Polywell Fusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device
instruments Article Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device Nathan Majernik, Seth Pree, Yusuke Sakai, Brian Naranjo, Seth Putterman and James Rosenzweig * ID Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA; [email protected] (N.M.); [email protected] (S.P.); [email protected] (Y.S.); [email protected] (B.N.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +310-206-4541 Received: 12 February 2018; Accepted: 5 April 2018; Published: 11 April 2018 Abstract: Recently, there has been intense interest in small dense plasma focus (DPF) devices for use as pulsed neutron and X-ray sources. Although DPFs have been studied for decades and scaling laws for neutron yield versus system discharge current and energy have been established (Milanese, M. et al., Eur. Phys. J. D 2003, 27, 77–81), there are notable deviations at low energies due to contributions from both thermonuclear and beam-target interactions (Schmidt, A. et al., Phys. Rev. Lett. 2012, 109, 1–4). For low energy DPFs (100 s of Joules), other empirical scaling laws have been found (Bures, B.L. et al., Phys. Plasmas 2012, 112702, 1–9). Although theoretical mechanisms to explain this change have been proposed, the cause of this reduced efficiency is not well understood. A new apparatus with advanced diagnostic capabilities allows us to probe this regime, including variants in which a piston gas is employed. Several complementary diagnostics of the pinch dynamics and resulting X-ray neutron production are employed to understand the underlying mechanisms involved. -
Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4
P/2488 USA Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4 By J. P. Conner, D. C. H age r m an, J. L. Honsaker, H. J. Karr, J. P. Mize, J. E. Osher, J. A. Phillips and E. J. Stovall Jr. Several investigators1"6 have reported initial success largely inductance-limited and not resistance-limited in stabilizing a pinched discharge through the utiliza- as observed in PS-3. After gas breakdown about 80% tion of an axial Bz magnetic field and conducting of the condenser voltage appears around the secondary, walls, and theoretical work,7"11 with simplifying in agreement with the ratio of source and load induct- assumptions, predicts stabilization under these con- ances. The rate of increase of gas current is at first ditions. At Los Alamos this approach has been large, ~1.3xlOn amp/sec, until the gas current examined in linear (Columbus) and toroidal (Per- contracts to cause an increase in inductance, at which hapsatron) geometries. time the gas current is a good approximation to a sine Perhapsatron S-3 (PS-3), described elsewhere,4 was curve. The gas current maximum is found to rise found to be resistance-limited in that the discharge linearly with primary voltage (Fig. 3), deviating as current did not increase significantly for primary expected at the higher voltages because of saturation vçltages over 12 kv (120 volts/cm). The minor inside of the iron core. diameter of this machine was small, 5.3 cm, and the At the discharge current maximum, the secondary onset of impurity light from wall material in the voltage is not zero, and if one assumes that there is discharge occurred early in the gas current cycle. -
1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science. -
Revamping Fusion Research Robert L. Hirsch
Revamping Fusion Research Robert L. Hirsch Journal of Fusion Energy ISSN 0164-0313 Volume 35 Number 2 J Fusion Energ (2016) 35:135-141 DOI 10.1007/s10894-015-0053-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Fusion Energ (2016) 35:135–141 DOI 10.1007/s10894-015-0053-y POLICY Revamping Fusion Research Robert L. Hirsch1 Published online: 28 January 2016 Ó Springer Science+Business Media New York 2016 Abstract A fundamental revamping of magnetic plasma Introduction fusion research is needed, because the current focus of world fusion research—the ITER-tokamak concept—is A practical fusion power system must be economical, virtually certain to be a commercial failure. Towards that publically acceptable, and as simple as possible from a end, a number of technological considerations are descri- regulatory standpoint. In a preceding paper [1] the ITER- bed, believed important to successful fusion research. -
General Fusion
General Fusion Fusion Power Associates, 2011 Annual Meeting 1 General Fusion Making commercially viable fusion power a reality. • Founded in 2002, based in Vancouver, Canada • Plan to demonstrate a fusion system capable of “net gain” within 3 years • Industrial and institutional partners including Los Alamos National Lab and the Canadian Government • $32.5M in venture capital, $4.5M in government support Fusion Power Associates, 2011 Annual Meeting 2 General Fusion’s Acoustically Driven MTF Fusion Power Associates, 2011 Annual Meeting 3 Commercialization Advantages Fusion Challenge General Fusion Solution 1.5 m of liquid lead lithium greatly lowers the neutron energy spectrum Neutron activation and embrittlement of structure Low neutron load at the metal wall Low activation Low radiation damage n,2n reaction in lead 4π coverage Tritium breeding Thick blanket High tritium breeding ratio of 1.6 Heat extraction Heat extraction by the working fluid Pb -Li Solubility of tritium in Pb -Li is low Tritium safety 100 M W plant size Low tritium inventory (2g) Pneumatic energy storage >100X lower System cost cost than capacitors Cost of targets in pulsed Liquid metal compression systems - “kopeck” problem No consumables Fusion Power Associates, 2011 Annual Meeting 4 Development Plan 4 years PHASE I Proof of principle Completed 2009 PHASE IIa Construct key components at full scale 2.5 years Prove system can be built $30M Progress to Date Plasma compression tests PHASE II 2012 PHASE IIb 2 years Demonstration of Net Gain Build net gain prototype $35M -
Fusion in Upheaval
Fusion In Upheaval On May first, congress released another climate change report. 841 pages of bad news [31]. Climate change is already happening. It will get worse. An ice sheet, the size of New Mexico and Arizona is sliding into the ocean [32]. Mankind can hear the slow ticking, of an environmental time bomb. Climate change is manmade. It is caused by the burning of carbon fuels. We cannot seem to stop. To stop, we need a zero-emission energy alternative. One so cheap that pulls in the entire world. Energy that is so plentiful, it replaces all existing sources. Fusion could be that solution. We need a determined effort to make it real. We are running out of time. We need to push every option. This is including (and especially) new options. Traditionally, funding has failed here. But that may finally be changing. Fusion is in upheaval. The ignition effort has failed. Billionaires and crowds are funding ideas. Teenagers are becoming fusioneers. New paths are rising from obscurity. Few have noticed it yet - but a revolution is on its way. Executive Summary: This covers developments in fusion: the navy work, LIFE ending, high school fusioneers and General Fusion. The navy work will be significant because of: firm theory, a credible team, fine equipment and a supporting community. Grad predicted that high pressure, cusped confinement would be MHD stable. The polywell seems to behave this way. When compared to other confinement schemes, this has advantages. In April, Livermore quietly ended the Laser Inertial Fusion Energy program. The historic goals of the 13 billion dollar ICF program are summarized. -
Sixty Years on from ZETA …
Sixty years on from ZETA … Chris Warrick The Sun … What is powering it? Coal? Lifetime 3,000 years Gravitational Energy? Lifetime 30 million years – Herman Von Helmholtz, Lord Kelvin - mid 1800s The Sun … Suggested the Earth is at least 300 million years old – confirmed by geologists studying rock formations … The Sun … Albert Einstein (Theory of Special Relativity) and Becquerel / Curie’s work on radioactivity – suggested radioactive decay may be the answer … But the Sun comprises hydrogen … The Sun … Arthur Eddington proposed that fusion of hydrogen to make helium must be powering the Sun “If, indeed, the subatomic energy is being freely used to maintain their great furnaces, it seems to bring a little nearer to fulfilment our dream of controlling this latent power for the well-being of the human race – or for its suicide” Cambridge – 1930s Cockcroft Walton accelerator, Cavendish Laboratory, Cambridge. But huge energy losses and low collisionality Ernest Rutherford : “The energy produced by the breaking down of the atom is a very poor kind of thing . Anyone who expects a source of power from the transformation of these atoms is talking moonshine.” Oxford – 1940s Peter Thonemann – Clarendon Laboratory, Oxford. ‘Pinch’ experiment in glass, then copper tori. First real experiments in sustaining plasma and magnetically controlling them. Imperial College – 1940s George Thomson / Alan Ware – Imperial College London then Aldermaston. Also pinch experiments, but instabilities started to be observed – especially the rapidly growing kink instability. AERE Harwell Atomic Energy Research Establishment (AERE) Harwell – Hangar 7 picked up fusion research. Fusion is now classified. Kurchatov visit 1956 ZETA ZETA Zero Energy Thermonuclear Apparatus Pinch experiment – but with added toroidal field to help with instabilities and pulsed DC power supplies. -
How to Build a Small Plasma Focus - Recipes and Tricks
2370-12 School and Training Course on Dense Magnetized Plasma as a Source of Ionizing Radiations, their Diagnostics and Applications 8 - 12 October 2012 How to build a small Plasma Focus - Recipes and tricks Leopoldo Soto Comision Chilena de Energia Nuclear Casilla 188-D, Santiago Chile Center for Research and Applications in Plasma Physics and Pulsed Power, P4 Chile How to build a small Plasma Focus Recipes and tricks Leopoldo Soto Comisión Chilena de Energía Nuclear Casilla 188-D, Santiago, Chile and Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Chile [email protected] School and Training on Dense Magnetized Plasmas L. Soto, Thermonuclear Plasma Department ICTP, Trieste, Italy, 8-12 October, 2012 Chilean Nuclear Energy Commission To build a plasma focus it is necessary to defin the followings parameters: - Energy ? - Capacitor, C? - Voltage operation, V0? - Inductance, L? - Current peak, I0 ? - Anode radius, a? - Effective anode length (over the insulator), z? - Operational pressure, p? - Insulator length, lins ? - Cathode radius, b? School and Training on Dense Magnetized Plasmas L. Soto, Thermonuclear Plasma Department ICTP, Trieste, Italy, 8-12 October, 2012 Chilean Nuclear Energy Commission Why and for what a small PF? To do plasma research To study plasma dynamics and intabilities To study the X-ray emmited To study the neutrons emmited To study plasma jets … School and Training on Dense Magnetized Plasmas L. Soto, Thermonuclear Plasma Department ICTP, Trieste, Italy, 8-12 October, 2012 Chilean Nuclear Energy Commission Why and for what a small PF? To develop a non radioactive source To do flash radiography and non destructive testing To do litography To develop a portable non-radiactive source of neutrons for field applications … To teach experimental plasma physics and nuclear techniques, to train students School and Training on Dense Magnetized Plasmas L. -
Stellarator Research Opportunities
Stellarator Research Opportunities A report of the National Stellarator Coordinating Committee [1] This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed. -
A “Polywell” P+11B Power Reactor Joel G
A “Polywell” p+11B Power Reactor Joel G. Rogers, Ph.D. [email protected] Aneutronic fusion is the holy grail of fusion power research. A new method of operating Polywell was developed which maintains a non-Maxwellian plasma energy distribution. The method extracts down-scattered electrons and replaces them with electrons of a unique higher energy. The confined electrons create a stable electrostatic potential well which accelerates and confines ions at the optimum fusion energy, shown in the graph below. Particle-in-cell(PIC) simulations proceeded in two steps; 1) operational parameters were varied to maximize power balance(Q) in a small-scale steady-state reactor; and 2) the small scale simulation results were scaled up to predict how big a reactor would need to be to generate net power. Q was simulated as the ratio of fusion-power- output to drive-power-input. Fusion-power was computed from simulated ion density and ion velocity. Power-input was simulated as the power required to balance non-fusing ion losses. The predicted break-even reactor size was 13m diameter. Bremsstrahlung losses were also simulated and found manageable. Robert W. Bussard, “Should Google Go Nuclear”, http://askmar.com/Fusion.html, November, 2006 1 These 15 slides were presented on December 8, 2011 at the 13th U.S.- Japan Workshop on Inertial Electrostatic Confinement Fusion (http://www.physics.usyd.edu.au/~khachan/IEC2011/Presentations/Rogers.pdf) Repeating the abstract: “Aneutronic fusion is the holy grail of fusion power research. A new method of operating Polywell was developed which maintains a non-Maxwellian plasma energy distribution. -
Polywell – a Path to Electrostatic Fusion
Polywell – A Path to Electrostatic Fusion Jaeyoung Park Energy Matter Conversion Corporation (EMC2) University of Wisconsin, October 1, 2014 1 Fusion vs. Solar Power For a 50 cm radius spherical IEC device - Area projection: πr2 = 7850 cm2 à 160 watt for same size solar panel Pfusion =17.6MeV × ∫ < συ >×(nDnT )dV For D-T: 160 Watt à 5.7x1013 n/s -16 3 <συ>max ~ 8x10 cm /s 11 -3 à <ne>~ 7x10 cm Debye length ~ 0.22 cm (at 60 keV) Radius/λD ~ 220 In comparison, 60 kV well over 50 cm 7 -3 (ne-ni) ~ 4x10 cm 2 200 W/m : available solar panel capacity 0D Analysis - No ion convergence case 2 Outline • Polywell Fusion: - Electrostatic Fusion + Magnetic Confinement • Lessons from WB-8 experiments • Recent Confinement Experiments at EMC2 • Future Work and Summary 3 Electrostatic Fusion Fusor polarity Contributions from Farnsworth, Hirsch, Elmore, Tuck, Watson and others Operating principles (virtual cathode type ) • e-beam (and/or grid) accelerates electrons into center • Injected electrons form a potential well • Potential well accelerates/confines ions Virtual cathode • Energetic ions generate fusion near the center polarity Attributes • No ion grid loss • Good ion confinement & ion acceleration • But loss of high energy electrons is too large 4 Polywell Fusion Combines two good ideas in fusion research: Bussard (1985) a) Electrostatic fusion: High energy electron beams form a potential well, which accelerates and confines ions b) High β magnetic cusp: High energy electron confinement in high β cusp: Bussard termed this as “wiffle-ball” (WB). + + + e- e- e- Potential Well: ion heating &confinement Polyhedral coil cusp: electron confinement 5 Wiffle-Ball (WB) vs. -
Compact Fusion Reactors
Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics 26.03.2015 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lockheed Martin and LPP Fusion. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given. CERN Colloquium 26th of March 2015 Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 1 / 37 Contents Contents 1 Introduction 2 Funding of fusion research 3 Basics of fusion 4 The Polywell reactor 5 Lockheed Martin CFR 6 Dense plasma focus 7 MTF 8 Other fusion concepts or companies 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 2 / 37 Introduction Introduction Climate disruption ! ! Pollution ! ! ! Extinctions Ecosystem Transformation Population growth and consumption There is no silver bullet to solve these issues, but energy production is "#$%&'$($#!)*&+%&+,+!*&!! central to many of these issues. -.$&'.$&$&/!0,1.&$'23+! Economically practical fusion power 4$(%!",55*6'!"2+'%1+!$&! could contribute significantly to meet +' '7%!89 !)%&',62! the future increased energy :&(*61.'$*&!(*6!;*<$#2!-.=%6+! production demands in a sustainable way.