherpurineinallofthe processingsteps,howeveritisalsothemostabundantpurineintilapia(Louandothers2001).

AmorerecentstudydonebyLouanalyzedtheeffectsofdifferentprocessingstepsonthe changesinpurinecontentintilapiasurimiproducts(Louandothers2005a).Theprocessing stepsforsurimiproductsincludemincing,washing,grinding,andcooking.Aftermincing,the sampleunderwentawashingstep,whichinvolvedwashingthesurimiproductina5:1 water/minceratio(watertemperaturewaskeptbelow5ºC)at10,20,and30minutedurations, andanalyzedaftereachduration.Afterthewashingsteps,thesampleswerecentrifugedto removethewashwater,andmoisturecontentwasadjustedbackto80%.

Analysisshowedthatduringthefirst10minuteintervalofwashingthegreatestreduction ofpurinecontentoccurred.Themincewasalsowashed3consecutivetimes(at10minute duration),whichissometimesdoneinsurimiprocessingtoachieveabetterqualityproduct(gel).

Analysisshowedthatafterthefirstwashingthegreatestpurinereductionoccurred,with hypoxanthinecontinuallydecreasingwithconsecutivewashes.Nochangesinguanineoccurred duringeitherofthewashingsteps.Itwasconcludedthatthemorewashesthatwereperformed, thegreaterthelossintotalpurinefromthetilapia.

Followingthewashingstepwerethegrindingandcookingsteps.Thegrindingofthe surimiinvolvedgrindingtheminceinanicebathfor5minutes,adding2.5%NaCl,then grindingfor2moreminutes.Fortheheatingstep,thesurimipastewasstuffedintoa polyvinylidenecasingandheatedat90ºCfor30minutes,thenquicklycooledwithrunningwater andstoredat4ºC.Aftergrindingandcooking,theadenineandhypoxanthinecontentdecreased slightly.Again,therewerenochangesinguaninecontent.Thismaybeduetothelowinitial levelsofguanine,aswellasthelowsolubilityofguanine,whichwasdiscussedpreviously.In 22 conclusion,thewashingstepoftilapiasurimiprocessingresultedinthegreatestlossofpurine content.ThereductionwassosignificantthatLouconcludedthatthispreviouslyconsidered highpurinecontentfoodcouldbeclassifiedasamiddlepurinecontentfoodafterprocessing

(Louandothers2005a).

AstudyverysimilartothepreviousstudywasalsoconductedbyLou(Louandothers

2005b)andthepurinecontentofthesurimiwasanalyzed,whichispopularinTaiwan.

Thesameresultswereseenasinthepreviousstudy,withthewashingstepcausingthegreatest reductioninpurinecontent,andsubsequentwasheshavingagreaterimpacteachtime.This studyalsoconcludedthatthepreviouslyclassifiedhighpurinecontentfoodmilkfishsurimi couldafterprocessingbeclassifiedasamiddlepurinecontentfood(Louandothers2005b).

PHYSICAL PROPERTIES OF GROUND BEEF, GROUND TURKEY, BACON

AccordingtotheUSDA,theprojectedtotalconsumptionofredmeatsandpoultryforthe year2007is220poundsperperson.Redmeataccountsfor53%ofthistotal,andchickenmeat accountsfor47%.Thisisabigchangecomparedto1970,whentotalmeatconsumptionper personwas165poundsperyear,withtheredmeatconsumptionrepresenting79%andpoultry meatconsumptionrepresenting21%oftotalmeatconsumption(Haley2000;USDA2007).

Groundbeef,groundturkey,andbaconarethreecommonlyconsumedmeatproductsin theU.S..Table2.3liststheproximatecompositionofthesesamples.Allsamplesshowan increaseinproteincontentanddecreasesinmoisturecontentaftercooking.The25%fatground beefsampleandthebaconsampleshowdecreasesinfataftercooking,whilethe7%fatground beefandthegroundturkeyshowincreasesinfatcontentaftercooking(USDA2006).Reported valuesforpurinecontentofgroundbeefis133mg/100g;turkeyis150mg/100g;andbaconis

166mg/100g(Souciandothers2006). 23

Table2.3:Proximatecompositionofsamples(USDA2006)

Constituents Content (per 100g) Raw Cooked Ground Beef, 25% Fat Crumbled Broiled Patty Water (g) 58.16 54.49 55.5 Food Energy (kcal) 293 276 278 Protein (g) 15.76 26.28 25.56 Total lipids (g) 25 18.2 18.72 Total carbohydrates (g) 0 0 0 Ash (g) 0.77 1.1 0.98 Raw Cooked Ground Beef, 7% Fat Crumbled Broiled Patty Water (g) 71.77 60.82 64 Food Energy (kcal) 152 209 191 Protein (g) 20.85 28.88 26.22 Total lipids (g) 7 9.51 8.79 Total carbohydrates (g) 0 0 0 Ash (g) 1.02 1.32 1.05 Raw Cooked Ground Turkey Water (g) 71.97 59.42 Food Energy (kcal) 149 235 Protein (g) 17.46 27.36 Total lipids (g) 8.26 13.15 Total carbohydrates (g) 0 0 Ash (g) 0.87 1.19 Raw Cooked Bacon Water (g) 40.2 12.32 Food Energy (kcal) 458 541 Protein (g) 11.6 37.04 Total lipids (g) 45.04 41.78 Total carbohydrates (g) 0.66 1.43 Ash (g) 2.51 7.43

24

THE POTENTIAL USE OF ELECTROLYZED WATER FOR REDUCING PURINE

CONTENT

ElectrolyzedwaterhasbeenusedinJapanforthelastthirtyyearsasamedicalproduct, aswellasfordrinkingandcooking(Kosekiandothers2005).Overthelastdecade,researchers worldwidehaveprovenitseffectivenessatreducingfoodbornepathogensonfoodproductsas wellasonprocessingequipment(Venkitanarayananandothers1999;Kimandothers2000).

Electrolyzedwateriseasilygeneratedbysubjectingwatercontainingaverysmallamountof

NaCl(usuallyaround0.1%)toanelectricalcurrent,whichresultsintwoformsofelectrolyzed water,acidicandalkaline.TheacidicformnormallyhasapHaround2.8andfunctionsto effectivelyeliminatepathogens.ThealkalineformhasapHaround11andiscommonlyusedas acleaningagenttoreduceorganicmatter,aswellasfordrinkingandcooking(LoiBradenand others2005).ItishypothesizedthatrinsingfoodsinalkalineEOwatermaypotentiallyreduce thepurinecontentmorethanrinsingindeionizedwater.SinceEOwaterhasstrongoxidation reductionpotentialanditsstrongreducingpotentialcandissolveanddetachfatsandproteins,it ispossiblethatthesepropertiesmayhaveaneffectonbreakingtheringstructuresofpurines, leadingtodegradation,andadecreaseinthepurinecontentinfoods. 25

REFERENCES

AngstadtCN.1997.PurineandPyrimidineMetabolism.TheUniversityofUtah.

http://library.med.utah.edu/NetBiochem/pupyr/pp.htm

ArasuP,FieldRA,KruggelWG,MillenGJ.1981.Nucleicacidcontentofbovinebonemarrow,

muscle,andmechanicallydebonedbeef.JournalofFoodScience46:1114.

ArromdeeE,MichetC,CrowsonC,O'FallenWM,GabrielSE.2002.Epidemiologyofgout:is

theincidencerising?JRheumatol29:24036.

BendichA.1955.ChemistryofPurinesandPyrimidines.In:ChargaffE,DavidsonJN,editors.

TheNucleicAcidsChemistryand.NewYork,N.Y.:AcademicPressInc.,

Publishers.p81125.

BruleD,SarwarG,SavoieL.1989.EffectofMethodsofCookingonFreeandTotalPurine

BasesinMeatandFish.CanInstFoodSciTechnolJ22(3):24851.

BruleD,SarwarG,SavoieL.1992.ChangesinSerumandUrinaryUricAcidLevelsinNormal

HumanSubjectsFedPurineRichFoodsContainingDifferentAmountsofAdenineand

Hypoxanthine.JAmCollNutr11(3):3538.

BruleD,SarwarG,SavoietL.1988.Purinecontentofselectedcanadianfoodproducts.Journal

ofFoodCompositionandAnalysis1(2):1308.

BudavariS,editor.1996.TheMerckIndex.TwelfthEditioned.WhitehouseStation,NJ:Merck

andCo.,Inc.

ChampePC,HarveyRA.1994.Lippincott'sIllustratedReviews:.WintersR,

editor.2nded.Philadelphia:J.B.LippincottCompany.

ChoiH,AtkinsonK,KarlsonE,CurhanG.2005a.Obesity,weightchange,hypertension,

diureticuse,andriskofgoutinmen.ArchInternMed165:7428. 26

ChoiH,LiuSM,CurhanG.2005b.Intakeofpurinerichfoods,protein,dairyproducts,and

relationshiptoserumlevelsofuricacidTheThirdNationalHealthandNutrition

ExaminationSurvey.ArthritisandRheumatism52(1):2839.

CliffordAJ,Riumallo,J.A.,Young,V.R.,Scrimshaw,N.S.1976.Effectsoforalpurineson

serumandurinaryuricacidofnormal,hyperuricaemicandgoutyhumans..JNutr

106:42834.

CliffordAJ,StoryDL.1976.Levelsofpurinesinfoodsandtheirmetaboliceffectsinrats.JNutr

106:43542.

CollingM,WolframG.1987.ZumEinflubdesGarensaufdenPuringehaltvonLebensmitteln.Z

Ernahrungswisss26:2148.

CollingM,WolframG.1989.UnterscuhungenzurBeeinflussungdesPuringehaltesvon

LebensmittelndurchGaren.ErnahrungsUmschau36:989.

CurtoR,Voit,E.O.,Cascante,M.1998.Analysisofabnormalitiesinpurinemetabolismleading

togoutandtoneurologicaldysfunctionsinman.BiochemJournal329:477487.

DesseinP,ShiptonE,StanwixA,JoffeB,RamokgadiJ.2000.Beneficialeffectsofweightloss

associatedwithmoderatecalorie/carbohydraterestriction,andincreasedproportional

intakeofproteinandunsaturatedfatonserumurateandlipoproteinlevelsingout:apilot

study.AnnRheumDis59:53943.

EngelhardtH.1979.HighPerformanceLiquidChromatographyChemicalLaboratoryPractice.

Berlin:SpringerVerlag.

FallerJ,FoxI.1982.Ethanolinducedhyerperuricemia:evidenceforincreasedurateproduction

byactivationofadeninenucleotideturnover.NEnglJMed307:1598602. 27

FennemaOR.1996.FoodChemistry,3rdEdition.FennemaOR,editor.Thirded.NewYork,

NewYork:MarcelDekker,Inc.1069p.

GarrettR,Grisham,C.2005.NucleotidesandNucleicAcids.Biochemistry.3rded.USA:

ThomsonBrooks/Cole.p30934.

GhadirianP,ShatensteinB,VerdyM,HametP.1995.Theinfluenceofdairyproductsonplasma

uricacidinwomen.EurJEpidemiol11:27581.

GibsonT,RodgersAV,SimmondsHA,ToselandP.1984.drinkinganditseffectonuric

acid.BrJRheumatol23:2039.

HaleyMM.2000.ChangingConsumerDemandforMeat:TheU.S.Example,19702000.

EconomicResearchService/USDA418.

HarwickRA,BrownPR.1976.Evaluationofmicroparticlechemicallybondedreversedphase

packingsinthehighpressureliquidchromatographicanalysesofnucleosidesandtheir

bases.JChromatogr126:76975.

HendersonJF,Paterson,A.R.P.1973.NucleotideMetabolism,anIntroduction.AcademicPress,

NewYork:1637,2003.

HoWT.1986.Analysisofpurinesandpyrimidinescontentsoffoodscommonlyconsumedin

Taiwan.NutrSciJ11:4162.

HurstDT.1980.AnIntroductiontotheChemistryandBiochemistryofPyrimidines,Purines,

andPteridinesChichester:JohnWileyandSonsLtd.266p.

KelleyW,SchumacherHJ,editors.1993.Crystalassociatedsynovitis.Philadelphia:Saunders.

1291336p. 28

KimC,HungYC,BrackettRE.2000.Efficacyofelectrolyzedoxidizing(EO)andchemically

modifiedwaterondifferenttypesoffoodbornepathogens.InternationalJournalofFood

Microbiology61:199207.

KosekiM,FujikiS,TanakaY,NoguchiH,NishikawaT.2005.EffectofWaterHardnessonthe

TasteofAlkalineElectrolyzedWater.JournalofFoodScience70(4):S249S253.

LawrenceRC,HelmickC.G.,Arnett,F.C.,Deyo,R.A.,Felson,D.T.,Giannini,E.H.,Hirsch,R.,

Hochberg,M.C.,Hunder,G.G.,Liang,M.H.,Pillemer,S.R.,Steen,V.D.,Wolfe,F..

1998.Estimatesoftheprevalenceofarthritisandselectedmusculoskeletaldisordersin

theUnitedStates.ArthritisandRheumatism41:77899.

LawryG,FanP,BluestoneR.1988Polyarticularversusmonoarticulargout;aprospective,

comparativeanalysisofclinicalfeatures.Medicine:33543.

LoiBradenMH,HuangTS,KimJH,WeiCI,WeeseJ.2005.UseofElectrolyzedOxidizing

WaterforQualityImprovementofFrozenShrimp.JournalofFoodScience70(6):M310

M315.

LouSN,ChenTY,ChenHH.1996.Determinationofpurinecontentsofsomeselectedfishery

products.NutrSciJ21:43344.

LouSN,ChenTY.1997.StudiesontheAnalyticalMethodofthePurineContentsinFishery

Products.FoodScience24(1):111.

LouSN,ChenTY,LinCD,ChenHH.1997.EffectofCookingonPurineContentofSome

Fishes.FoodScience24(2):25862.

LouSN.1998.PurineContentinGrassShrimpduringStorageasRelatedtoFreshness.Journal

ofFoodScience63(3):4424. 29

LouSN,ChenTY,YangSH.1998a.Changesinpurinerelatedcompoundsofgrassshrimp

(Penaeus monodon) CookedinWaterforvariousduration.JChinAgricChemSoc

36:44350.

LouSN,Chen,TY,Yang,S.H.,.1998b.ChangesinPurineRelatedCompoundsofGrass

Shrimp(Penaeusmonodon)CookedinWaterforVariousDuration.JournalofChinese

AgriculturalChemicalSociety36(5):44350.

LouSN,LinCD,BenkmannR.2001.ChangesinPurineContentofTilapiamassambicaduring

Storage,Heating,andDrying.FoodScienceandAgriculturalChemistry3(1):239.

LouSN,ChenHH,HsuPY,ChangDH.2005a.Changesinpurinecontentoftilapiasurimi

productsduringprocessing.FishSci71(4):88995.

LouSN,FanKH,ChenHH,ChenTY,WangCL,TuYP.2005b.ChangesinPurineRelated

CompoundsofMilkfishSurimiBasedProductduringProcessing.TaiwaneseJournalof

AgriculturalChemistryandFoodScinece43(1):815.

LyuLC,Hus,C.Y.,Yeh,C.Y.,Lee,M.S.,Huang,S.H.,Chen,C.L.2003.Acasecontrolstudy

oftheassociationofdietandobesitywithgoutinTaiwan.AmericanJournalofClinical

Nutrition78:690701.

MarshakA,VogelHJ.1951.Microdeterminationofpurinesandpyrimidinesinbiological

materials.JBiolChem189:597605.

McCartyD.1994.Goutwithouthyperuricemia.JAMA271:3023.

MichelsonAM.1963.TheChemistryofNucleotidesandNucleotides.London:AcademicPress.

OuldMoulayeCB,DussapCG,GrosJB.2001.Aconsistentsetofformationpropertiesof

nucleicacidcompounds.Purinesandpyrimidinesinthesolidstateandinaqueous

solution.ThermochimicaActa375:93107. 30

PittmanJR,BrossMH.1999.DiagnosisandManagementofGout.AmericanFamilyPhysician

59(7):1799806.

RheumatologyACo.2005.NewTreatmentShowsPromiseforGout.ArthritisNews:American

CollegeofRheumatology.

RottKT,AgudeloCA.2003.Gout.JAMA289(21):285760.

SalatiLM,GrossCJ,HendersonLM,SavaianoDA.1984.Absorptionandmetabolismof

adenine,adenosine5monophosphate,adenosine,andhypoxanthinebytheisolated

vascularperfuesedratsmallintestine.JNutr114:75360.

SarwarG,PeaceRW,BottingHG.1985.PurineContentandProteinQualityofMechanically

SeperatedPoultryMeatProductsProducedinCanada.CanInstFoodSciTechnolJ

18(3):2515.

SavaianoDA,SalatiLM,RosamondWD,SalinskyJ,WillisWB.1983.NucleicAcid,Purine,

andProximateAnalysesofMechanicallySeparatedBeefandVeal.JournalofFood

Science48:13567.

ScarboroughA,JonesAD,HomanAC,FavellDJ.1993.InvestigationoftheLevelsofFree

PurinesandPyrimidineBasesandMetabolitesinMechanicallyRecoveredMeats.Meat

Science33:2540.

SeegmillerJE,Grazel,A.L.,Laster,L.,Liddle,L.1961.Uricacidproductionandgout.Journal

ofClinicalInvestigation40:130414.

SeegmillerJE.1966.GeneticandMolecularBasisofHumanHereditaryDiseases."Inborn

ErrorsofMetabolism,"133rdAnnualMeeting,AAAS.Washington,D.C.:National

InstitutesofHealth,U.S.PublicHealthService. 31

ShinodaT,AoyagiY,SugaharaT.1981.Contentsofpurinebasesinfishandfishproducts.

JournaloftheJapaneseSocietyofFoodandNutrition34(2):15362.

SouciSW,FachmannW,KrautH.2006.FoodCompositionandNutritionTables,Seventh,

RevisedEdition,2006.7thed:Medpharm.1300p.

TitkovaNF,PomazanovVV,KaliniaYT,SakodysnksiiKI.1983.Highperformanceliquid

chromatographyofcomponentsofnucleicacids.ZAnalKhim38:130518.

USDA.2006.NationalNutrientDatabaseforStandardNutrition.USDAAgriculturalResearch

ServiceNutrientData.

USDA.2007.U.S.MeatSupplyandUse.USDAEconomicResearchService.

VanWaegG,NiklassonF,deVerdierCH.1986.Deaminatgionofguaninetoxanthine:a

metabolicpathwayofunderestimatedimportanceinhumanpurinemetabolism?AdvExp

MedBiol195A:42530.

VenkitanarayananKS,EzeikeGOI,HungYC,M.PD.1999.InactivationofEscherichiacoli

O157:H7andListeriamonocytogenesonplastickitchencuttingboardsbyelectrolyzed

oxidizingwater.JournalofFoodProtection62:85760.

WortmanRL.1993.Managementofhyperuricaemia.McCartyFJ,KoopmanWJ,editors.12ed.

Philadelphia:LeaandFebiger.180718p.

WortmanRL.1998.Goutandotherdisordersofpurinemetabolism.In:FauciASe,editor.

Harrison'sPrinciplesofInternalMedicine.14thed.NewYork:McGrawHill.p215865.

YoungLL.1983.EffectofStewingonPurineContentofBroilerTissues.JournalofFood

Science48:3156. 32

ZhangY,WoodsR,ChaissonCE,NeogiT,NiuJ,McAlindonT,HunterD.2006.Alcohol

ConsumptionasaTriggerofRecurrentGoutAttacks.TheAmericanJournalofMedicine

119:800.e13.e18. 33

CHAPTER 3

REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT

PRODUCTS THROUGH RINSING AND COOKING 1

______ 1A.EllingtonandY.C.Hung.TobesubmittedtotheJournalofFoodScience 34

ABSTRACT

Thecommonlyconsumedmeatproductsgroundbeef,groundturkey,andbaconwere analyzedforpurinecontentbeforeandafterarinsingtreatment.Therinsingtreatmentinvolved rinsingthemeatsamplesusingawristshakerina5:1ratio,5partswaterto1partsamplefor2 or5minutesthendrainingorcentrifugingtoremovewater.Thetotalpurinecontentof25%fat groundbeefsignificantlydecreased(p<0.05)from8.58mg/gproteintoarangeof5.177.26 mg/gproteinafterrinsingtreatments.Afterrinsingandcookinganevengreaterdecreasewas seenrangingfrom4.596.32mg/gprotein.Thetotalpurinecontentof7%fatgroundbeef significantlydecreasedfrom7.80mg/gproteintoarangeof5.075.59mg/gproteinafterrinsing treatments.Agreaterreductionwasseenafterrinsingandcookingintherangeof4.385.52 mg/gprotein.Groundturkeysamplesshowednosignificantchangesafterrinsing,but significantdecreaseswereseenafterrinsingandcooking.Baconsamplesshowedsignificant decreasesfrom6.06mg/gproteinto4.72and4.49after2and5minuterinsingandto4.53and

4.68mg/gproteinafter2and5minuterinsingandcooking.Overall,thisstudyshowedthat rinsingfoodsinwatereffectivelyreducestotalpurinecontentandsubsequentcookingafter rinsingresultsinanevengreaterreductionoftotalpurinecontent.

INDEXWORDS: Purinecontent,purinebases,waterrinsetreatment,cooking,gout,ground beef,groundturkey,bacon 35

INTRODUCTION

AccordingtotheAmericanCollegeofRheumatology,goutaffectsmorethanfivemillion

Americansandisconsideredthemostcommonformofinflammatoryarthritisinadultmen

(Lawrence1998;Rheumatology2005).Goutisaconditionassociatedwiththebuildupofuric acidcrystalsinthejoints,particularlyinthelowerextremities.Thebuildupiscausedbyeither anoverproductionorunderexcretionofuricacid,whichistheendproductofpurinecatabolism

(KelleyandSchumacher1993).Themainsourcesofpurinesaredietarypurines,thoseingested inthefoodsweeat;therefore,goutattackscanbecontrolledbylimitingtheamountofpurines consumed.

Purinesaremainlyassociatedwithhighproteinfoodsandarefoundathighest concentrationsinmeatandfishproducts(Choiandothers2004).Studieshaveshownthat incidencesofgoutarerisingintheU.S.(Arromdeeandothers2002;Wallaceandothers2004), andaccordingtotheUSDA,theprojectedtotalconsumptionofredmeatsandpoultryforthe year2007is220poundsperperson.Redmeataccountsfor53%ofthistotal,andchickenmeat accountsfor47%.Today’smeatconsumptionisabigincreasecomparedtothatof1970,when eachpersonconsumedabout165poundsperyear.Redmeatconsumptionrepresented79%and poultrymeatconsumptionrepresented21%oftotalmeatconsumptionin1970(Haley2000;

USDA2007).

Theaveragepurinecontentofmeatproductsusuallyexceeds100mg/100g(Bruleand others1988).Itisrecommendedthatpersonssufferingfromgoutcompletelyavoidfoodssuch asliver,sardines,,bacon,scallops,haddock,veal,,turkey,andalcoholic beverages.Theyshouldonlyoccasionallyconsumefoodssuchasbeef,chicken,crab,ham, beans,limabeans,mushrooms,,porkandshrimp(Harrisandothers1999). 36

AccordingtotheAmericanDieteticAssociation,foodscontainingmorethan150mg/100gof totalpurinesshouldbeavoidedbypeoplesufferingfromgout(ADA2003).

Thefourpurinebasesareadenine,guanine,hypoxanthine,andxanthine.Adenine deaminatestoformthepurinebasehypoxanthine,andguaninedeaminatestoformthepurine basexanthine(Garrett2005).Studieshaveshownthattheindividualpurineshavedifferent uricogeniceffects.Adenineandhypoxanthinehavebeenshowntohaveagreaterimpactonuric acidlevelsthanguanineandxanthine(Clifford1976),andithasbeensuggestedthatthe restrictionofsomefoodsshouldbebasedonthecontentofuricogenicbasesratherthanonthe totalpurinecontent(Bruleandothers1989).

Previousstudieshavebeendonetomeasuretheamountofpurinespresentinfoods beforeandafterprocessing,includingstorage,washing,andcooking(Young1983;Bruleand others1989;Louandothers1997;Lou1998;Louandothers2001a;Louandothers2005).Lou hasdonestudies(Louandothers2001b;Louandothers2005)onhowprocessingstepseffectthe levelsofpurinesinfishproducts,andhisstudiesindicatethatrinsingandcookingfoodsinwater reducesthetotalamountofpurinespresent.AstudyconductedbyBruleandSarwar(1989) analyzedtheeffectsoftwodifferentcookingmethods,boilingandbroiling,onpurinecontentof beefsteak,beefliver,andhaddockfillets.Resultsshowedincreasesintotalpurinecontentfor beefsteakandliverforbothcookingmethods.Totalpurinecontentdecreasedintheboiled haddockbutincreasedinthebroiledhaddock.Thisstudyconcludedthattheincreasesinpurine contentaftercookingwerelikelyduetoincreasesindrymatteraswaterandfatwerelost, includingtheproportionalincreaseinproteincontent.AnotherstudyconductedbyYoung

(1983)studiedtheeffectofstewingonchickenmeat.Slightincreasesinadenineandguanine 37 contentwerereported,butitwasconcludedtheseincreaseswereduetolossesofother components,suchasmoistureandfat.

Thisstudywasdesignedtoreducethepurinecontentofgroundbeef,groundturkey,and bacon.Theseproductswerechosenbecausetheyareconsideredhighpurinecontentfoods,and theyarecommonlyconsumedproductsintheU.S..Itishypothesizedthatbyrinsingthese productsinwateratalowrateofagitationforapredeterminedamountoftime,thetotalpurine contentoftheproductwilldecrease.Thisstudyalsodeterminedtheeffectofcookingonpurine contentofthesamplesbeforeandaftertherinsetreatment.

MATERIALS AND METHODS

Materials

Allsampleswerepurchasedfromalocalgrocerystore,storedat4ºC,andusedwithin48 hoursofpurchase.The25%fatgroundbeefsampleswerelabeled100%beef,75%lean,25% fat.The7%fatgroundbeefsampleswerelabeled100%beef,93%lean,7%fat.Groundturkey sampleswerelabeledPremiumQualityHoneysuckleWhiteGroundTurkey.Baconsamples werelabeledOscarMayerNaturallyHardwoodSmokedAmerica’sFavoriteBacon.

Standardsofpurinecompounds,adenine,guanine,hypoxanthine,andxanthine,were purchasedfromSigmaChemicalCo.(St.Louis,MO,USA).Triflouroaceticacidwaspurchased fromPierceBiotechnology(Rockford,IL),formicacidwaspurchasedfromEMDChemicals

Inc.(Darmstadt,Germany),andpotassiumphosphatewaspurchasedfromMallinckrodtBaker,

Inc.(Phillipsburg,NJ).

Preparation of samples 38

Sampleswereweighedoutinto100gramportions.Each100gramportionwasplacedin

250mLdeionizedwater(chilledto4ºC)andrinsedusingawristactionshaker(Burrell

Corporation,Model75,Pittsburgh,PA.U.S.A).Groundbeefsamplesunderwenta2minute rinseanddrain,a5minuterinseanddrainanda5minuterinse,followedbycentrifugation

(Figure3.1).Groundturkeysamplesunderwenta2minuterinseanddrainanda5minuterinse andcentrifugation.Baconsamplesunderwenta2minuteor5minuterinseanddrain.The drainingstepinvolveddrainingthesampleoncheeseclothforapproximatelyfiveminutesto removetheexcesswater.Centrifugedsampleswereobtainedbyplacingsampleintoa centrifugebottleaftertherinsingstepandcentrifugingat14,000rpmfor10minutes(Beckman

ModelJ221MInductionDriveCentrifuge,PaloAlto,CA).Samplesweretheneitherfrozen immediatelyorsetasideforthecookingstudy.

Groundbeefandgroundturkeysampleswerecookedusingtwodifferentmethods.One methodinvolvedsautéingthemeatinscrambledformonthestovetop(AmanaSelfCleanOven,

MaytagCorp.,BentonHarbor,MI)forapproximately3½minutesatmediumheat(Figure3.2).

Alldrippingswerecollectedwiththesample.Theothermethodinvolvedthemeatin pattyformonanelectric,twosided(GeorgeForemanGrillingMachine,Model

GR38SIL,LakeForest,IL)forapproximatelyfiveminutesonmediumheat(Figure3.3).

Drippingsdrainedfromthemeatwerenotcollected.Sampleswereallowedtocoolfor approximately5minutes,thentheywereimmediatelyplacedinafreezerbagandstoredina

20ºCfreezer.Baconsampleswerepanfriedonthestovetoponmediumlowheatforfour minutesoneachside.Thesampleswerethenremovedfromtheheatandallowedtodrainon papertowelsforapproximately5minutes,thentheywereplacedafreezerbagandstoredina

20ºCfreezer. 39

Figure3.1:Comparisonofcontrolgroundbeefsampletorinsedgroundbeefsamples 40

Figure3.2:Comparisonofcontrolsautéedsampletorinsedandsautéedsamples 41

Figure3.3:Comparisonofgrilledcontrolsampletorinsedandgrilledsamples 42

Afterallsampleswerecompletelyfrozen,theywereplacedinafreezedrier(VirtisGenesis

25ES,Gardiner,NY)for24hoursat~30millitorratastartingtemperatureof20ºCandending at~25ºCtoremoveallofthemoisture.ThedriedsampleswerethengroundinanOsterizer blenderfor30seconds.100mgportionsofdrysampleswereweighedandplacedinglasstest tubesforfurtheranalyses.

Proximate composition determination

Themoisturecontentofthesampleswasdeterminedbyvacuumdryingat70ºCfor24 hours(AOAC,1951,Method925.09).Totalwasdeterminedbyanitrogencombustion method(Leco,ModelFP2000,Warrendale,PA)(AOAC,1998,Method990.03)onmoisture freesamples.Proteinwascalculatedbyusinganitrogentoproteinconversionfactorof6.25.

FatcontentofthesampleswasanalyzedonmoisturefreesamplesusingaGoldfischfat extractionapparatus(Labconco,KansasCity,MO.)withpetroleumetherfor24hours(AOAC,

1999,Method948.22a).Theashcontentwasdeterminedbyplacingthemoisturefreesamplesin amufflefurnaceat525ºCfor15hours(ModifiedfromAOAC,1998,MethodBa549).The carbohydratecontentwascalculatedbysubtractingthesumofthefat,protein,andashcontents from100%.

Determination of purine contents

ThemethodusedbyLouandothers(2005)wasmodifiedandusedtodeterminethe purinecontentofthesamples.FivemLofa5:5:1mixtureofCF 3COOH(Trifloroacetic

acid)/HCOOH(Formicacid)/H 2Owasaddedto100mgofpowdered,freezedriedsampleina cappedglasstesttube.Themixturewasplacedina100ºC(CoberElectronics

Microwave/Convectionoven,ModelLBM1.2A/9276,Stamford,CT)ovenfor35minutes,then itwasallowedtocooltoroomtemperature.Theresultanthydrolysateswereplacedina100mL 43 flaskanddriedusingarotaryevaporator(BuchiLabortechnikAG,RotavaporR215,ModelCH

9230,Flawil,Switzerland)at60ºC.Theevaporationwasrepeatedtwice,eachtimewiththe additionof5mLofdistilledwatertothedriedresidueintheflask,ensuringthatallacidwas removedfromthesample.TenmLofKH 2PO 4 wasthenaddedtothedriedresidue,andtheflask

wasplacedinanultrasonicwaterbathfor5minutestodissolvetheresidue.Thesolutionwas

thentransferredtoatesttubeandcentrifugedfor5minutesat2000rpm(International

EquipmentComp.,IECCentra,ModelCL2,NeedhamHts,MA).Thenitwasfilteredthrougha

0.2nylonfilter(Whatmansyringefilter,Cat.No.68702502,FlorhamPark,NJ).Thepurine baseswereseparatedisocraticallybyhighperformanceliquidchromatography(

Corporation,ModelcodeSHC,2695SeparationsModule,Milford,MA)usingareversedphase column(BeckmanCoulterultrasphereC 18 ,5,4.6mm*25cm)withaninjectionvolumeof20

l.Thecompoundswereelutedoffthecolumnusinga0.02MKH 2PO 4 bufferwithpHadjusted to3.4usingphosphoricacid(inordertoachieveoptimumseparation).Theflowratewas1.0 mL/minute,andtheelutepassedthroughtheultravioletdetectorat254nm.Theconcentrationof baseswascomputedbycalculatingtheareaundereachpeakaftercomparisontothestandard, whichwasina0.1mMsolution.Identificationofpeakswasbasedonorderofelutionusing knownstandardcompounds(Figure3.4).DatawasanalyzedusingMillenium32softwareand

MicrosoftExcel.

Statistical analysis

Datawasanalyzedusinganalysisofvariance,ANOVA,atasignificancelevelofα>

0.05,usingSASJMPsoftware.MeancomparisonswereperformedusingStudent’stTest(SAS

2004).

44

(a)

(b)

Figure3.4:HPLCgeneratedchromatogramofthefourpurinebases.(a)Standardpurine solution.(b)Sampleofgroundbeef 45

RESULTS AND DISCUSSION

Proximatecompositionandpurinecontentofrawgroundbeef,groundturkey,andbacon areshowninTable3.1.The7%fatgroundbeefsamplehadthehighestproteincontentandthe baconsamplehadthehighestfatcontentofallthesamples.Theacidhydrolysismethodusedto determinethepurinecontentofthesamplesreleasesthepurinebasesfromnucleosides, nucleotides,andnucleicacid,meaningthetotalpurinecontentofthesamplesareaccurately represented(Louandothers2005).Xanthinewasthemostabundantpurinebasepresentinthe

25%fatgroundbeefand7%fatgroundbeefconstituting44%and35%ofthetotalpurine present,respectively.Guaninewasthemostabundantbasepresentinthegroundturkey, constituting41%ofthetotalpurinecontent,andhypoxanthinewasthemostabundantpurine baseinthebacon,constituting54%ofthetotalpurinecontent.Adeninewastheleastpresent baseinthegroundbeefsamples,andxanthinewastheleastpresentbaseinthegroundturkey andbaconsamples.The7%groundbeefsampleshadthehighestpurinecontentofallthe samplestestedat5.57mg/gdrybasis(equal157.85mg/100gwetbasis),followedindecreasing orderby25%fatgroundbeef,bacon,andturkeysamples.

ThechangesinpurinecontentafterrinsingandcookingareshowninTable3.2andTable

3.3.Forthe25%fatgroundbeef,thetotalpurinecontentsignificantlydecreased(p<0.05)from

3.58mg/gintheoriginalsampleto3.07,2.79,and2.29mg/gforthe2minuterinse,5minute rinse,and5minutecentrifuge,respectively.Hypoxanthineandxanthinealsoshowedsignificant decreasesduringtherinsingsteps.Therewasanincreaseintotalpurinecontentfrom3.58mg/g to5.11and4.65mg/gaftersautéingandgrilling,howeverpurinecontentdecreasedwhenthe sampleswererinsedandcooked.Forthesautéedsamples,purinecontentdecreasedfrom5.11 mg/ginthesautéedcontrolto3.06and2.52mg/gintherinsedandsautéedsamples.Forthe 46

Table3.1:Proximatecompositionandpurinecontentsofgroundbeef,groundturkey,andbacon

25% Fat 7% Fat Ground Ground Beef Ground Beef Turkey Bacon Moisture (%) 60.81 71.66 69.18 30.61 Fat (%) 56.61 24.3 42.09 59.38 Ash (%) 1.73 3.3 2.85 5.36 Protein (%) 41.08 72.25 54.91 31.88 Carbohydrate (%) 0.58 0.15 0.15 3.4 Adenine (mg/g) 0.34 0.59 0.96 0.34 Guanine (mg/g) 0.97 1.58 1.58 0.54 Hypoxanthine (mg/g) 0.68 1.45 1.22 1.05 Xanthine (mg/g) 1.58 1.96 0.11 N.D. Total purine (mg/g) dry wt. 3.58 5.57 3.88 1.93 Total purine (mg/100g) wet wt. 140.69 157.85 119.58 133.92 Fat,protein,andashcontentareexpressedonamoisturefreebasis;carbohydratecontentwasdeterminedas100% (ash+fat+protein). 47

Table3.2:Changesinpurinecontentof7%and25%groundbeefafterrinsingandcooking 1

Ground Beef Protein Fat Ade* Gua* Hypo* Xan* Total Purine 2 Total Purine (mg/g (%) (%) (mg/g dry wt.) protein) 25% Fat Control 41.08 56.61 0.34 d 0.97 e 0.68 c 1.58 b 3.58 c 8.58 a Control, Sauteed 59.89 39.69 0.55 a 1.48 c 1.30 a 1.79 a 5.11 a 8.54 b Control, Grilled 64.91 31.89 0.58 a 1.71 a 1.16 b 1.21 c 4.65 b 7.17 cd 2 M R and D 3 42.49 55.8 0.33 d 0.94 a 0.59 d 1.21 c 3.07 de 7.26 b 5 M R and D 3 43.81 56 0.36 d 0.99 de 0.48 e 0.95 d 2.79 ef 6.41 bc 5 M R and C 3 44.43 55.5 0.32 d 1.01 de 0.32 fg 0.64 e 2.29 g 5.17 ef 2 M R and D , Sauteed 46.85 52.78 0.43 c 1.14 d 0.41 ef 1.09 cd 3.06 de 6.32 bcd 2 M R and D, Grilled 58.13 39.75 0.50 b 1.48 bc 0.37 f 0.99 d 3.33 cd 5.74 cde 5 M R and C, Sauteed 46.22 54.61 0.41 c 1.14 d 0.26 g 0.70 e 2.52 fg 5.48 de 5 M R and C, Grilled 62.01 42.44 0.49 b 1.63 ab 0.22g 0.55 e 2.90 e 4.59 f 7% Fat Control 72.25 24.3 0.59 ab 1.58 c 1.45 a 1.96 a 5.57 a 7.80 a Control, Sauteed 73.71 22.42 0.50 d 1.75 abc 1.25 b 1.99 a 5.49 a 7.46 ab Control, Grilled 71.5 24.14 0.51 e 1.83 ab 1.15 b 1.78 a 5.27 a 7.36 b 2 M R and D 3 73.08 26 0.61 ab 1.85 a 0.65 de 0.94 bc 4.05 bc 5.59 c 5 M R and D 3 71 26.9 0.65 a 1.89 a 0.53 f 0.77 cd 3.83 bcd 5.35 cd 5 M R and C 3 73.48 25.3 0.65 a 1.79 ab 0.52 f 0.78 cd 3.74 cd 5.07 de 2 M R and D, Sauteed 74.94 23.21 0.51 d 1.75 ab 0.84 c 1.03 b 4.13 b 5.52 cd 2 M R and D, Grilled 73.35 22.02 0.55 cd 1.65 bc 0.64 de 0.96 bc 3.81 cd 5.19 de 5 M R and C, Sauteed 76.13 21.58 0.62 ab 1.66 bc 0.68 d 0.61 de 3.58 de 4.75 ef 5 M R and C, Grilled 76.63 22.98 0.58 abcd 1.74 abc 0.55 ef 0.49 de 3.36 e 4.38 f 1.Meanvalues(n=3)inacolumnnotfollowedbythesameletterweresignificantlydifferent(p<0.05). 2.Totalpurine=Ade+Gua+Hyp+Xan(duetorounding,thelastdigitforthetotalpurinecontentmaynotbethe sameasthesumoftheindividualpurines) 3.2minuterinseanddrain,5minuterinseanddrain,5minuterinseandcentrifuge *Ade=Adenine,Gua=Guanine,Hypo=Hypoxanthine,Xan=Xanthine,allreportedinmg/gdrywt. 48

Table3.3:Changesinpurinecontentofgroundturkeyandbaconafterrinsingandcooking 1

Protein Fat Ade* Gua* Hypo* Xan* Total Purine 2 Total Purine (mg/g dry Ground Turkey (%) (%) wt.) (mg/g protein) Control 55% 42.09 0.96 c 1.58 e 1.22 a 0.11 ab 3.88 bcd 7.07 abc Control, Sauteed 56.85 37.98 1.07 bc 1.75 de 1.27 a 0.12 a 4.21 abcd 7.46 a Control, Grilled 63.17 34.23 1.18 b 2.02 bc 1.23 a 0.11 b 4.54 a 7.19 ab 2 M R and D 4 55.91 42.45 1.03 bc 1.66 de 1.01 bc 0.10 c 3.80 cd 6.70 abc 5 M R and C 4 56.66 41.78 1.12 b 1.79 cde 0.86 c N.D. 3 3.77 d 6.64 abc 2 M R and D, Sauteed 59.3 39.16 1.12 b 1.95 bcd 1.07 b 0.11 ab 4.25 abcd 7.16 abc 2 M R and D, Grilled 62.38 37.63 1.11 bc 1.80 cde 0.84 d 0.10 c 3.86 cd 6.18 c 5 M R and C., Sauteed 63.35 35.87 1.33 a 2.20 ab 0.74 de 0.09 d 4.34 abc 6.88 abc 5 M R and C., Grilled 69.58 30.47 1.40 a 2.34 a 0.62 e N.D. 3 4.37 ab 6.28 bc Protein Fat Ade* Gua* Hypo* Xan* Total Purine 2 Total Purine (mg/g dry Bacon (%) (%) wt.) (mg/g protein) Control 31.88 59.38 0.34 c 0.54 bc 1.05 a N.D. 3 1.93 b 6.06 a Fried 42.07 41.44 0.41 b 0.65 b 1.14 a N.D. 2.21 ab 5.23 b 2 M R and D 29.98 69.02 0.34 c 0.43 c 0.64 b N.D. 1.40 c 4.72 c 5 M R and D 30.64 66.32 0.32 c 0.46 c 0.59 b N.D. 1.37 c 4.49 c 2 M R and D, Fried 53.94 37.43 0.48 a 0.87 a 1.09 a N.D. 2.44 a 4.53 c 5 M R and D, Fried 55.18 37.53 0.52 a 0.93 a 1.14 a N.D. 2.59 a 4.68 c 1.Meanvalues(n=3)inacolumnnotfollowedbythesameletterweresignificantlydifferent(p<0.05). 2.Totalpurine=Ade+Gua+Hyp+Xan(duetorounding,thelastdigitforthetotalpurinecontentmaynotbethe sameasthesumoftheindividualpurines) 3.N.D.=notdetected 4.2minuterinseanddrain,5minuterinseandcentrifuge *Ade=Adenine,Gua=Guanine,Hypo=Hypoxanthine,Xan=Xanthine,allreportedinmg/gdrywt. 49 grilledsample,purinecontentdecreasedfrom4.65mg/ginthecontrolgrilledto3.33and2.90 mg/gintherinsedandgrilledsamples.Allindividualpurinebases,withtheexceptionof guanine,showedsignificantdecreasesfromthecontentofthecontrolsampleaftertherinsing andcookingsteps.

Forthe7%fatgroundbeefsample,therewassignificantdecreaseintotalpurinefrom

5.57mg/gintheoriginalsampleto4.05,3.83,and3.74mg/gforthe2minuterinse,5minute rinse,and5minutecentrifuge,respectively.Fortheindividualpurinebases,significant decreasesafterrinsingwereseeninthehypoxanthineandxanthine,whileincreaseswereseenin theadenineandguanine.Therewasnosignificantchangeintotalpurinecontentorchangein anyoftheindividualpurinebasesaftergrillingandsautéing;however,significantdecreasewas seenintotalpurinecontentfrom5.49mg/ginthesautéedsamplewithnotreatmentto4.13and

3.58mg/gintherinsedandsautéedsamples.Apurinedecreasewasalsoseenfrom5.27mg/gin thegrilledsamplewithnotreatmentto3.81and3.36mg/gfortherinsedandgrilledsamples.

Fortheindividualpurinebases,hypoxanthineandxanthine,significantdecreaseswereobserved fromthecookedcontrolsampleswhencomparedtotherinsedandcookedsamples.

Groundturkeyhadatotalpurinecontentof3.88mg/gsampleandafterrinsingtherewas insignificantdecreaseto3.80mg/gforthe2minuterinseand3.77mg/gforthe5minuterinse andcentrifuge.Hypoxanthineandxanthineshowedsignificantdecreasesinpurinecontentafter rinsing,whileadenineshowedsignificantincreaseforthe5minuterinseandinsignificant increaseforthe2minuterinse.Guanineshowedinsignificantincreasesforbothrinses.There weresignificantincreasesfromthecontroltothesautéedandcookedsamples,from3.88mg/gto

4.21and4.54mg/g.Therewasonlyonesignificantdecreasefromthecookedcontrolsamplesto therinsedandgrilledsamples.Thesignificantdecreasewasforthe2minuterinse,drained,and 50 grilledsample,from4.54mg/gto3.86mg/g.Fortheindividualpurinebases,adenineshowed anincreasefromthecookedcontrolsamplecomparedtotherinsedandcookedinallcasesand hypoxanthineshowedsignificantdecreasesfromthecookedcontrolsamplewhencomparedto therinsedandcookedsamplesinallcases.

Baconhadatotalpurinecontentof1.93mg/gdrywt..Afterrinsing,therewas significantdecreaseto1.40and1.37mg/gforthe2minuterinseanddrainsampleandthe5 minuterinseanddrainsample.Hypoxanthinewastheonlyindividualpurinebasethatshowed significantdecreasefromthecontrolcomparedtotherinsedsample.Thecookedbaconresulted inanincreaseinpurinecontentfrom1.93mg/gto2.21mg/g,andallindividualproportionsof purinebasesincreasedaftercooking.Subsequentcookingoftherinsedsamplescausedan increaseintotalpurinecontentfromthecookedcontrolsample,from2.21mg/gto2.44and2.59 mg/g.Theindividualpurinebasesadenineandguanineshowedsignificantincreasesfromthe cookedcontrolsamplestotherinsedandcookedsamples.

Asmentionedpreviously,otherstudieshavereportedincreasesinpurinecontentafter cookingandsuggestthatthisislikelyduetochangesinothercomponents,suchasfatand moisture(Young1983;Bruleandothers1989).Forthisreason,allsampleswerealsocalculated inmgpurine/gproteintoaccountfordecreasesofmoistureandfatandproportionalincreasesof proteinduringtherinsingandcookingsteps.Thisformmoreaccuratelyrepresentstheactual purinecontentofthesamples.Forthe25%fatgroundbeefsamplestherewassignificant decreasefromthecontrolsamplecomparedtotherinsedsamples,from8.58mg/gproteinto

7.26,6.41,and5.17mg/gprotein.Therewasalsosignificantdecreaseintotalpurinecontent fromthecookedcontrolat8.54mg/gproteinto6.32,5.74,5.48,and4.59mg/gproteininthe rinsedandcookedsamples.Forthe7%fatgroundbeefsamples,similarresultswereseenwith 51 significantdecreasesfromthecontrolat7.80mg/gproteintotherinsedsamplesat5.59,5.35, and5.07mg/gprotein.Significantdecreaseswerealsoobservedfromthecontrolcooked samplesat7.46mg/gproteintotherinsedandcookedsamplesat5.52,5.19,4.75,and4.38mg/g protein.Thegroundturkeysamplesshowednosignificantdifferencesbetweenthecontrol samplesandtherinsedsamples.Significantdecreaseswereseenfromthecookedcontrolsample at7.46mg/gproteinforthesautéedsample;7.19mg/gproteinforthegrilledsample;andthe2 and5minuterinsedandgrilledsamplesat6.18and6.28mg/gprotein.Forthebaconsamples, significantdifferenceswereseenfromthecontrolat6.06mg/gproteintotherinsedsamplesat

4.72and4.49mg/gproteinandfromthecontroltothecookedcontrolsampleat5.23mg/g protein.Significantdifferencesalsoresultedfromrinsingandcookingsamplescomparedtothe control,from5.23mg/gproteinto4.53and4.68mg/gprotein.

Insummary,therinsingstepresultedinsignificantdecreases(p<0.05)inthe25%and7% groundbeefsamplesandinthebaconsamples.Forbothgroundbeefandbaconsamplesthe rinsingprocedurethatresultedinthegreatestdecreaseinpurinecontentwasthe5minute centrifugesampleandallsamplesshowedadecreasefromtherawcontrolsample.Allsamples thatwererinsedthencookedshowedadecreaseinpurinefromthecontrolcookedsample.The resultsindicatethatrinsinghasanimpactonreducingthepurinecontentofgroundbeefand bacon,withevengreaterdecreasesseenafterrinsingandsubsequentcooking.Fortheground turkeysamples,theresultsshowthatrinsingandgrillinghasasignificantimpactonreducingthe purinecontent.The25%fatgroundbeef,7%fatgroundbeef,groundturkeyandbaconhad initialpurinecontentof3.58,5.57,3.88,and1.93mg/gdrywt.,respectively.Onthisbasisthe

7%fatgroundbeefhashighertotalpurinecontentthanthe25%fatgroundbeefsamples,aswell asthegroundturkeyandbaconsamples.Afterconvertingthesevaluestomg/gproteinbasis, 52 totalpurinecontentsoftherawsampleswere8.58,7.80,7.07,and6.06mg/gprotein, respectively.Theresultsshowthatthe25%fatgroundbeefsamplecontainsthehighestpurine contentbasedonproteincontent.Also,groundturkeyandbaconsampleshadhighercombined levelsofadenineandhypoxanthinethanthegroundbeefsamples.Sincethesepurineshavebeen showntoresultingreaterincreasesinuricacidinthebody(Clifford,1976),groundturkeyand baconmayhavemoreofanimpactoncausinggoutattacksthangroundbeef.

Previousstudieshaveshowndecreasesinpurinecontentaftercooking(Young1983;Lou andothers1997;Louandothers1998;Louandothers2001a;Louandothers2005)andafter washing(Louandothers2005).Studiesanalyzingtheeffectofwashingonpurinecontenthave onlystudiedtheseeffectsonseafoodproducts.Tilapiasurimiproductsundergoawashingstep aspartofprocessingtoimprovethegelqualityofthesurimi.Onestudyanalyzedtheeffectof washingonthepurinecontentofthetilapiasurimi(Louandothers2005).Thewashingstep involvedwashingthesurimiminseusingastirrersetat100rpmincoldwaterataratioof5:1 water/sampleandthencentrifugingthemincefor2minutestoremovethewater.Thisprocedure resultedinadecreaseintotalpurinecontentbyover30%,concludingthatthebaseswere releasedintotherinsewaterandthatthispreviouslyhighpurinecontentfoodcouldwasactually amediumpurinecontentfood(Louandothers2005).Similarresultswereseeninthecurrent study,whichresultedintheaveragerinsingstepsdecreasingthetotalpurinecontentby27%for

25%groundbeef,32%for7%groundbeef,and24%forbacon.

Theeffectsofcookinghavealsoproventohaveanimpactondecreasingthepurine contentsofotherfoodproducts,particularlymoistheatmethods,suchasboilingandsteaming

(Louandothers2001a).Astudyanalyzingtheeffectofboilingonpurinecontentofvariousfish speciesshowedadecreaseinpurinecontentoftheCinnamonflounderfishspeciesby60%,from 53

91.2to46.6mg/100gonadrywt.basis(Louandothers1997).Decreaseshavealsobeenshown duringboilingofgrassshrimp(Lou1998).Inthisexperiment,purinecontentwasmeasured afterevery5minutesofcooking,andadecreasewasseeneachtime.Thegreatestdecreasewas seenafter20minutesofcooking,from58.18mol/gfreshshrimpto44.14mol/gaftercooking

(onadrywt.basis).Otherstudieshavereportedincreasesinpurinecontentsaftercooking,but thesestudiesconcludedthatthisresultwaslikelyduetothedecreasesinotherconstituents,such asfatandmoisture(Young1983;Bruleandothers1989).Brulereportedpurineincreasesin beefsteakandbeefliverafterboilingandbroiling,buthealsoanalyzedthecookingjuicesand discoveredthatthepurineswereindeedbeingreleasedintothecookingjuices.Thepurine contentoftherawbeefsteakwas105.9mg/100gandthepurinecontentofthecookingjuices was58.88mg/100gforthebeefsteak.Thepurinecontentoftherawbeefliverwas202.2 mg/100g,andthecontentinthecookingjuiceswas49.17mg/100g(onawetwt.basis)(Brule andothers1989).

Electrolyzedwaterhasrecentlygainedrecognitionasaneffectivemethodofreducing foodbornepathogensandhasbeenusedinJapanforthepastthirtyyearsasamedicalproduct, aswellasfordrinkingandcooking(Kim,2000,Koseki,2005).Electrolyzedwaterisgenerated usinganelectrolyzedwatergeneratorthatoperatesbysubjectingdeionizedwatercontaininga verysmallamountofNaCl(usuallyaround0.1%)toanelectricalcurrent,whichresultsintwo formsofelectrolyzedwater,acidicandalkaline.TheacidicformnormallyhasapHaround2.8 andfunctionstoeffectivelyeliminatepathogens.ThealkalineformhasapHaround11andis commonlyusedasacleaningagenttoreduceorganicmatter,aswellasfordrinkingandcooking

(LoiBraden,2005).Overthelastdecade,researchersworldwidehaveproventheeffectiveness ofelectrolyzedwateratreducingfoodbornepathogensonfoodproductsaswellason 54 processingequipment(Venkitanarayanan1999;Kim2000).Ingeneral,thepurinebaseshave higherpKavalueswhichrepresentweakacids.Itistheorizedthatwhenfoodproducts containinghighlevelsofpurinesarerinsedinalkalineEOwater,agreatertransferofpurines intotherinsewaterwilloccur.PreliminaryanalysiswasconductedusingalkalineEOwateras therinsingmediumcomparedtodeionizedwateron25%fatgroundbeefandchickenmeat samples.Thesesamplesweremixedina5:1ratioand10:1ratioofEOwatertosample,and mixinginvolvedusingaHobartmixersetonlowspeedfor5minutes.Theywerethendrained for5minutesandsubsequentlyfrozen.TheEOwaterthatwasusedhadapHof11.37andan

ORPof837mV.ResultsshowaslightlygreaterdecreaseusingtheEOwaterasopposedtothe regulartapwaterforthechickensamples,buttherewasn’tmuchdifferenceforthegroundbeef samples(Table3.4).

CONCLUSIONS

Theprocessofrinsingdoeshaveasignificantimpactonreducingthepurinecontentof highpurinefoodssuchasgroundbeefandbacon.Itishypothesizedthatthepurinesarebeing releasedintotherinsewater.Anevengreaterreductioninpurinecontentoccursafterrinsing andsubsequentcooking.

OUTLOOK

Furtherresearchshouldbeconductedonrinsingprocedurestodetermineifalteringthis procedurecouldresultinanevengreaterreductioninpurinecontent.Rinsingstudiesshould alsobeperformedonotherhighpurinecontentfoods,andtherinsewatershouldbeanalyzedfor purinecontent.Theeffectsofrinsingwithalkalineelectrolyzedwatershouldalsobefurther investigated.

55

Table3.4:Comparisonofpurinecontentinchickenmeatandgroundbeefrinsedinalkaline electrolyzedwatervs.deionizedwater.

Chicken Meat, mg/g dry wt. basis Total Adenine Guanine Hypo Xanthine Purine Control 0.81 4.67 1.37 0.32 7.18 5:1 EO 0.69 3.44 0.44 0.12 4.69 10:1 EO 0.68 3.46 0.30 0.09 4.53 5:1 DI 0.78 4.02 0.45 0.11 5.36 10:1 DI 0.81 3.94 0.32 0.12 5.19 Ground Beef, mg/g dry wt. basis Total Adenine Guanine Hypo Xanthine Purine Control 0.33 0.78 0.63 1.99 3.74 5:1 EO 0.37 1.08 0.24 0.56 2.25 10:1 EO 0.33 0.92 0.23 0.55 2.03 5:1 DI 0.32 0.88 0.27 0.64 2.11 10:1 DI 0.36 0.98 0.26 0.66 2.27 56

ACKNOWLEDGEMENTS

ThisresearchwassupportedbyUniversityStateHatchFundsallocatedtotheUniversity ofGeorgiaAgriculturalExperimentStationGriffinCampus.Theauthorswouldalsoliketo thankMs.JoyAdams,Mr.GlennFarrell,Mr.LaryHitchcock,andMrs.SueEllenMcCullough fortheirassistancewiththisproject. 57

REFERENCES

ADA.2003.Gout:Isapurinerestricteddietstillrecommended?:AccessedinMay2007from

AmericanDieteticAssociation

http://www.eatright.org/cps/rde/xchg/ada/hs.xsl/nutrition_5314_ENU_HTML.htm .

ArromdeeE,MichetC,CrowsonC,etal.2002.Epidemiologyofgout:istheincidencerising?J

Rheumatol29:24036.

BruleD,SarwarG,SavoietL.1988.Purinecontentofselectedcanadianfoodproducts.Journal

ofFoodCompositionandAnalysis1(2):1308.

BruleD,SarwarG,SavoieL.1989.EffectofMethodsofCookingonFreeandTotalPurine

BasesinMeatandFish.CanInstFoodSciTechnolJ22(3):24851.

ChoiHK,AtkinsonK,KarlsonEW,WillettW,CurhanG.2004.Purinerichfoods,dairyand

proteinintake,andtheriskofgoutinmen.NEnglJMed350(11):1093103.

CliffordAJ,Riumallo,J.A.,Young,V.R.,Scrimshaw,N.S.1976.Effectsoforalpurineson

serumandurinaryuricacidofnormal,hyperuricaemicandgoutyhumans.JNutr

106:42834.

GarrettR,Grisham,C.2005.NucleotidesandNucleicAcids.Biochemistry.3rded.USA:

ThomsonBrooks/Cole.p30934.

HaleyMM.2000.ChangingConsumerDemandforMeat:TheU.S.Example,19702000.

EconomicResearchService/USDA418.

HarrisMD,SiegelLB,AllowayJA.1999.GoutandHyperuricemia.AmericanFamilyPhysician

59(4):92534.

KelleyW,SchumacherHJ,editors.1993.Crystalassociatedsynovitis.Philadelphia:Saunders.

1291336. 58

KimC,Hung,Y.C.,Brackett,R.E..2000.Efficacyofelectrolyzedoxidizing(EO)and

chemicallymodifiedwaterondifferenttypesoffoodbornepathogens.International

JournalofFoodMicrobiology61:199207.

LawrenceRC,HelmickC.G.,Arnett,F.C.,Deyo,R.A.,Felson,D.T.,Giannini,E.H.,Hirsch,R.,

Hochberg,M.C.,Hunder,G.G.,Liang,M.H.,Pillemer,S.R.,Steen,V.D.,Wolfe,F..

1998.Estimatesoftheprevalenceofarthritisandselectedmusculoskeletaldisordersin

theUnitedStates.ArthritisandRheumatism41:77899.

LouSN,ChenTY,LinCD,ChenHH.1997.EffectofCookingonPurineContentofSome

Fishes.FoodScience24(2):25862.

LouSN,ChenTY,YangSH.1998.Changesinpurinerelatedcompoundsofgrassshrimp

(Penaeus monodon) undervariouscookingduration.JChinAgricChemSoc36:44350.

LouSN,LinCD,BenkmannR.2001a.ChangesinPurineContentofTilapiamassambica

duringStorage,Heating,andDrying.FoodScienceandAgriculturalChemistry3(1):23

9.

LouSN,LinCD,BenkmannR.2001b.Changesinpurinecontentof Tilapia mossambica during

storage,heatinganddrying.FoodsciAgricChem3:239.

LouSN,ChenHH,HsuPY,ChangDH.2005.Changesinpurinecontentoftilapiasurimi

productsduringprocessing.FishSci71(4):88995.

RheumatologyACo.2005.NewTreatmentShowsPromiseforGout.ArthritisNews:American

CollegeofRheumatology.

SAS.2004.SASInstitute,Inc.,JMPIN5.1.2StatisticalDiscoverySoftware,Cary,NC.

USDA.2007.U.S.MeatSupplyandUse.USDAEconomicResearchService. 59

VenkitanarayananKS,Ezeike,G.O.I.,Hung,Y.C.,Doyle,M.P.1999.Inactivationof

Escherichiacoli0157:H7andListeriamonocytogenesonplastickitchencuttingboards

byelectrolyzedoxidizingwater.JournalofFoodProtection62:85760.

WallaceKL,RiedelAA,JosephRidgeN,WortmannR.2004.Increasingprevalenceofgoutand

hyperuricemiaover10yearsamongolderadultsinamanagedcarepopulation.J

Rheumatol31:15827.

YoungLL.1983.EffectofStewingonPurineContentofBroilerTissues.JournalofFood

Science48:3156.

60

CHAPTER 4

SUMMARY AND CONCLUSIONS

Thisthesisdescribedtheeffectofrinsingandcookingontheindividualandtotalpurine contentsinfoods.Therinsetreatmentinvolvedrinsing25%fatgroundbeef,7%fatground beef,groundturkey,andbaconsamplesina5:1ratio(water:sample)for2or5minutes.Water

wasthenremovedbydrainingorcentrifugation.Thecookingmethodsforthegroundbeefand

groundturkeysamplesweresautéingandgrilling.Thecookingmethodforthebaconsamples

waspan.

Thetotalpurinecontentof25%fatgroundbeefsignificantlydecreased(p<0.05)from

8.58mg/gproteintoarangeof5.17–7.26mg/gproteinafterrinsingtreatments.Afterrinsing

andcooking,anevengreaterdecreasewasseen,withtotalpurinerangingfrom4.59–6.32mg/g protein.Themostabundantindividualpurinebaseintherawsamplewasxanthine,andthemost

abundantindividualpurinebaseafterrinsingandcookingwasguanine.Thetotalpurinecontent

of7%fatgroundbeefsignificantlydecreasedfrom7.80mg/gproteintoarangeof5.07–5.59

mg/gproteinafterrinsingtreatments.Agreaterreductionwasseenafterrinsingandcooking,

resultinginapurinerangeof4.38–5.52mg/gprotein.Themostabundantpurinebasepresent

inthisrawsamplewasxanthine,andthemostabundantpurinebasepresentafterrinsingand

cookingwasguanine.Groundturkeysamplesshowednosignificantchangesafterrinsing,but

significantdecreaseswereseenafterrinsingandcooking.Thegroundturkeysamplehadhigher

levelsofguaninethantheothersamples,withguaninebeingthemostabundantindividualpurine basefoundintherawsample.Guaninewasalsothemostabundantbasepresentafterrinsing 61 andcooking.Sinceguanineistheonlypurinebasethatisinsolubleinwater,itselevatedlevels ingroundturkeymaybeonereasonverylittlesignificantreductionwasobservedintheground turkeysamplesaftertherinsingtreatments.Baconsamplesshowedsignificantdecreasesin purinecontentfrom6.06mg/gproteinto4.72and4.49.After2and5minuterinsingand cooking,purinewasfurtherreducedto4.53and4.68mg/gprotein,respectively.

For25%fatgroundbeefand7%fatgroundbeef,thepercentreductionsinpurine comparingthecookedcontrolsampletotheaverageoftherinsedandsautéedsampleswas31% and28%,respectively,andthepercentreductionfortheaverageoftherinsedandgrilled sampleswas31%and35%,respectively.Forthegroundturkeysamples,thepercentreduction fromthecookedcontroltotheaveragerinsedandsautéedsampleswas6%,whichis insignificant.Onlyonerinsedandgrilledsampleshowedsignificantpurinereductionfromthe cookedcontrolgroundturkey;theotherrinsedandgrilledsampleshowedinsignificant reduction.Theaveragereductioninpurinecontentforthesetwosampleswas13%.Forthe baconsamples,thepercentreductionfromthecontrolcookedsampletotherinsedandcooked samplewas12%.

Overall,thisstudyshowsthatrinsingisaneffectivemethodofreducingthepurine contentincertainhighpurinefoodproducts.Reducingthepurinecontentoffoodshighin purinesmayresultinadecreasedriskofgoutattacksinsusceptibleindividuals.Furtherresearch shouldbeconductedonotherhighpurinefoodstodeterminethepotentialreducingeffectthat rinsingmayproduce.