Biomarkers of Meat and Seafood Intake: an Extensive Literature Review Cătălina Cuparencu1*† , Giulia Praticó1†, Lieselot Y

Total Page:16

File Type:pdf, Size:1020Kb

Biomarkers of Meat and Seafood Intake: an Extensive Literature Review Cătălina Cuparencu1*† , Giulia Praticó1†, Lieselot Y Cuparencu et al. Genes & Nutrition (2019) 14:35 https://doi.org/10.1186/s12263-019-0656-4 REVIEW Open Access Biomarkers of meat and seafood intake: an extensive literature review Cătălina Cuparencu1*† , Giulia Praticó1†, Lieselot Y. Hemeryck2†, Pedapati S. C. Sri Harsha3†, Stefania Noerman4, Caroline Rombouts2, Muyao Xi1, Lynn Vanhaecke2, Kati Hanhineva4, Lorraine Brennan3 and Lars O. Dragsted1 Abstract Meat, including fish and shellfish, represents a valuable constituent of most balanced diets. Consumption of different types of meat and fish has been associated with both beneficial and adverse health effects. While white meats and fish are generally associated with positive health outcomes, red and especially processed meats have been associated with colorectal cancer and other diseases. The contribution of these foods to the development or prevention of chronic diseases is still not fully elucidated. One of the main problems is the difficulty in properly evaluating meat intake, as the existing self-reporting tools for dietary assessment may be imprecise and therefore affected by systematic and random errors. Dietary biomarkers measured in biological fluids have been proposed as possible objective measurements of the actual intake of specific foods and as a support for classical assessment methods. Good biomarkers for meat intake should reflect total dietary intake of meat, independent of source or processing and should be able to differentiate meat consumption from that of other protein-rich foods; alternatively, meat intake biomarkers should be specific to each of the different meat sources (e.g., red vs. white; fish, bird, or mammal) and/or cooking methods. In this paper, we present a systematic investigation of the scientific literature while providing a comprehensive overview of the possible biomarker(s) for the intake of different types of meat, including fish and shellfish, and processed and heated meats according to published guidelines for biomarker reviews (BFIrev). The most promising biomarkers are further validated for their usefulness for dietary assessment by published validation criteria. Keywords: Biomarkers of food intake, Protein sources, Red meat, Processed meat, Poultry, Fish, Seafood Background other hand, high consumption of processed meat and Meat, including fish and shellfish, represents a valuable possibly red meat has been associated with a series of constituent of a balanced omnivorous diet. The import- adverse health outcomes, including cardiovascular dis- ance of meat from a nutritional point of view is related ease (CVD) [4], overall mortality [5], and certain types of to its high-quality protein content, as it comprises a bal- cancer, especially colorectal cancer [6–8]. However, re- anced source of all essential amino acids for muscle cent large, prospective investigation including almost maintenance [1]. Minerals and vitamins, such as iron half a million subjects from ten European countries [9], and B12 vitamin, and other micronutrients that are es- only found significant associations with processed meat sential for growth and development, are additionally intake. Poultry was not related to all-cause mortality, highly bioavailable from meat compared to other sources whereas red meat was related to higher all-cause mortal- [2]. Meat processing, such as curing, smoking, or heat- ity only before correcting for potential confounding [9]. ing, further improves its organoleptic properties, as well Additionally, high intake of red and processed meat has as its microbiological safety and shelf life [3]. On the also been associated with an increased risk of developing type 2 diabetes, although major inconsistencies regard- * Correspondence: [email protected] ing consumption levels exist between studies [10–12]. †Cătălina Cuparencu, Giulia Praticó, Lieselot Y. Hemeryck, and Pedapati S.C. Sri Harsha shared first co-authorship. Fish and shellfish intake has been associated with posi- 1Department of Nutrition, Exercise and Sports, University of Copenhagen, tive health outcomes, such as decreasing CVD risk [13] Rolighedsvej 30, 1958 Frederiksberg C, Denmark and possibly colorectal cancer [14, 15], while its role in Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Cuparencu et al. Genes & Nutrition (2019) 14:35 Page 2 of 30 preventing type 2 diabetes development is still unclear Primary literature search [16, 17]. Different outcomes in the studies may also as- The reviewing process, including article search and se- sociate with the type of fish consumed and the cooking lection, reviewing and reporting of the results, follows methods [17]. Moreover, aquatic meat has proven to be the guidelines previously proposed by the FoodBAll con- one of the major dietary sources of contaminants that sortium to carry out an extensive literature search and are potentially harmful to human health, such as methyl- evaluation of biomarkers for food intake (BFIs) [23]. mercury and arsenic [18, 19]. In brief, original research papers and reviews were Since associations are always debatable in terms of searched in at least two databases, among which cause and effect and weak associations like those be- PubMed, Scopus, and ISI Web of Knowledge, using tween meat and chronic disease are always at a high risk combinations of the grouped search terms (biomarker* of being affected by bias or confounding, it is important OR marker* OR metabolite* OR biokinetics OR bio- to find biomarkers able to objectively discriminate be- transformation) AND (trial OR experiment OR study tween different classes of meat, particularly red meat, OR intervention OR cohort) AND (human* OR men OR white meat from poultry, white meat from fish or shell- women OR patient* OR volunteer* OR participant*) fish, and processed meats [20]. The existing self- AND (urine OR plasma OR serum OR blood OR excre- reporting tools for dietary assessment, such as food tion) AND (intake OR meal OR diet OR ingestion OR frequency questionnaires (FFQ) and dietary records, are consumption OR eating OR drink* OR administration), imprecise and can be affected by systematic and random as reported in Additional file 1: Table S1, together with errors, especially when a certain food is perceived as specific keywords related to each animal-derived food healthy or unhealthy [21]. Dietary biomarkers have been group (Additional file 1: Table S2). The fields used as proposed as possible objective measurements of the ac- default for each of the databases were [All Fields] for tual specific food intakes or at least as a support for the PubMed, [Article Title/ Abstract/ Keywords] for Scopus, classical assessment methods [22]. A good marker of and [Topic] for ISI Web of Science, respectively. For al- overall meat intake should reflect total dietary meat in- most all food groups, the three databases were con- take differentiating any meat consumption from that of sulted. For “processed meat” and “offal meat,” the search other protein-rich foods; additional markers should dis- was carried out only in PubMed and ISI Web of Know- criminate between different meat sources (e.g., red vs. ledge. The literature search process was carried out be- white or between different species, e.g., pork vs. beef) tween November and December 2015 and updated at and identify cooking methods. In this paper, we present the end of December 2018 for all food groups. the results of a systematic search of the scientific litera- The search was limited to papers written in English, while ture according to the BFIrev methodology [23] providing no restriction was applied regarding publication date. The a comprehensive overview of the possible marker(s) for research papers identifying or using potential biomarkers of the intake of different meat types, including fish and intake for the different kinds of meat were selected from shellfish. The most promising biomarkers are further the list of retrieved references by one or more skilled re- validated according to a validation scheme previously searchers in a process outlined in Additional file 1:Figure proposed for biomarkers of food intake [24]. This review S1. The papers obtained from the search in different data- represents the continuation of the reviewing process for bases were merged and filtered for duplicates. Subse- candidate intake biomarkers for various foods of animal quently, papers were screened based on title and abstract. origin initiated in a previous paper on dairy and egg bio- The selected papers were then retrieved and assessed for markers, as part of the FoodBAll project [25]. eligibility based on the contents of the whole manuscript. Additional papers were identified from reference lists in Methods these papers and from reviews or book chapters identified Selection of food groups through the search. The result was a list of compounds po- In order to obtain a good coverage of the different meat tentially relevant as biomarkers for the food group and cor- sources, meat was subdivided into fresh meat (e.g., over- responding references. all meat intake, red meat, white meat), fish and fish oil, and other aquatic meat, e.g., various shellfish, processed Secondary search, marker identification, and classification meat products (cured and smoked), and offal or organ A second search step was used to evaluate the apparent meats. Two particular groups, strongly heated (e.g., specificity of the markers in the list. The compound da- grilled) meat products and biomarkers for fish contami- tabases HMDB [26] and FooDB (http://foodb.ca/)) were nants, were also investigated. A total of nine food groups used for a first evaluation of marker specificity.
Recommended publications
  • Meat, Fish and Dairy Products and the Risk of Cancer: a Summary Matrix 7 2
    Meat, fish and dairy products and the risk of cancer 2018 Contents World Cancer Research Fund Network 3 Executive summary 5 1. Meat, fish and dairy products and the risk of cancer: a summary matrix 7 2. Summary of Panel judgements 9 3. Definitions and patterns 11 3.1 Red meat 11 3.2 Processed meat 12 3.3 Foods containing haem iron 13 3.4 Fish 13 3.5 Cantonese-style salted fish 13 3.6 Grilled (broiled) or barbecued (charbroiled) meat and fish 14 3.7 Dairy products 14 3.8 Diets high in calcium 15 4. Interpretation of the evidence 16 4.1 General 16 4.2 Specific 16 5. Evidence and judgements 27 5.1 Red meat 27 5.2 Processed meat 31 5.3 Foods containing haem iron 35 5.4 Fish 36 5.5 Cantonese-style salted fish 37 5.6 Grilled (broiled) or barbecued (charbroiled) meat and fish 40 5.7 Dairy products 41 5.8 Diets high in calcium 51 5.9 Other 52 6. Comparison with the 2007 Second Expert Report 52 Acknowledgements 53 Abbreviations 57 Glossary 58 References 65 Appendix 1: Criteria for grading evidence for cancer prevention 71 Appendix 2: Mechanisms 74 Our Cancer Prevention Recommendations 79 2 Meat, fish and dairy products and the risk of cancer 2018 WORLD CANCER RESEARCH FUND NETWORK Our Vision We want to live in a world where no one develops a preventable cancer. Our Mission We champion the latest and most authoritative scientific research from around the world on cancer prevention and survival through diet, weight and physical activity, so that we can help people make informed choices to reduce their cancer risk.
    [Show full text]
  • 100195– Tuna, Chunk Light, Canned (K) Category
    100195– Tuna, Chunk Light, Canned (K) Category: Meat/Meat Alternate PRODUCT DESCRIPTION NUTRITION FACTS This item is canned tuna packed in water with Serving size: 1 ounce (28 g)/1 MMA tuna, vegetable broth. The product contains a drained commercial Kosher certification. It is delivered in cases containing six 66.5-ounce cans. Amount Per Serving Calories 30 CREDITING/YIELD Total Fat 0g One case of tuna contains about 307 servings Saturated Fat 0g of drained tuna. Trans Fat 0g CN Crediting: 1 ounce of drained tuna credits Cholesterol 15mg as 1 ounce equivalent meat/meat alternate. Sodium 130mg Total Carbohydrate 0g CULINARY TIPS AND RECIPES Dietary Fiber 0g Canned tuna can be used in salads, sandwiches, or casseroles. Sugars 0g Mix tuna with chopped vegetables, mustard, Protein 6g and a little mayo for a tasty tuna topping to put on salad, whole grain sandwiches or crackers. Source: USDA Foods Vendor Labels For more culinary techniques and recipe ideas, visit the Institute of Child Nutrition or USDA’s Allergen Information: Product contains fish and soy. Please Team Nutrition. refer to allergen statement on the outside of the product package to confirm any vendor-specific information. For more information, please contact the product manufacturer directly. FOOD SAFETY INFORMATION For more information on safe storage and Nutrient values in this section are from the USDA National cooking temperatures, and safe handling Nutrient Database for Standard Reference or are representative practices please refer to: Developing a School values from USDA Foods vendor labels. Please refer to the product’s Nutrition Facts label or ingredient list for product- Food Safety Program Based on the Process specific information.
    [Show full text]
  • To Eat Or Not to Eat Red Meat. a Closer Look at the Relationship Between Restrained Eating and Vegetarianism in College Females
    W&M ScholarWorks Psychological Sciences Articles & Book Chapters Psychological Sciences Fall 11-2-2011 To eat or not to eat red meat. A closer look at the relationship between restrained eating and vegetarianism in college females Catherine A. Forestell College of William and Mary, [email protected] Andrea M. Spaeth College of William and Mary Stephanie A. Kane College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/psychologypub Part of the Psychology Commons Recommended Citation Forestell, Catherine A.; Spaeth, Andrea M.; and Kane, Stephanie A., To eat or not to eat red meat. A closer look at the relationship between restrained eating and vegetarianism in college females (2011). Appetite, 58(1), 319-325. https://doi.org/10.1016/j.appet.2011.10.015 This Article is brought to you for free and open access by the Psychological Sciences at W&M ScholarWorks. It has been accepted for inclusion in Psychological Sciences Articles & Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Our reference: APPET 1355 P-authorquery-v10 AUTHOR QUERY FORM Journal: APPET Please e-mail or fax your responses and any corrections to: E-mail: [email protected] Article Number: 1355 Fax: +31 2048 52799 Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file.
    [Show full text]
  • Eating Less Meat
    Eating Less Meat South Durham Green Neighbors This is the fourth in a series on taking larger steps toward sustainability. You know yourself best. What would it take to get yourself to eat less meat? Are Plant-based Diets Really That Great? Yes! PlantPure Nation, a documentary on plant-based diets, makes claims about the environmental and health benefits of those diets. A check on two databases of articles, Proquest Central and Pub Med, backs up these claims. (See references below.) Note: Plant-based diets vary from complete veganism to a diet of primarily plants with small quantities of fish +/- chicken and no red meat. Environmentally, British researchers have found that the plant-based diets results in lower greenhouse gas emissions. The age-and-sex-adjusted mean GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO2e/day) were: 7.19 for high meat-eaters, 3.91 for fish-eaters, 5.63 for medium meat-eaters, 3.81 for vegetarians and 4.67 for low meat-eaters, 2.89 for vegans. In other words, eating lots of meat = bad, eating less or no meat = good. Medical research articles can be confusing, but by checking medical review articles you can avoid trying to make sense of lots of individual research studies. In these reviews, researchers look at all the studies they can find on a topic, check the quality of the research, and crunch the numbers to find out what the evidence really says. Below are some sources, but here’s the bottom line: Plant-based diets significantly reduce the risk of: Diabetes Obesity Hypertension Total cholesterol LDL Cholesterol Colorectal cancer Stroke When it comes to plant-based diets, what’s not to like? Creating Your Plan If you still want to eat meat, there’s an easy way to make sure you are at least not overindulging in it: Think of your plate as a circle divided roughly into quarters.
    [Show full text]
  • Meat and Muscle Biology™ Introduction
    Published June 7, 2018 Meat and Muscle Biology™ Meat Science Lexicon* Dennis L. Seman1, Dustin D. Boler2, C. Chad Carr3, Michael E. Dikeman4, Casey M. Owens5, Jimmy T. Keeton6, T. Dean Pringle7, Jeffrey J. Sindelar1, Dale R. Woerner8, Amilton S. de Mello9 and Thomas H. Powell10 1University of Wisconsin, Madison, WI 53706, USA 2University of Illinois, Urbana, IL 61801, USA 3University of Florida, Gainesville, FL 32611, USA 4Kansas State University, Manhattan, KS 66506, USA 5University of Arkansas, Fayetteville, AR 72701, USA 6Texas A&M University, College Station, TX 77843, USA 7University of Georgia, Athens, GA 30602, USA 8Colorado State University, Fort Collins, CO 80523, USA 9University of Nevada, Reno, NV, 89557, USA 10American Meat Science Association, Champaign, IL 61820, USA *Inquiries should be sent to: [email protected] Abstract: The American Meat Science Association (AMSA) became aware of the need to develop a Meat Science Lexi- con for the standardization of various terms used in meat sciences that have been adopted by researchers in allied fields, culinary arts, journalists, health professionals, nutritionists, regulatory authorities, and consumers. Two primary catego- ries of terms were considered. The first regarding definitions of meat including related terms, e.g., “red” and “white” meat. The second regarding terms describing the processing of meat. In general, meat is defined as skeletal muscle and associated tissues derived from mammals as well as avian and aquatic species. The associated terms, especially “red” and “white” meat have been a continual source of confusion to classify meats for dietary recommendations, communicate nutrition policy, and provide medical advice, but were originally not intended for those purposes.
    [Show full text]
  • Fish, Meat, Poultry, Dairy, and Eggs
    Fish, Meat, Poultry, Dairy, and Eggs Session 4 Background Information Tips Goals Fish, Meat, Assessment Poultry, Dairy, and Eggs In an average WEEK, how many servings Could be Needs to of these foods do you eat? Desirable improved be improved 1. Fish, including canned tuna 2+ 1 0 2. Bacon, sausage, hot dogs or cold cuts 0-2 3-4 5+ like bologna, salami, Spam™ or deli meats including turkey and beef 3. Chicken or turkey, excluding chicken or 3+ 2 0-1 turkey cold cuts On an average DAY, how many servings of these foods do you eat? 4. Red meat like roasts, steaks, stew meat, 0-1 2 3+ ribs, chops, BBQ, ham or hamburger, either alone or in dishes like meatloaf or spaghetti sauce On average, how many servings of these foods do you eat? 5. Dairy products, such as milk, cheese, and Number of servings per day _____ yogurt or Number of servings per week _____ 6. Eggs, including in cooking? Number of servings per day _____ or Number of servings per week _____ Fish, Meat, Poultry, Dairy, and Eggs 83 Fish, Meat, Background Information Poultry, Dairy, and Eggs Why Is Fish Important? Eating fish can reduce your risk for getting heart disease. Tis is because fish are high in healthy fats. How Much Fish Should I Eat? You should eat fish ofen. Try to eat fish at least once a week to help lower your chances of heart disease. What Fish Should I Eat? In deciding what fish to eat, pay attention to mercury levels.
    [Show full text]
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Broiler Chickens
    The Life of: Broiler Chickens Chickens reared for meat are called broilers or broiler chickens. They originate from the jungle fowl of the Indian Subcontinent. The broiler industry has grown due to consumer demand for affordable poultry meat. Breeding for production traits and improved nutrition have been used to increase the weight of the breast muscle. Commercial broiler chickens are bred to be very fast growing in order to gain weight quickly. In their natural environment, chickens spend much of their time foraging for food. This means that they are highly motivated to perform species specific behaviours that are typical for chickens (natural behaviours), such as foraging, pecking, scratching and feather maintenance behaviours like preening and dust-bathing. Trees are used for perching at night to avoid predators. The life of chickens destined for meat production consists of two distinct phases. They are born in a hatchery and moved to a grow-out farm at 1 day-old. They remain here until they are heavy enough to be slaughtered. This document gives an overview of a typical broiler chicken’s life. The Hatchery The parent birds (breeder birds - see section at the end) used to produce meat chickens have their eggs removed and placed in an incubator. In the incubator, the eggs are kept under optimum atmosphere conditions and highly regulated temperatures. At 21 days, the chicks are ready to hatch, using their egg tooth to break out of their shell (in a natural situation, the mother would help with this). Chicks are precocial, meaning that immediately after hatching they are relatively mature and can walk around.
    [Show full text]
  • Using of Horsemeat As an Additional Source of Raw Materials for Expanding the Range of Meat Products
    38 Specialized and multidisciplinary scientific researches Volume 2 . DOI 10.36074/11.12.2020.v2.10 USING OF HORSEMEAT AS AN ADDITIONAL SOURCE OF RAW MATERIALS FOR EXPANDING THE RANGE OF MEAT PRODUCTS ORCID ID: 0000-0002-6591-0414 Ihor Strashynskyi Ph.D, Associate Professor, Associate Professor Departmentof Meat and Meat Products Technology National University of Food Technologies ORCID ID: 0000-0002-8816-0388 Oksana Fursik Assistant Departmentof Meat and Meat ProductsTechnology Educational and Scientific Institute of Food Technologies National University of Food Technologies UKRAINE Today, due to the extensive development of intensive industrial growing of farm animals, such as poultry, pigs and, to a lesser extent, cattle, the production of horse meat almost all over the world, with the exception countries and regions with traditionally developed herd horse breeding, is inferior to the production of these animals meat and it is mainly used in the manufacture certain varieties of sausages to improve the structural and mechanical properties of finished products, as well as their piquant taste. There are regions in the world where horse meat is widely used as the main meat food product. Horse meat is now available in France, Belgium and Sweden, where horse meat sales outnumber mutton meat sales. In France, horse meat consumption is 0.4% of all meat consumed. There are about 750 horse meat butchers in the country and about 11,000 farmers who raise horses for sale for meat. The main part of horse meat products that produced in France are exported to Italy. Italians consume twice as much horse meat as the French and love the meat of young horses, while the French prefer red meat from older horses [1].
    [Show full text]
  • Don't Fall for Tricky Meat & Poultry Claims
    Lean? here do Wthe bro- chures, posters, and voluntary labels for meat get their num- bers? In most Don’t fall for tricky meat cases, from the USDA’s data- & poultry claims base. And where does the USDA BY LINDSAY MOYER & JENNIFER URBAN gets its numbers? 0" trim? Fat chance. It’s no secret that Americans need to cut back on meat. While we Mostly from, or now eat more chicken than beef, we still eat too much red meat, with funding from, the beef and pork industries. Hmm... especially beef. That’s bad news for our health and for the planet. The USDA’s database has numbers for beef that has had People who eat more red meat—especially processed meat—have the fat around its edges trimmed down to just ⁄8” or 0”. a higher risk of colon cancer, heart disease, and stroke. (The pork industry never even says how much its cuts were trimmed.) And it doesn’t help that misleading information about meat or The USDA also has numbers for what’s called “separable poultry can trick even the most careful shoppers. Here’s what to lean.” That’s after scalpel-wielding technicians trim off the watch out for. “separable fat”—every bit of fat except marbling within the muscle. Missing labels? All that trimming (where do you keep your scalpel?) helps explain how the beef industry’s website can end up touting voluntarily, you’re 38 cuts of “lean” beef. The list even includes fatty cuts like stuck with a brochure New York strip steak and brisket.
    [Show full text]
  • Small, Healthy, High-Yielding the Years of War Have Led to a Rapid Decline in the Nutritional Status of People in the Democratic Republic of Congo
    International Platform Small, healthy, high-yielding The years of war have led to a rapid decline in the nutritional status of people in the Democratic Republic of Congo. To cover their protein requirements, the rural population in the Kivu region in the east of the country have turned to raising guinea pigs. For many families these rodents are nowadays not just a vital element of their food security, but also an essential source of income. Since the beginning of the great n Guinea pigs are a source of read- of every ten households in rural areas wars – which began in Kivu towards ily available meat and income for breed guinea pigs in herds, varying in 1992 and gained in intensity between producers who raise them in large number from six to thirty, depending the years 1996 and 2003 – the pro- quantities; on whether they are in the territories duction of cattle, small ruminants and n They supply good-quality organic of Fizi, Mwenga and Shabunda, or in swine paid a heavy toll, having served fertiliser for the fi elds; Kabare and Walungu, the two latter ter- as rations for the various armed groups. n Minimum startup capital is required; ritories, experiencing a strong demo- Since then, the path has been cleared n Feeding them is very cheap and does graphic explosion, being large pro- for guinea pig production and preju- not compete with food for humans duction areas. Guinea pigs are mainly dices formerly held against this animal (fodder, kitchen waste, etc.); raised by women and children (83 % have been swept away (see box).
    [Show full text]
  • Toxicity of Horse Meat
    Toxicity of Horse Meat U.S. horse meat is unfit for human consumption because of the uncontrolled administration of hundreds of dangerous drugs and other substances to horses before slaughter. Facts: • Virtually all horses slaughtered for human food start their lives as American pets, sport horses (competitions, rodeos and races), or former wild horses who are privately owned. • Hundreds of chemicals are applied to or ingested by slaughtered horses on a constant basis throughout their lives . These drugs are often labeled “Not for use in animals used for food/that will be eaten by humans.” • Over fifty known drugs are expressly prohibited by current federal regulations for use in food animals (for example, Phenylbutazone, or “Bute,” a pain reliever known to cause potentially fatal human diseases). Any use of those drugs should block their use as food, yet almost every horse who would be slaughtered for meat has been exposed to many of these prohibited drugs. • Horses are not raised for food and therefore regularly administered these chemicals -- unlike other animals that we eat, who are maintained within a regulated industry. • There are many drugs and substances regularly used on horses that have never been tested on humans. The potential danger of eating them is completely unknown. • Race horses are not only given the above mentioned drugs routinely, but many are also given illegal drugs as well, such as “chemicals that bulk up pigs and cattle before slaughter, cobra venom, Viagra, blood doping agents, stimulants and cancer drugs.” (New York Times, March 25, 2012) • Due to the multitude of substances that horses are exposed to, all horse meat could cause illness or adverse reactions.
    [Show full text]