Europe for Inertial Confinement Fusion

Total Page:16

File Type:pdf, Size:1020Kb

Europe for Inertial Confinement Fusion EuropeEurope forfor InertialInertial ConfinementConfinement FusionFusion Technology Watch Workshop on IFE-KIT Madrid March 22, 2010 Jiri Ullschmied Association EURATOM IPP.CR PALS Research Centre, a joint laboratory of the Institute of Physics and Institute of Plasma Physics, Academy of Sciences of the Czech Republic www.pals.cas.cz Paper Layout State of the art - where are we now Lasers on the path to fusion National Ignition Facility Indirect drive / direct drive European lasers, LMJ Coordinated European effort in the laser research Various ignition scenarios - EU KIT contributions SWOT Summary State of the art - where are we now Steadily increasing progress in laser technology since 1960, lasers becoming the most dynamic field of physical research in the last decade. Megajoule and multi-PW lasers have become reality, laser beam focused intensity has been increased up to 1022 W/cm2 (Astra, UK). Last-generation high-power lasers - an unmatched tool for high-energy density physical research and potential fusion drivers. High-energy lasers worldwide Lasers on the path to Fusion Max output energy of single beam systems (Nd-glass, iodine, KrF) in the 1-10 kJ range, while EL > 1 MJ is needed for central ignition => multi-beam laser systems. Various fast ignition schemes are have been proposed, which should decrease the required energy by an order of magnitude. History and future of IFE lasers HiPER Three main tasks demonstrate ignition and burn demonstrate high energy gain develop technology for an IFE power plant Ignition to be demonstrated at NIF (2010?) and LMJ lasers. The natural next step: HiPER. National Ignition Facility NIF is a culmination of long line of US Nd-glass laser systems Nova, OMEGA and NIF shot rates measured in shots/day. For ICF new DPSSL high-repetition rate laser technology is needed. 25kJ UV Various NIF ignition NIF scenarios 1.8 MJ UV 192 beams NIF Status Project started 1997 NIF chamber interior Design altered and budget revised 2000 Building commisioned 2008 April 13, 2009: DOE announces NIF completion NIF building (May 2009) .. and exterior September 2009: Target experiments with all the 192 beams January 28, 2010 Ed Moses says: ”NIF has shown that it can consistently deliver the energy required to conduct ignition experiments later in this year”. Possible CI scenarios: • Spherical Indirect Drive • Tetrahedral Indirect Drive • Direct drive Indirect-drive ICF Spherical Hohlraum Cylindrical Hohlraum NIF indirect drive configurations (by Steve Hahn, LLNL) The Hohlraum scheme Symmetrical compression simulation Direct-drive ICF Direct irradiation of 2-mm-diameter capsules with a central volume of D-T gas, a frozen D-T solid-fuel layer, and an outer ablator layer. Expected gains ~ 3 - 8 times higher than for the indirect drive. Realization: Years 2012-13 NIF direct drive configuration (by Steve Hahn, LLNL) Target physics Different target structures and compositions to achieve optimum symmetric compression LLNL target designs have been validated in cooperation with laser physicists in Great Britain and France and Germany. Le laser Megajoule Similarly as NIF in the USA, LMJ will be a culmination of a long line of EU high-power lasers, with HiPER as the LULI VULCAN ASTERIX next step. FR: ILP Institut Lasers et Plasma LULI 2000 PALS ALISE (Activité Laser ImpulSionnel pour les Etudes) 200 J IR LIL - Ligne d’Intégration VULCAN-PW PHELIX GSI Laser 9.5 kJ, UV RAL CLF PETAL (PETavatt Aquitaine Laser) PW-LIL 30 kJ LMJ 240 beams, 2 MJ HiPER LMJ Status Target parameters: 2 MJ UV Project: 1999 Demonstration of an engineering prototype (LIL) 2003 2006 Construction started: March 2003 The building commissioned 2008 240 beams performance ? The nominal characteristics of the Megajoule laser have been already LMJ chambre (2006) obtained on a LIL beam: 15 kJ per beam, 7.5 kJ in UV LMJ building (Feb 2008) LMJ chambre (2008) EU laser laboratories – long tradition of collaboration LASERLAB-EUROPE 2 www.laserlab-europe.eu UKAEA IPPLM IPP-CZ IPP CEA KFKI IST ENEA CIEMAT EURATOM-KIT http://www.ife-kit.eu Coordinated European effort in ICF research There is a strongly interconnected European community of researchers with vast experience in experimental, theoretical and numerical studies of high-power laser interactions with matter. They have long-time experience with running large user facilities, including lasers, targets chambers and diagnostics, and developed broad range of methods for diagnostics of laser- target interaction and of laser-produced plasmas. Many experiments have been proposed by European theorists and guided by the numerical simulations they performed. In particular, researchers from 16 laboratories of 9 EU countries are carrying out high- quality collaborative research on IFE within the framework of EURATOM Keep-in-Touch Activities: CR IPP.CR + IOP ASCR PALS TW iodine laser France CEA-LULI, CELIA, LPGP & TRAMIS LULI100TW, LULI2000 Germany IPP-GSI & MPQ PHELIX, ATLAS, LWS, PFS UK As. UKAEA - RAL VULCAN, Astra-Gemini Hungary HAS KFKI-RMKI KrF laser Italy As. ENEA ABC laser Poland As. IPPLM Nd ps laser Portugal IST-GOLP TW laser Spain As. CIEMAT- DENIM, GIFI & ULPG (where the participation of CR, Hungary and Poland is intentionally emphasized) Paths to sub-MJ ICF ignition The aim of the various ignition scenarios suggested up to now is to decrease the required laser energy by separating the pellet compression from the ignition. by M. Dunn, IFSA 2009 Fast-ignition scenarios electron ignition ion ignition impact ignition other alternative schemes Substantial contribution by IFE KIT partners Electron fast ignition In the original version of the electron fast-ignition scenario the drive laser beams compress the fuel attached to a tiny Au-cone, then a PW-laser beam generates high-energy electrons at the cone tip, the electrons transport the energy to the compressed plasma core creating a hot spot, which ignites the fuel. KIT 2007-9 Simulations: Studies of electron transport in a compressed fuel (UKAEA-RAL UK, CEA-LULI France). Generation and transport of fast electrons produced by laser interaction with a gold double cone target (CEA-CELIA France, CIEMAT-UPM Spain). Cone burn symmetry, electron source and energy deposition studies (CEA- CELIA, UKAEA-RAL, IST Portugal) Cone burn symmetry Related KIT experiments: Laser energy conversion and dense plasma heating (RAL, IST + USA, Japan) Laser energy absorption at FI-relevant intensities (LULI, CELIA) Fast electron interaction in solid-density plasmas (IC, RAL, LULI, CELIA+ USA) Laser interaction with cone and reversed cone targets (PALS CR, IPPLM PL, DENIM Spain). Generation of mono-energetic electron beams (MPQ). Reversed cone Ion fast ignition FI based on a beam of quasi-monoenergetic ions (protons or heavier ions) has the advantage of a more localized energy deposition, which minimizes the required total beam energy, bringing it close to the ≈10 kJ minimum required for fuel densities ~500 g/cm3 (J.C.Fernandez et al., Nucl.Fus. 2009). KIT 2007-9 Simulations: Simulations and analytical modelling of penetration of high intensity laser pulses in plasma due to ponderomotive acceleration of ions in the forward direction – CEA France + GSI Germany Transport and stopping of intense particle beams in plasmas - LPGP France Related KIT experiments: Isochoric heating of matter by laser-accelerated high-energy protons, heating of matter by 20-MeV laminar proton beam – LULI France Proton acceleration with Phelix laser – GSI Germany Ion acceleration by circularly polarized laser pulses - MPQ Garching Current records: 8% conversion efficiency of laser energy into protons >4 MeV (Roth et al, Vulcan PW) >1 % conversion efficiency to of laser energy to C ions (MPQ Garching) (a) Concept J.J. Honrubia et al., PoP 16 (2009) (b) Experiment A. Henig et al., PRL 103 (2009) Shock ignition SI = improved central ignition. The basic idea of SI is to ignite the target by means of a strong convergent shock launched in the target at the end of the compression phase and prior to the final stagnation of the fuel at the target centre. The shock could be produced by a final intense spike in the laser pulse. The SI concept is relatively immune to asymmetry issues, seems to reduce the Rayleigh-Taylor instability growth. For the HiPER scale: 250 ps window for spike launch, 160 TW, 60 kJ, 250- 280 km/ s shock velocity, fusion yield > 20 MJ (Ribeyre et al. PPCF 2009; G. Schurtz et al. IFSA 2009) KIT 2007-9 Simulations: CHIC code 1-D and 2-D shock ignition simulations for HiPER irradiation geometry - CEA-CELIA 2-D Vlasov-Fokker-Planck-Landau model of Electron transport in SI pulse - CEA-CELIA, UKAEA Related KIT experiments: A strong experimental evidence that such a converging shock front indeed can be generated by short pulses - collaborative work of MPQ, BL-Imperial College and Ludwig-Maxm.Uni. Munich (J. Schreiber). Current SI-relevant experiments on shocks produced on planar targets by a pair of laser pulses at PALS by D. Batani, Universita di Milano- Bicocca, with theoretical support by G. Schurtz, CELIA. Impact ignition The fast ignition could be achieved by impact of an accelerated high-velocity macroparticle (small flyer plate, part of the pellet shell, plasma ball) onto a highly compressed DT target. A simple gain model (M. Murakami and H. Nagatomo, NIM 2005) indicated that a high gain of the order of 100 is possible at the total driver energy less than a few 100 kJ. An advantage of the IF concept is that, due to large length of acceleration, it permits to cumulate kinetic energy into projectile relatively slowly. A crucial milestone for the impact ignition is to demonstrate impact- compressed densities 100 g/cm3 in addition to high implosion velocities 108 cm/s. Laser macroparticle acceleration schemes • Ablative acceleration (the rocket effect, M. Murakami, 2005) • Reversed Acceleration Scheme (A. Kasperzuk, 2008) • Laser Induced Cavity Pressure Acceleration (J.
Recommended publications
  • To Download the Proceedings
    Russian Academy of Sciences Institute of Applied Physics International Symposium TTOOPPIICCAALL PPRROOBBLLEEMMSS OOFF NNOONNLLIINNEEAARR WWAAVVEE PPHHYYSSIICCSS 22 – 28 July, 2017 Moscow – St. Petersburg, Russia P R O C E E D I N G S Nizhny Novgorod, 2017 NWP-1: Nonlinear Dynamics and Complexity NWP-2: Lasers with High Peak and High Average Power NWP-3: Nonlinear Phenomena in the Atmosphere and Ocean WORKSHOP: Magnetic Fields in Laboratory High Energy Density Plasmas (LaB) CREMLIN WORKSHOP: Key Technological Issues in Construction and Exploitation of 100 Pw Lass Lasers Board of Chairs Henrik Dijkstra, Utrecht University, The Netherlands Alexander Feigin, Institute of Applied Physics RAS, Russia Julien Fuchs, CNRS, Ecole Polytechnique, France Efim Khazanov, Institute of Applied Physics RAS, Russia Juergen Kurths, Potsdam Institute for Climate Impact Research, Germany Albert Luo, Southern Illinois University, USA Evgeny Mareev, Institute of Applied Physics RAS, Russia Catalin Miron, Extreme Light Infrastructure, Romania Vladimir Nekorkin, Institute of Applied Physics RAS, Russia Vladimir Rakov, University of Florida, USA Alexander Sergeev, Institute of Applied Physics RAS, Russia Ken-ichi Ueda, Institute for Laser Science, the University of Electro-Communications, Japan Symposium Web site: http://www.nwp.sci-nnov.ru Organized by Institute of Applied Physics of the Russian Academy of Sciences www.iapras.ru GYCOM Ltd www.gycom.ru International Center for Advanced Studies in Nizhny Novgorod (INCAS) www.incas.iapras.ru Supported by www.avesta.ru www.lasercomponents.ru www.coherent.com www.lasertrack.ru www.thalesgroup.com www.standa.lt www.phcloud.ru www.epj.org The electron version of the NWP-2017 Symposium materials was prepared at the Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia CONTENTS PLENARY TALKS J.-C.
    [Show full text]
  • Preparatory Document
    Joint thematic Workshop of Institut Lasers Plasmas, and LaserLab-Europe NA3 networking activity : Thematic Network on High Energy Lasers Next generation high energy lasers for basic research : Need for versatile high rep rate facilities Bordeaux University, September 3rd, 2010 1. RATIONALE The French government has issued a call for medium-size Research Infrastructures, which may represent a major opportunity to boost High Energy Density research, both at French and European levels. Under the aegis of Institut Lasers Plasmas (France), and LaserLab- Europe 2 , a dedicated workshop should unravel the general needs and scientific cases for a next generation HED laser facility of high repetition rates (one shot per few minutes) but moderate energies, and discuss how such a facility can be coordinated with other HED facilities and programs at French and European levels. 2. SCIENTIFIC CONTEXT The physics of laser-matter interaction in the domain of High Energy Density (HED) matter requires large scale laser facilities with laser pulses of many kilojoules. The technological frontier is now provided by such lasers systems as the National Ignition Facility (NIF), USA, and Laser MegaJoule (LMJ) near Bordeaux, or by Petawatt high energy lasers such as Omega-EP, Rochester University, USA, LFEX, Osaka University, Japan, or PETAL, Bordeaux. However, because of their extremely high operational cost and relatively low number of shots available, smaller sized facilities, so called "intermediate", are absolutely crucial to all scientific and technological developments in the field. The French national taskforce on the development of powerful lasers, ILP/GRALE, has identified four classes of high energy lasers: – Lasers of megajoule level; – Lasers of large but intermediate scale with a pulse energy larger than 10 kJ; – Lasers of kilojoule scale, such as LULI2000; – Sub-kilojoule scale lasers providing a combination of accessibility and flexibility of use.
    [Show full text]
  • Inertial Fusion Power Development:Path for Global Warming Suppression
    Inertial Fusion Power Development:Path for Global Warming Suppression EU:France, UK,etc. US: LLNL, SNL, U. Rochester East Asia: Japan, China,etc. Kunioki Mima Institute of Laser Engineering, Osaka University IAEA- FC 2008, 50 years’ Ann. of Fusion Res. , Oct.15, 2008, Geneva, SW Outline • Brief introduction and history of IFE research • Frontier of IFE researches Indirect driven ignition by NIF/LMJ Ignition equivalent experiments for fast ignition • IF reactor concept and road map toward power plant IFE concepts Several concepts have been explored in IFE. Driver Irradiation Ignition Laser Direct Central hot spark Ignition HIB Indirect Fast ignition Impact ignition Pulse power Shock ignition The key issue of IFE is implosion physics which has progressed for more than 30 years Producing 1000times solid density and 108 degree temperature plasmas Plasma instabilities R Irradiation non-uniformities Thermal transport and ablation surface of fuel pellet ΔR R-M Instability ΔR0 R-T instability R0 R Feed through R-M and R-T Instabilities in deceleration phase Turbulent Mixing Canter of fuel pellet t Major Laser Fusion Facilities in the World NIF, LLNL, US. LMJ, CESTA, Bordeaux, France SG-III, Menyang,CAEP, China GXII-FIREX, ILE, Osaka, Japan OMEGA-EP, LLE, Rochester, US HiPER, RAL, UK Heavy Ion Beam Fusion: The advanced T-lean fusion fuel reactor Test Stand at LBNL NDCX-I US HIF Science Virtual National Lab.(LBNL, LLNL,PPPL) has been established in 1990. (Directed by G Logan) • Implosion physics by HIB • HIB accelerator technology for 1kA, 1GeV, 1mm2 beam: Beam brightness, Neutralization, NDCX II Collective effects of high current beam, Stripping.(R.Davidson etal) • Reactor concept with Flibe liquid jet wall (R.Moir: HYLIF for HIF Reactor) History of IFE Research 1960: Laser innovation (Maiman) 1972: Implosion concept (J.
    [Show full text]
  • Direct-Drive Shock-Ignition for the Laser Megajoule
    Direct-Drive Shock-Ignition for the Laser Megajoule. B. Canaud∗, S. Laffite, V. Brandon CEA, DAM, DIF, F-91297 Arpajon, France M. Temporal, R. Ramis ETSIA, Universidad Politecnica de Madrid, Spain (Dated: October 13, 2011) We present a review of direct-drive shock ignition studies done as alternative for the Laser Mega- Joule to achieve high thermonuclear gain. One-dimensional analysis of HiPER-like Shock-ignited target designs is presented. It is shown that high gain can be achieved with shock ignition for designs which do not ignite only from the laser compression. Shock ignition is achieved for different targets of the fast ignition family which are driven by an absorbed energy between 100 kJ and 850 kJ and deliver thermonuclear energies between 10-130 MJ. Shock-Ignition of Direct-Drive Double- Shell non-cryogenic target is also addressed. 2D results concerning the LMJ irradiation geometry are presented. Few systematic analyses are performed for the fuel assembly irradiation uniformity using the whole LMJ configuration or a part of the facility, and for the ignitor spike uniformity. Solutions for fuel assembly and shock ignition on LMJ using 2D calculations are presented. It is shown that high-gain shock-ignition is possible with intensity of each quad less than 1e15 W/cm2 but low modes asymmetries displace the ignitor power in the spike towards higher powers.. PACS numbers: 52.57.Bc, 52.57.-z,52.35.Tc,52.57.Kk I. INTRODUCTION Direct drive inertial fusion is an alternative to achieve inertial confinement fusion for the laser Megajoule (LMJ) for a decade [1{7].
    [Show full text]
  • ITER • NCSX • HEDLP Joint Program • Issues and Plans
    U.S. Department of Energy’s Office of Science Fusion Energy Sciences Program Update Fusion Energy Sciences Advisory Committee Gaithersburg, MD October 23-24, 2007 Raymond J. Fonck Associate Director for Fusion Energy Sciences www.ofes.fusion.doe.gov FESAC 102307-rjf 1 Topics • Budget status • ITER • NCSX • HEDLP Joint Program • Issues and Plans Note: Thank You to all who worked so hard on the three reports presented at this meeting! FESAC 102307-rjf 2 FY 2008 Fusion Energy Sciences Congressional Budget Request ($ Millions) FY 2006 FY 2007 FY 2008 Actual Sept AFP CONG Science 148.7 144.6 159.6 Facility Operations 104.2 146.3 247.5 Enabling R&D 27.8 20.8 20.8 OFES Total 280.7 311.7 427.9 DIII-D 55.1 56.7 59.7 C-Mod 21.5 22.3 23.5 NSTX 34.2 33.5 36.1 NCSX 17.8 16.6 16.6 ITER 24.6 60.0 160.0 Non-ITER 256.1 251.7 267.9 FESAC 102307-rjf 3 FY 2008 Appropriations • House Mark – The Committee recommendation for fusion energy sciences is $427,850,000, the same as the budget request, and reflecting the $100,000,000 growth in the budget for ITER. – The Committee does not support funding for a new program in High Energy Density Physics (HEDP) and provides no funds for this research area. (Resources for HEDP should be redirected to other programs). – The Committee notes that major growth in support for ITER … is affecting the overall funding picture for Fusion Energy Sciences and for the Office of Science as a whole.
    [Show full text]
  • Experimental Results on Advanced Inertial Fusion Schemes Obtained
    NUKLEONIKA 2012;57(1):3−10 ORIGINAL PAPER Experimental results Dimitri Batani, Leonida A. Gizzi, Petra Koester, Luca Labate, on advanced inertial fusion Javier Honrubia, Luca Antonelli, Alessio Morace, Luca Volpe, Jorge J. Santos, Guy Schurtz, schemes obtained Sebastien Hulin, Xavier Ribeyre, Philippe Nicolai, Benjamin Vauzour, within the HiPER project Fabien Dorchies, Wiger Nazarov, John Pasley, Maria Richetta, Kate Lancaster, Christopher Spindloe, Martin Tolley, David Neely, Michaela Kozlová, Jaroslav Nejdl, Bedrich Rus, Jerzy Wołowski, Jan Badziak Abstract. This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. Key words: advanced ignition schemes • fast ignition • shock ignition • inertial fusion • propagation of fast electrons • short-pulse ultra-high-intensity laser • shock compressed matter • cylindrical implosions Introduction D. Batani , J. J. Santos, G. Schurtz, S. Hulin, In 2006 the European Strategy Forum on Research X. Ribeyre, P. Nicolai, B. Vauzour, F. Dorchies Infrastructures (ESFRI) included the HiPER Project CELIA, Université de Bordeaux/CNRS/CEA, (European High Power Laser Energy Research Facility) Talence, 33405, France, in the European roadmap for Research Infrastructures. Tel.: +33 0 5 4000 3753, Fax: + 33 0 5 4000 2580, The goals of the HiPER project are to perform a feasi- E-mail: [email protected] bility study, choose a design and then construct a high- -energy laser facility for research on the production of L.
    [Show full text]
  • Numerical Modeling of Laser-Driven Experiments Aiming to Demonstrate Magnetic Field Amplification Via Turbulent Dynamo P
    Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo P. Tzeferacos, A. Rigby, A. Bott, A. R. Bell, R. Bingham, A. Casner, F. Cattaneo, E. M. Churazov, J. Emig, N. Flocke, F. Fiuza, C. B. Forest, J. Foster, C. Graziani, J. Katz, M. Koenig, C.-K. Li, J. Meinecke, R. Petrasso, H.-S. Park, B. A. Remington, J. S. Ross, D. Ryu, D. Ryutov, K. Weide, T. G. White, B. Reville, F. Miniati, A. A. Schekochihin, D. H. Froula, G. Gregori, and D. Q. Lamb Citation: Physics of Plasmas 24, 041404 (2017); doi: 10.1063/1.4978628 View online: https://doi.org/10.1063/1.4978628 View Table of Contents: http://aip.scitation.org/toc/php/24/4 Published by the American Institute of Physics Articles you may be interested in Magnetic field production via the Weibel instability in interpenetrating plasma flows Physics of Plasmas 24, 041410 (2017); 10.1063/1.4982044 Particle acceleration in laser-driven magnetic reconnection Physics of Plasmas 24, 041408 (2017); 10.1063/1.4978627 Formation of high-speed electron jets as the evidence for magnetic reconnection in laser-produced plasma Physics of Plasmas 24, 041406 (2017); 10.1063/1.4978883 On the generation of magnetized collisionless shocks in the large plasma device Physics of Plasmas 24, 041405 (2017); 10.1063/1.4978882 A self-consistent analytical model for the upstream magnetic-field and ion-beam properties in Weibel-mediated collisionless shocks Physics of Plasmas 24, 041409 (2017); 10.1063/1.4979187 Development of an inertial confinement fusion platform to study charged-particle-producing nuclear reactions relevant to nuclear astrophysics Physics of Plasmas 24, 041407 (2017); 10.1063/1.4979186 PHYSICS OF PLASMAS 24, 041404 (2017) Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo P.
    [Show full text]
  • Visualizing Fast Electron Energy Transport Into Laser-Compressed High-Density Fast-Ignition Targets
    ARTICLES PUBLISHED ONLINE: 11 JANUARY 2016 | DOI: 10.1038/NPHYS3614 Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets L. C. Jarrott1†, M. S. Wei2*, C. McGuey1, A. A. Solodov3,4, W. Theobald3, B. Qiao1, C. Stoeckl3, R. Betti3,4, H. Chen5, J. Delettrez3, T. Döppner5, E. M. Giraldez2, V. Y. Glebov3, H. Habara6, T. Iwawaki6, M. H. Key5, R. W. Luo2, F. J. Marshall3, H. S. McLean5, C. Mileham3, P. K. Patel5, J. J. Santos7, H. Sawada8, R. B. Stephens2, T. Yabuuchi6 and F. N. Beg1* Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires ecient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser–matter interaction. Understanding the details of electron beam generation and transport is crucial for FI. Here we report on the first visualization of fast electron spatial energy deposition in a laser-compressed cone-in-shell FI target, facilitated by doping the shell with copper and imaging the K-shell radiation. Multi-scale simulations accompanying the experiments clearly show the location of fast electrons and reveal key parameters aecting energy coupling. The approach provides a more direct way to infer energy coupling and guide experimental designs that significantly improve the laser-to-core coupling to 7%. Our findings lay the groundwork for further improving eciency, with 15% energy coupling predicted in FI experiments using an existing megajoule-scale laser driver. usion ignition and burn may be achieved through inertial its energy into the compressed core.
    [Show full text]
  • FCI in France Status and Perspective
    FCI in France status and perspective Thierry Massard Chief scientist CEA Defense and Security Guy Schurtz (CELIA), Benoit Canaud (CEA), Laurent Grémillet (CEA),Christine Labaune(CNRS) Fusion Power Associates – Washington DC – 1-2 December 2010 Outline • ICF in France : a long history of successes • ICF for energy : a place in the French energy vision ? • LMJ / PETAL a key facility for the IFE in Europe • How France scientific community participates in HiPER (European program for IFE faisability demoinstration) • The French strategy • A world wide forum is necessary for IFE ICF reserach in France was initiated at Ecole Polytechnique, In 1964 with the support of CEA-Limeil In 40 years, 5 national generations of lasers were commissioned, Rubis laser : CO2 laser : Nd laser : 2 beams-200 J – 600 ps (w, 2w, 4w) (1980) Nd laser : 6 beams – 600 J -600 ps (w, 2w, 4w) (1985-2002) Ti/Sa : 100 TW LULI2000 : 2 beams – 2 kJ – 1.5 ns (w, 2w, 3w) 1,00E+15 In 1968 the first fusion events are observed 1,00E+14 100TW Pico2000 1,00E+13 P(W) 1,00E+12 Nd-6F LULI2000 1,00E+11 Nd-1F 1,00E+10 1,00E+09 CO 2 1,00E+08 Rubis 1960 1970 1980 1990 2000 2010 Year C6 laser, delivering up to 600 J Today several critical laser facilities and labs in France • Ecole Polytechnique {LOA, LULI}, • CELIA (Bordeaux) • CEA (Bruyeres, Saclay and Bordeaux) • LCD/ENSMA fs ps ns 6 10 PW LMJ 10 5 LIL 4 10 PW / LIL Nano 2000 1000 ELI TW Pico 2000 Lucia : objectif : 100 J – 10 Hz 100 LULI 100TW Alise 10 LOA LIXAM (Alise) Energie [J] 1 LOA CEA/DSM GW 0,1 CELIA 0,01 0,01 0,1 1 10 100 1000
    [Show full text]
  • Will Fusion Be Ready to Meet the Energy Challenge for the 21St Century?
    Home Search Collections Journals About Contact us My IOPscience Will fusion be ready to meet the energy challenge for the 21st century? This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 J. Phys.: Conf. Ser. 717 012002 (http://iopscience.iop.org/1742-6596/717/1/012002) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 182.253.72.56 This content was downloaded on 29/06/2016 at 21:10 Please note that terms and conditions apply. 9th International Conference on Inertial Fusion Sciences and Applications (IFSA 2015) IOP Publishing Journal of Physics: Conference Series 717 (2016) 012002 doi:10.1088/1742-6596/717/1/012002 Will fusion be ready to meet the energy challenge for the 21st century? Yves Bréchet – Haut-Commissaire à l’Energie Atomique CEA Saclay 91191 Gif-sur-Yvette, France Thierry Massard CEA DAM-Ile de France, Bruyères le Chatel, 91297 Arpajon, France Abstract. Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community.
    [Show full text]
  • Laboratory Radiative Accretion Shocks on GEKKO XII Laser Facility for POLAR Project
    Article submitted to: High Power Laser Science and Engineering, 2018 April 10, 2018 Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project L. VanBox Som1,2,3, E.´ Falize1,3, M. Koenig4,5, Y.Sakawa6, B. Albertazzi4, P.Barroso9, J.-M. Bonnet- Bidaud3, C. Busschaert1, A. Ciardi2, Y.Hara6, N. Katsuki7, R. Kumar6, F. Lefevre4, C. Michaut10, Th. Michel4, T. Miura7, T. Morita7, M. Mouchet10, G. Rigon4, T. Sano6, S. Shiiba7, H. Shimogawara6, and S. Tomiya8 1CEA-DAM-DIF, F-91297 Arpajon, France 2LERMA, Sorbonne Universit´e,Observatoire de Paris, Universit´ePSL, CNRS, F-75005, Paris, France 3CEA Saclay, DSM/Irfu/Service d’Astrophysique, F-91191 Gif-sur-Yvette, France 4LULI - CNRS, Ecole Polytechnique, CEA : Universit Paris-Saclay ; UPMC Univ Paris 06 : Sorbonne Universit´e- F-91128 Palaiseau Cedex, France 5Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan 6Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan 7Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan 8Aoyamagakuin University, Japan 9GEPI, Observatoire de Paris, PSL Research University, CNRS, Universit´eParis Diderot, Sorbonne Paris Cit´e,F-75014 Paris, France 10LUTH, Observatoire de Paris, PSL Research University, CNRS, Universit´eParis Diderot, Sorbonne Paris Cit´e,F-92195 Meudon, France Abstract A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision.
    [Show full text]
  • Years of Fusion Research
    “50” Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Independent Activities Period (IAP) January 19, 2011 MIT PSFC Cambridge, MA 02139 1 FiFusion Fi FiPre Powers th thSe Sun “We nee d to see if we can mak e f usi on work .” John Holdren @MIT, April, 2009 3 Toroidal Magg(netic Confinement (1940s-earlyy) 50s) • 1940s - first ideas on using a magnetic field to confine a hot plasma for fusion. • 1947 Sir G.P. Thomson and P. C. Thonemann began classified investigations of toroidal “pinch” RF discharge, eventually lead to ZETA, a large pinch at Harwell, England 1956. • 1949 Richter in Argentina issues Press Release proclaiming fusion, turns out to be bogus, but news piques Spitzer’s interest. • 1950 Spitzer conceives stellarator while on a ski lift, and makes ppproposal to AEC ($50k )-initiates Project Matterhorn at Princeton. • 1950s Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when magnetic fusion research was declassified. US and others unveil results at 2nd UN Atoms for Peace Conference in Geneva 1958. Fusion Leading to 1958 Geneva Meeting • A period of rapid progress in science and technology – N-weapons, N-submarine, Fission energy, Sputnik, transistor, .... • Controlled Thermonuclear Fusion had great potential – Much optimism in the early 1950s with expectation for a quick solution – Political support and pressure for quick results (but bud gets were low, $56M for 1951-1958) – Many very “innovative” approaches were put forward. – Early fusion reactor concepts - Tamm/Sakharov, Spitzer (Model D) very large. • Reality began to set in by the mid 1950s – Coll ectiv e eff ects - MHD instability ( 195 4), Bo hm d iffus io n was ubi qui tous – Meager plasma physics understanding led to trial and error approaches – A multitude of experiments were tried and ended up far from fusion conditions – Magnetic Fusion research in the U.S.
    [Show full text]