Compact Fusion Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Compact Fusion Reactors Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics NST2016, Helsinki, 3rd of November 2016 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using alternative concepts, that potentially could result on a faster time scale in smaller and cheaper devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to standard tokamaks decreases the costs and building time of the reactors and this has allowed several private companies to enter the field, like EMC2, General Fusion, Helion Energy, LPP Fusion, Lockheed Martin, Tokamak Energy and Tri Alpha Energy. These companies are trying to demonstrate the feasibility of their concept. If that is succesfully done, their next step is to try to demonstrate net energy production and after that to attempt to commercialize their technology. In this presentation a very brief overview of compact fusion reactor research is given. Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 1 / 24 Contents Contents 1 Fusion conditions 2 Plasma confinement 3 The Polywell reactor 4 Lockheed Martin CFR 5 Dense plasma focus 6 MTF 7 Spherical tokamaks 8 Other fusion concepts 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 2 / 24 Fusion conditions Fusion conditions See Antti Hakolas presentation in this conference on mainline fusion. A useful fusion performance metric is the triple product NτT (1) that has to execeed some threshold value for the fusion reaction in question for the fusion power to exceed radiation and other losses and maintain a constant plasma temperature. N is the particle density, the confinement time is τ and the temperature is T . For DT the minimum required value for a thermal plasma is 3·1021 keVs/m3. Several plasma heating methods exist. The required temperature is defined by the desired fusion reaction Achieving stable plasma confinement filling the triple product has proved hard The density and the confinement time can by varied in a large unexplored plane Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 3 / 24 Fusion conditions Fusion conditions The ratio of plasma pressure to magnetic pressure β is a figure of merit of how well the investment in the magnetic field can be utilized. Fusion power is proportional to β2. The achievable value of β is often limited by plasma instabilities. β = pkin=pmag (2) 2 where p = N kT + N kT , p = B . N (T ), N (T ) = ion- kin i i e e mag 2µ0 i i e e respective electron particle density (temperature), k = Boltzmann constant and B = the magnetic field and µ0 = the permeability of vacuum [1]. The ITER β design value is ≈ 0.03 [2] A compact fusion reactor in this context has a significantly smaller plasma volume than a traditional tokamak because of a large value of β. Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 4 / 24 Plasma confinement Plasma confinement Examples of plasma confinement methods: Magnetic Confinement Fusion (MCF) Tokamak (JET, ITER, ...), stellarator (Wendelstein 7-X), ... N ≈ 1014/cm3, τ ≈ 1 s Inertial Confinement Fusion (ICF) Laser fusion (National Ignition Facility, High Power laser Energy Research facility (HiPER), ...) N ≈ 1025/cm3, τ ≈ 1 ns Heavy Ion Fusion (HIF) Inertial Electrostatic Confinement (IEC) Magnetized Target Fusion (MTF) also Magneto Inertial Fusion (MIF) (General Fusion, Helion Energy, ...) [3] N ≈ 1019/cm3, τ ≈ 1 µs Magnetic confinement- and laser fusion get the majority of the funding The emphasis of laser fusion is on military applications Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 5 / 24 Plasma confinement Plasma confinement Plasmoids Self confined plasmas where the magnetic fields are mostly generated by currents circulating in the plasma are called plasmoids or Compact Torii [4]: Field Reversed Configuration (FRC) Spheromak Plasmoid Axial- Poloidal field Toroidal field Bt symmetry Bp Bt on surface FRC yes yes no no Spheromak yes yes yes no The poloidal field is contained in planes through the symmetry axis. The toroidal field circulates the symmetry axis. FRC-plasmoids can reach β ≈ 1. Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 6 / 24 The Polywell reactor The Polywell reactor Figure: An EMC2 Polywell with a side Figure: Polywell field lines for β = 0. length of 21.6 cm built for β=1 studies. Simulated electron trajectories are green. Electrons confined in a magnetic cusp accelerate and confine ions [5, 6, 7, 8, 9] The field geometry has a stable curvature EMC2 has shown: 1995: Electrostatic fusion in a Polywell (a potential well for ions) [10] 2013: High β together with greatly increased electron confinement [2] To show the scientific feasibility of the Polywell for energy production, both of these have to be demonstrated at the same time Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 7 / 24 Lockheed Martin CFR Lockheed Martin CFR Lockheed Martin Compact Fusion Reactor project started in 2011 T4 experiment published in February 2013 by C. Chase, aim 200 MW CFR patents published in 09/2014 [11, 12, 13, 14, 15, 16, 17, 18] T. McGuire leads the development at Skunk Works T4 experiment 1 m * 2 m, nominal reactor core 5.2 m * 15.2 m Axisymmetric, ideas from many concepts, mirrors at ends, DT-fuel Few open magnetic field lines, good field curvature, high β heating power 15 kW (to be increased to 100 kW) 16 17 3 Pulses ≈1 s, Te =10-25 eV, τE =4{100 µs, N=10 {10 /m [19, 20] Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 8 / 24 Dense plasma focus Dense plasma focus LPP Fusion (LPPF), led by E. Lerner [21] Dense Plasma Focus: J.W. Mather 1960s, N.V. Filippov 1954. An electric discharge creates the plasma, which develops through a series of instabilities to a plasmoid Goal P = 5 MWe, f = 200 Hz Figure: LPPF reactor [21]. Landau quantization is expected to decrease bremsstrahlung For a DD-plasma E>150 keV has been measured [22], which is enough for p11B τ ≈ 20 ns, surpasses 8 ns goal Energy transfer to the plasmoid surpasses Figure: Electrode length ≈ 15 cm. goal with 50 % ρ needs to increase with 104 for Q = 1 Worked on reducing electron induced impurities [23] Working on reducing plasma impurities from W electrode Figure: Schematic plasma discharge. Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 9 / 24 MTF Fusion Technologies Plasma Energy Driver Power 1.00E+11 1.00E+15 NIF ITER $6B $20B GJ TW 1.00E+08 1.00E+12 GF MJ $150M GW 1.00E+05 1.00E+09 $ Cost of Driver $ Cost of Confinement kJ MW 1.00E+02 1.00E+06 1.00E+13 1.00E+16 1.00E+19 1.00E+22 1.00E+25 Plasma Density (cm-3) SOFE 2013 2 MTF MTF General Fusion - acoustically heated MTF [24, 25, 26, 27, 28, 29, 30, 31] Based on LINUS concept from the 1970s Chief scientist and founder M. Laberge The planned reactor is a sphere with r = 1,5 m with a rotating molten PbLi mixture, P = 100 MWe, f = 1 Hz, Q = 6 Two plasma injectors create, accelerate and compress spheromaks The spheromaks injected through the vortex in the middle collide The FRC DT-plasma is heated to fusion conditions acoustically with hundreds of computer controlled pneumatic pistons The GF concept has several advantages compared to a tokamak: No "inner wall" problem, no divertor needed PbLi is a coolant and neutron multiplicator for T-generation Can be retrofitted to turbines of existing power plants Potential problems Compression and stability of the injected spheromaks Richtmyer-Meshkov instability Pb,Li-impurities can cool the plasma Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 11 / 24 MTF MTF Figure: General Fusions 14 piston test reactor "Mini-Sphere", with a diameter of one meter, is used for validating compression simulations. Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 12 / 24 MTF MTF The General Fusion development plan: Phase I - Proof of principle 2002 - 2008, < 1 M$ Research and development Phase II - Show net gain ≈ 50 M$ System development Current status [32] Physics validation Full scale prototype ≈ 500 M$ Phase III - Commercialization Alpha and Beta power plants ≈ 2 G$ Then power production Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 13 / 24 MTF MTF Figure: Helion Energy, MSNW LLC Grande experiment [33, 34]. Two colliding FRCs merge to a stationary FRC The FRC is compressed magnetically in the burn chamber Ti ≈ 2,3 keV obtained for D-ions A plasmoid speed of 300 km/s has been achieved Plans to use D+D (3He) fuel Targets 50 MWe prototype in 2019 and commercialization in 2022 ARPA-E: VENTI 12 T & FEP 20 T compression, FEP-G 40 T reactor MSNW develops a fusion driven rocket (FDR) with NIAC funding Lithium compresses the plasma, absorbs neutrons and generates T Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 14 / 24 MTF MTF Figure: Tri Alpha Energy (TAE) experiment C-2U [35, 36, 37, 38, 39]. A FRC is produced by two colliding plasmoids The plasmoid injection speed is 250 km/s The goal is to stabilize the FRC-state with neutral beam injection and with external electric and magnetic fields The C-2 FRC lifetime was 5 ms, Ti ≈ 1 keV With C-2U a stable lifetime of 5 ms was reached C2-W to be completed in mid 2017 will aim for increased temperature TAE plans to use D3He or p11B Tomas Lind´en (HIP) Compact fusion reactors 03.11.2016 15 / 24 Spherical tokamaks Spherical tokamaks Mega Ampere Spherical Tokamak Upgrade (MAST-U) National Spherical Torus eXperiment Upgrade (NSTX-U) Affordable, robust, compact (ARC), high field compact tokamak Tokamak Energy Ltd, high
Recommended publications
  • The Fork in the Road to Electric Power from Fusion US Navy Compact
    The Fork in the Road to Electric Power From Fusion US Navy compact fusion reactors Peter Lobner, 1 February 2021 1. Background For at least the past 40 years, the US Navy has been funding fusion power research and development in considerable secrecy. In this article, we’ll take a brief look at the following US Navy fusion programs, focusing on the two most recent programs. • LINUS - pulsed stabilized liquid liner compressor (SLC) • Low Energy Nuclear Reactions (LENR, aka cold fusion) • Polywell fusion - inertial electrostatic confinement (IEC) • NIKE & Electra krypton fluoride direct-drive laser inertial confinement fusion (ICF) • Plasma compression fusion device (2019) • Argon fluoride direct-drive laser ICF (2020) 2. LINUS - pulsed stabilized liquid liner compressor (SLC) In the 1970s, this Naval Research Laboratory (NRL)-sponsored project developed and tested several pulsed stabilized liquid liner compressor (SLC) machines: LINUS-0, SUZY-II and HELIUS. A plasma is injected into a void space in a flowing molten lead-lithium liner. The liquid liner is then imploded mechanically, using high- pressure helium-driven pistons. The imploding liner compresses and adiabatically heats the plasma to fusion conditions. While the SLC concept was abandoned by the US Navy in the 1970s, it was revived in the 2000s as the basis for the small fusion reactor designs being developed by Compact Fusion Systems (US) and General Fusion (Canada). 3. Low Energy Nuclear Reactions (LENR, aka cold fusion) From the mid 1990s to at least the mid-2000s the US Navy sponsored research into cold fusion. You’ll find a list of cold fusion papers by Navy researchers from NRL, China Lake Naval Weapons 1 The Fork in the Road to Electric Power From Fusion Laboratory, and Space and Naval Warfare Systems Center (SPAWAR) here: https://lenr-canr.org/wordpress/?page_id=952 4.
    [Show full text]
  • STATUS of FUSION ENERGY Impact & Opportunity for Alberta Volume II
    STATUS OF FUSION ENERGY Impact & Opportunity for Alberta Volume II Appendices Prepared by Alberta/Canada Fusion Energy Program March 2014 ALBERTA COUNCIL OF TECHNOLOGIES Gratefully acknowledges the support of: Alberta Energy Stantec Corporation University of Alberta Alberta/Canada Fusion Energy Advisory Committee Gary Albach Nathan Armstrong Brian Baudais Will Bridge Robert Fedosejevs Peter Hackett Chris Holly Jerry Keller Brian Kryska Axel Meisen Rob Pitcairn Klaas Rodenburg John Rose Glenn Stowkowy Martin Truksa Gary Woloshyniuk Perry Kinkaide Allan Offenberger A special thank you is extended to the institutions (identified in this report) that were visited and to the many persons who so graciously hosted our site visits, provided the briefing material presented in this status report and thereby assisted our fusion assessment. Report Authors Allan Offenberger Robert Fedosejevs Klaas Rodenburg Perry Kinkaide Contact: Dr. Perry Kinkaide [email protected] 780-990-5874 Dr. Allan Offenberger [email protected] 780-483-1740 i TABLE OF CONTENTS Page List of Acronyms ………………………………………………………………………….. iii List of Figures……………………………………………………………………………… iv Appendix A: Assessment of Major Global Fusion Technologies 1.0 Context - Global Energy Demand……………………………………………………… 1 1.0.1 Foreward ……………………………………………………………………… 1 1.0.2 Energy Trends………………………………………………………………… 2 1.0.3 Energy From Fusion Reactions……………………………………………… 4 1.1 Major Approaches to Fusion Energy………………………………………………….. 7 1.1.1 Introduction……………………………………………………………………. 7 1.1.2 Fusion Reactions & the Fuel Cycle………………………………………….. 8 1.1.3 IFE Approaches to Fusion…………………………………………………… 11 1.1.3.1 Introduction………………………………………………………….. 11 1.1.3.2 Indirect Drive…………………………………………………………14 1.1.3.3 Direct Drive…………………………………………………………. 16 1.1.3.4 Fast Ignition………………………………………………………… 17 1.1.3.5 Shock Ignition………………………………………………………..19 1.1.3.6 IFE Power Reactor Systems……………………………………….20 1.1.3.7 Modeling Codes…………………………………………………….
    [Show full text]
  • Controlled Nuclear Fusion
    Controlled Nuclear Fusion HANNAH SILVER, SPENCER LUKE, PETER TING, ADAM BARRETT, TORY TILTON, GABE KARP, TIMOTHY BERWIND Nuclear Fusion Thermonuclear fusion is the process by which nuclei of low atomic weight such as hydrogen combine to form nuclei of higher atomic weight such as helium. two isotopes of hydrogen, deuterium (composed of a hydrogen nucleus containing one neutrons and one proton) and tritium (a hydrogen nucleus containing two neutrons and one proton), provide the most energetically favorable fusion reactants. in the fusion process, some of the mass of the original nuclei is lost and transformed to energy in the form of high-energy particles. energy from fusion reactions is the most basic form of energy in the universe; our sun and all other stars produce energy through thermonuclear fusion reactions. Nuclear Fusion Overview Two nuclei fuse together to form one larger nucleus Fusion occurs in the sun, supernovae explosion, and right after the big bang Occurs in the stars Initially, research failed Nuclear weapon research renewed interest The Science of Nuclear Fusion Fusion in stars is mostly of hydrogen (H1 & H2) Electrically charged hydrogen atoms repel each other. The heat from stars speeds up hydrogen atoms Nuclei move so fast, they push through the repulsive electric force Reaction creates radiant & thermal energy Controlled Fusion uses two main elements Deuterium is found in sea water and can be extracted using sea water Tritium can be made from lithium When the thermal energy output exceeds input, the equation is self-sustaining and called a thermonuclear reaction 1929 1939 1954 1976 1988 1993 2003 Prediction Quantitativ ZETA JET Project Japanese Princeton ITER using e=mc2, e theory Tokomak Generates that energy explaining 10 from fusion is fusion.
    [Show full text]
  • Can 250+ Fusions Per Muon Be Achieved?
    CAN 250+ FUSIONS PER MUON BE ACHIEVED? CONF-870448—1 Steven E. Jones DE87 010472 Brigham Young University Dept. of Physics and Astronomy Provo, UT 84602 U.S.A. INTRODUCTION Nuclear fusion of hydrogen isotopes can be induced by negative muons (u) in reactions such as: y- + d + t + o + n -s- u- (1) t J N This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (a) and a neutron (n), releasing energy which reaches the earth as light and heat. Life in the universe depends on fusion energy. In the case of reaction (1), the muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon- catalyzed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g. room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the nuon. In analogy to an ordinary hydrogen molecule, the nuon binds together the deuteron and triton in a very small molecule. Since the muonic mass is so large, the dtp molecule is tiny, so small that the deuteron and triton are induced to fuse together in about a picosecond - one millionth of the nuon lifetime. We could speak here of nuonlc confinement, in lieu of the gravitational confinement found in stars, or MASTER DISTRIBUTION OF THIS BBCUMENT IS UNLIMITED magnetic or inertial confinement of hot plasmas favored in earth-bound attempts at imitating stellar fusion.
    [Show full text]
  • Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Capstone Design Expo Posters College of Engineering 2015 Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University Brian Hortelano Virginia Commonwealth University Yonathan Kassaye Virginia Commonwealth University See next page for additional authors Follow this and additional works at: https://scholarscompass.vcu.edu/capstone Part of the Engineering Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/capstone/40 This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux, and Nick Reuter This poster is available at VCU Scholars Compass: https://scholarscompass.vcu.edu/capstone/40 Team Members: Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux Inertial Electrostatic Faculty Advisor: Dr. Sama Bilbao Y Leon, Mr. James G. Miller Sponsor: Confinement Fusor Dominion Virginia Power What is Fusion? Shielding Computational Modeling Because the D-D fusion reaction One of the potential uses of the fusor will be to results in the production of neutrons irradiate materials and see how they behave after and X-rays, shielding is necessary to certain levels of both fast and thermal neutron protect users from the radiation exposure. To reduce the amount of time and produced by the fusor. A Monte Carlo resources spent testing, a computational model n-Particle (MCNP) model was using XOOPIC, a particle interaction software, developed to calculate the necessary was developed to model the fusor.
    [Show full text]
  • Simulation of a Device Providing Nuclear Fusion by Electrostatic Confinement, with Multiplasma
    1 Simulation of a device providing nuclear fusion by electrostatic confinement, with Multiplasma Copyright © 2018 Patrick Lindecker Maisons-Alfort (France) 22th of July 2018 Revision B Revision B: replacement of the term « efficiency » by « yield » to avoid an ambiguity and the aneutronic fusion H+ <-> B11+ taken into account. 1. Goal To design your own electrostatic confinement nuclear fusion reactor. It is addressed to people interested by nuclear fusion, having a good general culture in physics (and who are patient because simulations can be long). It is set aside the fact that your project is physically achievable or not. 2. Warning This design will be just for the « fun » or from curiosity, because even if the calculations done by Multiplasma are as serious as possible, in the limit of the knowledge of the author (who is not a nuclear physicist but a generalist engineer), of course, nobody is going to build your nuclear reactor… Otherwise, none checking has been made by another person and the program development does not follow any quality assurance process (so there are probably a lot of errors). It is just a personal program made available to those interested by this subject. 3. Brief explanations of a few of the terms used: Deuterium (D or D2) / Tritium (T or T2): these are hydrogen isotopes comprising, besides one proton, either one neutron (Deuterium) or 2 neutrons (Tritium). As other elements, they are susceptible to produce fusions by collisions. The Deuterium is relatively abundant, in sea water, for example. It constitutes 0.01 % of hydrogen. The tritium is naturally present at traces 2 amounts but it is produced (as a gaseous effluent) by fission nuclear centrals, in very small quantities.
    [Show full text]
  • Nuclear Fusion
    Copyright © 2016 by Gerald Black. Published by The Mars Society with permission NUCLEAR FUSION: THE SOLUTION TO THE ENERGY PROBLEM AND TO ADVANCED SPACE PROPULSION Gerald Black Aerospace Engineer (retired, 40+ year career); email: [email protected] Currently Chair of the Ohio Chapter of the Mars Society Presented at Mars Society Annual Convention, Washington DC, September 22, 2016 ABSTRACT Nuclear fusion has long been viewed as a potential solution to the world’s energy needs. However, the government sponsored megaprojects have been floundering. The two multi-billion- dollar flagship programs, the International Tokamak Experimental Reactor (ITER) and the National Ignition Facility (NIF), have both experienced years of delays and a several-fold increase in costs. The ITER tokamak design is so large and complex that, even if this approach succeeds, there is doubt that it would be economical. After years of testing at full power, the NIF facility is still far short of achieving its goal of fusion ignition. But hope is not lost. Several private companies have come up with smaller and simpler approaches that show promise. This talk highlights the progress made by one such private company, namely LPPFusion (formerly called Lawrenceville Plasma Physics). LPPFusion is developing focus fusion technology based on the dense plasma focus device and hydrogen-boron 11 fuel. This approach, if it works, would produce a fusion power generator small enough to fit in a truck. This device would produce no radioactivity, there would be no possibility of a meltdown or other safety issues, and it would be more economical than any other source of electricity.
    [Show full text]
  • Reactor Potential for Magnetized Target Fusion
    TR.TA-A Report ISSN 1102-2051 VETENSKAP OCH ISRN KTH/ALF/--01/2--SE 1ONST KTH-ALF--01-2 KTH Reactor Potential for Magnetized Target Fusion Jon-Erik Dahlin Research and Training programme on CONTROLLED THERMONUCLEAR FUSION AND PLASMA PHYSICS (Association EURATOM/NFR) FUSION PLASMA PHYSICS ALFV N LABORATORY ROYAL INSTITUTE OF TECHNOLOGY SE-100 44 STOCKHOLM SWEDEN PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK TRITA-ALF-2001-02 ISRN KTH/ALF/--01/2--SE Reactor Potential for Magnetized Target Fusion J.-E. Dahlin VETENSKAP OCH KONST Stockholm, June 2001 The Alfven Laboratory Division of Fusion Plasma Physics Royal Institute of Technology SE-100 44 Stockholm, Sweden (Association EURATOM/NFR) Printed by Alfven Laboratory Fusion Plasma Physics Division Royal Institute of Technology SE-100 44 Stockholm Abstract Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and mag- netic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system.
    [Show full text]
  • Europe for Inertial Confinement Fusion
    EuropeEurope forfor InertialInertial ConfinementConfinement FusionFusion Technology Watch Workshop on IFE-KIT Madrid March 22, 2010 Jiri Ullschmied Association EURATOM IPP.CR PALS Research Centre, a joint laboratory of the Institute of Physics and Institute of Plasma Physics, Academy of Sciences of the Czech Republic www.pals.cas.cz Paper Layout State of the art - where are we now Lasers on the path to fusion National Ignition Facility Indirect drive / direct drive European lasers, LMJ Coordinated European effort in the laser research Various ignition scenarios - EU KIT contributions SWOT Summary State of the art - where are we now Steadily increasing progress in laser technology since 1960, lasers becoming the most dynamic field of physical research in the last decade. Megajoule and multi-PW lasers have become reality, laser beam focused intensity has been increased up to 1022 W/cm2 (Astra, UK). Last-generation high-power lasers - an unmatched tool for high-energy density physical research and potential fusion drivers. High-energy lasers worldwide Lasers on the path to Fusion Max output energy of single beam systems (Nd-glass, iodine, KrF) in the 1-10 kJ range, while EL > 1 MJ is needed for central ignition => multi-beam laser systems. Various fast ignition schemes are have been proposed, which should decrease the required energy by an order of magnitude. History and future of IFE lasers HiPER Three main tasks demonstrate ignition and burn demonstrate high energy gain develop technology for an IFE power plant Ignition to be demonstrated at NIF (2010?) and LMJ lasers. The natural next step: HiPER. National Ignition Facility NIF is a culmination of long line of US Nd-glass laser systems Nova, OMEGA and NIF shot rates measured in shots/day.
    [Show full text]
  • Inertial Fusion Power Development:Path for Global Warming Suppression
    Inertial Fusion Power Development:Path for Global Warming Suppression EU:France, UK,etc. US: LLNL, SNL, U. Rochester East Asia: Japan, China,etc. Kunioki Mima Institute of Laser Engineering, Osaka University IAEA- FC 2008, 50 years’ Ann. of Fusion Res. , Oct.15, 2008, Geneva, SW Outline • Brief introduction and history of IFE research • Frontier of IFE researches Indirect driven ignition by NIF/LMJ Ignition equivalent experiments for fast ignition • IF reactor concept and road map toward power plant IFE concepts Several concepts have been explored in IFE. Driver Irradiation Ignition Laser Direct Central hot spark Ignition HIB Indirect Fast ignition Impact ignition Pulse power Shock ignition The key issue of IFE is implosion physics which has progressed for more than 30 years Producing 1000times solid density and 108 degree temperature plasmas Plasma instabilities R Irradiation non-uniformities Thermal transport and ablation surface of fuel pellet ΔR R-M Instability ΔR0 R-T instability R0 R Feed through R-M and R-T Instabilities in deceleration phase Turbulent Mixing Canter of fuel pellet t Major Laser Fusion Facilities in the World NIF, LLNL, US. LMJ, CESTA, Bordeaux, France SG-III, Menyang,CAEP, China GXII-FIREX, ILE, Osaka, Japan OMEGA-EP, LLE, Rochester, US HiPER, RAL, UK Heavy Ion Beam Fusion: The advanced T-lean fusion fuel reactor Test Stand at LBNL NDCX-I US HIF Science Virtual National Lab.(LBNL, LLNL,PPPL) has been established in 1990. (Directed by G Logan) • Implosion physics by HIB • HIB accelerator technology for 1kA, 1GeV, 1mm2 beam: Beam brightness, Neutralization, NDCX II Collective effects of high current beam, Stripping.(R.Davidson etal) • Reactor concept with Flibe liquid jet wall (R.Moir: HYLIF for HIF Reactor) History of IFE Research 1960: Laser innovation (Maiman) 1972: Implosion concept (J.
    [Show full text]
  • Spherical Tokamak) on the Path to Fusion Energy
    Spherical Torus (Spherical Tokamak) on the Path to Fusion Energy ST can support fast implementation of fusion Demo in unique, important ways 1) Opportunities to support the strategy of Demo after ITER 2) Important ways in which ST can do so 3) Component Test Facility for steady state integrated testing 4) Broad progress and the remaining CTF physics R&D needs Martin Peng, NSTX Program Director Fusion Power Associates Annual Meeting and Symposium Fusion: Pathway to the Future September 27-28, 2006, Washington D.C. EU-Japan plan of Broader Approach toward Demo introduces opportunities in physics and component EVEDA OAK RIDGE NATIONAL LABORATORY S. Matsuda, SOFT 2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 2 Korean fusion energy development plan introduces opportunities in accelerating fusion technology R&D OAK RIDGEGS NATIONAL Lee, US LABORATORY2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 3 We propose that ST research addresses issues in support of this strategy • Support and benefit from USBPO-ITPA activities in preparation for burning plasma research in ITER using physics breadth provided by ST. • Complement and extend tokamak physics experiments, by maximizing synergy in investigating key scientific issues of tokamak fusion plasmas • Enable attractive integrated Component Test Facility (CTF) to support Demo, by NSTX establishing ST database and example leveraging the advancing tokamak database for ITER burning plasma operation and control. ST (All) USBPO- ITPA (~2/5) Tokamak (~3/4) OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 4 World Spherical Tokamak research has expanded to 22 experiments addressing key physics issues MAST (UK) NSTX (US) OAK RIDGE NATIONAL LABORATORY U.
    [Show full text]
  • Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device
    instruments Article Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device Nathan Majernik, Seth Pree, Yusuke Sakai, Brian Naranjo, Seth Putterman and James Rosenzweig * ID Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA; [email protected] (N.M.); [email protected] (S.P.); [email protected] (Y.S.); [email protected] (B.N.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +310-206-4541 Received: 12 February 2018; Accepted: 5 April 2018; Published: 11 April 2018 Abstract: Recently, there has been intense interest in small dense plasma focus (DPF) devices for use as pulsed neutron and X-ray sources. Although DPFs have been studied for decades and scaling laws for neutron yield versus system discharge current and energy have been established (Milanese, M. et al., Eur. Phys. J. D 2003, 27, 77–81), there are notable deviations at low energies due to contributions from both thermonuclear and beam-target interactions (Schmidt, A. et al., Phys. Rev. Lett. 2012, 109, 1–4). For low energy DPFs (100 s of Joules), other empirical scaling laws have been found (Bures, B.L. et al., Phys. Plasmas 2012, 112702, 1–9). Although theoretical mechanisms to explain this change have been proposed, the cause of this reduced efficiency is not well understood. A new apparatus with advanced diagnostic capabilities allows us to probe this regime, including variants in which a piston gas is employed. Several complementary diagnostics of the pinch dynamics and resulting X-ray neutron production are employed to understand the underlying mechanisms involved.
    [Show full text]