ODQN 10-2.Indd

Total Page:16

File Type:pdf, Size:1020Kb

ODQN 10-2.Indd National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 10, Issue 2 April 2006 Instability of the Current Orbital Debris Population A paper addressing the inevitable growth of fi delity debris evolutionary model with an updated Inside... future debris populations was published by Sci- debris population as initial conditions, the new study Draft UN Space ence in its 20 January 2006 issue. The paper, writ- published in Science also made a key assumption - it ten by J.-C. Liou and N. L. Johnson, summarized assumed no new launches were conducted after 1 Debris Mitigation the results of recent research by the NASA Orbital January 2005. This assumption eliminated several Guidelines ..................2 Debris Program Offi ce. Currently more than 9000 major uncertainties in future projection simulations, objects, with a combined mass exceeding 5 million including future launch frequency, types of satellites Disposal of kilograms, are tracked by the U.S. Space Surveillance launched, and their physical and orbital specifi ca- Geosynchronous Network and maintained in the U.S. satellite catalog. tions. Although “no new future launches” is unre- Spacecraft in 2005 .....2 Several environment projection studies conducted alistic, it does provide a bottom line assessment of between 1991 and 2001 indicate that with various the current debris environment. In other words, the Flux Comparisons assumed future launch rates, the debris populations results represent the best-case scenario. from the Goldstone, at some altitudes in low Earth orbit (LEO) will be- The simulated 10 cm and larger LEO popula- Haystack, and come unstable. Collisions will take over as the domi- tion indicates that collision fragments replace other HAX Radars ...............2 nant debris generation mechanism, and the debris decaying debris (due to atmospheric drag) through generated will feed back to the environment and 2055, keeping the total LEO populations approxi- Modeling the Effect induce more collisions. mately constant. Beyond 2055, however, new col- of High Solar Activity In addition to using a recently developed high continued on page 2 on the Orbital 12000 Debris Environment ..4 Total Orbital Debris Intacts + mission related debris Photometric Study .....5 10000 Explosion fragments Collision fragments Developing a Mass Density Distribution 8000 for Breakup Debris ....7 6000 4000 2000 Effective Number of Objects (>10cm, LEO) 0 1950 1970 1990 2010 2030 2050 2070 2090 2110 2130 2150 2170 2190 2210 A publication of Year The NASA Orbital Effective number of LEO objects, 10 cm and larger, from the simulation. The effective number is defi ned as the fractional time, Debris Program Offi ce per orbital period, an object spends between 200 and 2000 km altitudes. The future projection parts of the curves (years 2005 to 2204) are averages from 50 Monte Carlo runs. Intacts are rocket bodies and spacecraft that have not experienced breakups. Orbital Debris Quarterly News Debris Population continued from page 1 and 1000 km altitudes. Even without any new as satellites continue to be launched into space. lision fragments outnumber decaying debris, launches, this region is highly unstable. Debris The paper concludes that to better limit the and force the total population to increase. De- populations in this “red zone” will approxi- growth of future debris populations, active re- tailed analysis shows that the predicted future mately triple in the next 200 years, leading to a moval of objects from space needs to be con- catastrophic collisions and the resulting popu- factor of 10 increase in collision probability. sidered. ♦ lation increase are non-uniform throughout In reality, the future debris environment LEO. The most active region is between 900 is likely to be worse than the study suggested, Draft United Nations Space Debris Mitigation Guidelines The Scientifi c and Technical Subcommittee tailed Space Debris Mitigation Guidelines of to review the document carefully during 2006 (STSC) of the United Nations Committee on the Inter-Agency Space Debris Coordination with the objective of adopting the guidelines in the Peaceful Uses of Outer Space (COPUOS) Committee (IADC). After meetings in Vienna their current or revised form at the 44th meeting held its annual meeting at the UN complex in in February and June of 2005, the Space Debris of the Subcommittee in February 2007. Vienna, Austria, during 20 February – 3 March Working Group met again on 23 February 2006 During this session of the STSC, a special 2006. Since 1994 space debris has been a topic and completed its primary task on 1 March, workshop on nuclear power sources in space was on the Subcommittee’s agenda, and the fi rst when it offi cially presented the Subcommittee held under the joint sponsorship of COPUOS work plan culminated with the 1999 publication with the draft document entitled UN COPUOS and the International Atomic Energy Agency of Technical Report on Space Debris. STSC Space Debris Mitigation Guidelines. (IAEA). A presentation prepared by the STSC The current work plan for the years 2005- The concise document contains seven Space Debris Working Group on special space 2007 calls upon a special Space Debris Work- numbered guidelines addressing debris released debris issues associated with space nuclear pow- ing Group to prepare for the Subcommittee a intentionally or unintentionally during deploy- er sources was delivered. ♦ space debris mitigation document with high- ment, operations, and post-disposal in all altitude level guidelines consistent with the more de- regimes. STSC Member States were requested Disposal of Geosynchronous Spacecraft in 2005 One of oldest space debris mitigation perturbations for a very long time. orbits, and 17 (85%) reached orbits at least 200 guidelines addresses the disposal of spacecraft The purpose of maneuvering spacecraft km above GEO. operating in the geosynchronous (GEO) re- out of the GEO region is to prevent their possi- All seven U.S. spacecraft (four govern- gime. Today, the space debris mitigation guide- ble future collision with operational spacecraft. ment-owned and three commercial) which were lines of all major space-faring nations and the Not only could the operational spacecraft be se- moved into disposal orbits achieved the objec- Inter-Agency Space Debris Coordination Com- verely damaged in such a collision, but also new tive of non-interference with GEO for at least mittee (IADC), as well as a recommendation of orbital debris could be created, which, in turn, 100 years. In fact, the oldest GEO spacecraft to the International Telecommunication Union, could pose a threat to other spacecraft. be retired in 2005 belonged to the U.S., was 21 call for transferring GEO spacecraft at the end A total of 22 GEO spacecraft, a larger years old, and was able to reach one of the high- of their mission into disposal orbits above the number than usual, terminated their missions est disposal orbits of the year, with its lowest GEO region, which is normally defi ned as the during 2005. Unfortunately, two of these point more than 400 km above GEO. region within 200 km of the geosynchronous spacecraft, INTELSAT 804 and UFO 3, suf- The international aerospace community is altitude, i.e., approximately 35,786 km. More- fered unexpected, catastrophic failures while increasingly demonstrating its commitment to over, these disposal orbits should be suffi ciently still in GEO and could not be maneuvered at following GEO spacecraft disposal guidelines stable that the derelict spacecraft are not driven all. However, of the remaining 20 spacecraft, and to protecting the unique GEO regime. ♦ back within the GEO region by natural orbital all were maneuvered to higher altitude disposal PROJECT REVIEWS Flux Comparisons from the Goldstone, Haystack, and HAX Radars C. STOKELY orbital debris models. orbital debris in the LEO environment. The continual monitoring of the low NASA has been utilizing radar ob- The Goldstone radar is a bistatic X-band Earth orbit (LEO) environment using high- servations of the debris environment for radar located in the Mojave desert in Cali- ly sensitive radars is essential for an accu- over a decade from three complementary fornia at a latitude of 35.2°. The Haystack rate characterization of the dynamic debris radars: the NASA JPL Goldstone Radar, and HAX radars are, respectively, X-band environment. This environment is contin- the MIT Lincoln Laboratory (MIT/LL) and Ku-band monopulse tracking radars ually changing or evolving since there are Long Range Imaging Radar (known as the located in Tyngsboro, Massachusetts at a new debris sources and debris loss mecha- Haystack radar), and the MIT/LL Haystack latitude of 42.6°. The monopulse capabil- nisms that are dependent on the dynamic Auxilary Radar (HAX). All of these sys- ity of the Haystack and HAX radars allows space environment. Radar data are used to tems are high power radars that operate in a measurement of the position of the de- supplement, update, and validate existing a fixed staring mode to statistically sample continued on page 3 2 www.orbitaldebris.jsc.nasa.gov Flux Comparisons continued from page 2 bris within the beam, thus ensuring a more accurate estimate of the radar cross sec- tion (RCS). Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally mea- sures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. Immediately before the start of FY2003, 1 October 2002, MIT/LL had changed their Processing and Control Sys- tem (PACS) used for debris detection and near-realtime processing. This entailed replacing the analog components of their processing system with digital components along with accompanying software adjust- ments.
Recommended publications
  • European Space Surveillance and Tracking
    2ndEuropean EU SST Webinar: Space Operations in Space Surveillance and Tracking 16Surveillance November 2020 –and14h CETTracking The EU SST activities received funding from the European Union programmes, notably from the Horizon 2020 research and innovation programme under grant agreements No 760459, No 785257, No 713630, No 713762 and No 634943, and the Copernicus and Galileo programme under grant agreements No 299/G/GRO/COPE/19/11109, No 237/GRO/COPE/16/8935 and No 203/G/GRO/COPE/15/7987. This Portal reflects only the SST Cooperation’s actions and the European Commission and the Research Executive Agency are not responsible for any use that may be made of the information it contains. 2nd EU SST Webinar Operations in Space Surveillance and Tracking Speakers Pascal María Antonia Cristina Florian João FAUCHER (CNES) RAMOS (CDTI) PÉREZ (CDTI) DELMAS (CNES) ALVES (EU SatCen) Pier Luigi Lt. Moreno Juan Christophe Rodolphe RIGHETTI PERONI (IT MoD) ESCALANTE MORAND (EEAS) MUÑOZ (EUMETSAT) (EC – DG ECHO) (EC-DG DEFIS) 2nd EU SST Webinar: Operations in Space Surveillance and Tracking 16 November 2020 3 Agenda (1/2) 14h00-14h10: Welcome to the 2nd EU SST Webinar [Moderator: Mr Oliver Rajan (EU SatCen)] 14h10-14h50: SST Support Framework: Safeguarding European space infrastructure • Overview, governance model, security relevance and future perspectives [SST Cooperation Chair: Dr Pascal Faucher (CNES)] EU SST Architecture & Service Provision Model • Sensors network • Database and Catalogue precursor • Services [Chair of the SST Technical Committee:
    [Show full text]
  • Telecommunikation Satellites: the Actual Situation and Potential Future Developments
    Telecommunikation Satellites: The Actual Situation and Potential Future Developments Dr. Manfred Wittig Head of Multimedia Systems Section D-APP/TSM ESTEC NL 2200 AG Noordwijk [email protected] March 2003 Commercial Satellite Contracts 25 20 15 Europe US 10 5 0 1995 1996 1997 1998 1999 2000 2001 2002 2003 European Average 5 Satellites/Year US Average 18 Satellites/Year Estimation of cumulative value chain for the Global commercial market 1998-2007 in BEuro 35 27 100% 135 90% 80% 225 Spacecraft Manufacturing 70% Launch 60% Operations Ground Segment 50% Services 40% 365 30% 20% 10% 0% 1 Consolidated Turnover of European Industry Commercial Telecom Satellite Orders 2000 30 2001 25 2002 3 (7) Firm Commercial Telecom Satellite Orders in 2002 Manufacturer Customer Satellite Astrium Hispasat SA Amazonas (Spain) Boeing Thuraya Satellite Thuraya 3 Telecommunications Co (U.A.E.) Orbital Science PT Telekommunikasi Telkom-2 Indonesia Hangar Queens or White Tails Orders in 2002 for Bargain Prices of already contracted Satellites Manufacturer Customer Satellite Alcatel Space New Indian Operator Agrani (India) Alcatel Space Eutelsat W5 (France) (1998 completed) Astrium Hellas-Sat Hellas Sat Consortium Ltd. (Greece-Cyprus) Commercial Telecom Satellite Orders in 2003 Manufacturer Customer Satellite Astrium Telesat Anik F1R 4.2.2003 (Canada) Planned Commercial Telecom Satellite Orders in 2003 SES GLOBAL Three RFQ’s: SES Americom ASTRA 1L ASTRA 1K cancelled four orders with Alcatel Space in 2001 INTELSAT Launched five satellites in the last 13 month average fleet age: 11 Years of remaining life PanAmSat No orders expected Concentration on cash flow generation Eutelsat HB 7A HB 8 expected at the end of 2003 Telesat Ordered Anik F1R from Astrium Planned Commercial Telecom Satellite Orders in 2003 Arabsat & are expected to replace Spacebus 300 Shin Satellite (solar-array steering problems) Korea Telecom Negotiation with Alcatel Space for Koreasat Binariang Sat.
    [Show full text]
  • Loral Space & Communications Inc
    Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 10-K ; ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE FISCAL YEAR ENDED DECEMBER 31, 2010 OR TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number 1-14180 LORAL SPACE & COMMUNICATIONS INC. (Exact name of registrant specified in the charter) Jurisdiction of incorporation: Delaware IRS identification number: 87-0748324 600 Third Avenue New York, New York 10016 (Address of principal executive offices) Telephone: (212) 697-1105 (Registrant’s telephone number, including area code) Securities registered pursuant to Section 12(b) of the Act: Title of each class Name of each exchange on which registered Common stock, $.01 par value NASDAQ Securities registered pursuant to Section 12(g) of the Act: Indicate by check mark if the registrant is well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes No ; Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes No ; Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes ;No Indicate by check mark whether the registrant has submitted electronically and posted on its corporate Web site, if any, every Interactive Data File required to be submitted and posted pursuant to Rule 405 of Regulation S-T (§ 232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit and post such files).
    [Show full text]
  • A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    A B 1 Name of Satellite, Alternate Names Country of Operator/Owner 2 AcrimSat (Active Cavity Radiometer Irradiance Monitor) USA 3 Afristar USA 4 Agila 2 (Mabuhay 1) Philippines 5 Akebono (EXOS-D) Japan 6 ALOS (Advanced Land Observing Satellite; Daichi) Japan 7 Alsat-1 Algeria 8 Amazonas Brazil 9 AMC-1 (Americom 1, GE-1) USA 10 AMC-10 (Americom-10, GE 10) USA 11 AMC-11 (Americom-11, GE 11) USA 12 AMC-12 (Americom 12, Worldsat 2) USA 13 AMC-15 (Americom-15) USA 14 AMC-16 (Americom-16) USA 15 AMC-18 (Americom 18) USA 16 AMC-2 (Americom 2, GE-2) USA 17 AMC-23 (Worldsat 3) USA 18 AMC-3 (Americom 3, GE-3) USA 19 AMC-4 (Americom-4, GE-4) USA 20 AMC-5 (Americom-5, GE-5) USA 21 AMC-6 (Americom-6, GE-6) USA 22 AMC-7 (Americom-7, GE-7) USA 23 AMC-8 (Americom-8, GE-8, Aurora 3) USA 24 AMC-9 (Americom 9) USA 25 Amos 1 Israel 26 Amos 2 Israel 27 Amsat-Echo (Oscar 51, AO-51) USA 28 Amsat-Oscar 7 (AO-7) USA 29 Anik F1 Canada 30 Anik F1R Canada 31 Anik F2 Canada 32 Apstar 1 China (PR) 33 Apstar 1A (Apstar 3) China (PR) 34 Apstar 2R (Telstar 10) China (PR) 35 Apstar 6 China (PR) C D 1 Operator/Owner Users 2 NASA Goddard Space Flight Center, Jet Propulsion Laboratory Government 3 WorldSpace Corp. Commercial 4 Mabuhay Philippines Satellite Corp. Commercial 5 Institute of Space and Aeronautical Science, University of Tokyo Civilian Research 6 Earth Observation Research and Application Center/JAXA Japan 7 Centre National des Techniques Spatiales (CNTS) Government 8 Hispamar (subsidiary of Hispasat - Spain) Commercial 9 SES Americom (SES Global) Commercial
    [Show full text]
  • Europe's Earth Observation, Satellite Navigation and Communications
    Europe’s Earth Observation, Satellite Navigation and Communications Missions and Services for the benefit of the Arctic Inventory of current and future capabilities, their synergies and societal benefits Boniface, K., Gioia, C. Pozzoli, L., Diehl, T., Dobricic, S., Fortuny Guasch, J., Greidanus, H., Kliment, T., Kucera, J., Janssens- Maenhout, G., Soille, P., Strobl, P., and Wilson, J. 2021 EUR 30629 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Karen Boniface Address: European Commission, Joint Research Centre, Directorate E: Space, Security and Migration Email: [email protected] Tel.: +39-0332-785295 EU Science Hub https://ec.europa.eu/jrc JRC121206 EUR 30629 EN PDF ISBN 978-92-76-32079-1 ISSN 1831-9424 doi:10.2760/270136 Luxembourg: Publications Office of the European Union, 2021 © European Union, 2021 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer & S. Frey Reference GEN-DB-LOG-00195-OPS-GR Issue 18 Revision 0 Date of Issue 3 June 2016 Status ISSUED Document Type TN European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2016. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1434 objects for which orbital data are available (of which 2 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 471 are actively controlled, 747 are drifting above, below or through GEO, 190 are in a libration orbit and 15 are in a highly inclined orbit. For 11 objects the status could not be determined. Furthermore, there are 50 uncontrolled objects without orbital data (of which 44 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1484. In issue 18 the previously used definition of ”near the geostationary ring” has been slightly adapted. If you detect any error or if you have any comment or question please contact: Tim Flohrer, PhD European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 E-mail: tim.fl[email protected] Page 1 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) .
    [Show full text]
  • Introduction of NEC Space Business (Launch of Satellite Integration Center)
    Introduction of NEC Space Business (Launch of Satellite Integration Center) July 2, 2014 Masaki Adachi, General Manager Space Systems Division, NEC Corporation NEC Space Business ▌A proven track record in space-related assets Satellites · Communication/broadcasting · Earth observation · Scientific Ground systems · Satellite tracking and control systems · Data processing and analysis systems · Launch site control systems Satellite components · Large observation sensors · Bus components · Transponders · Solar array paddles · Antennas Rocket subsystems Systems & Services International Space Station Page 1 © NEC Corporation 2014 Offerings from Satellite System Development to Data Analysis ▌In-house manufacturing of various satellites and ground systems for tracking, control and data processing Japan's first Scientific satellite Communication/ Earth observation artificial satellite broadcasting satellite satellite OHSUMI 1970 (24 kg) HISAKI 2013 (350 kg) KIZUNA 2008 (2.7 tons) SHIZUKU 2012 (1.9 tons) ©JAXA ©JAXA ©JAXA ©JAXA Large onboard-observation sensors Ground systems Onboard components Optical, SAR*, hyper-spectral sensors, etc. Tracking and mission control, data Transponders, solar array paddles, etc. processing, etc. Thermal and near infrared sensor for carbon observation ©JAXA (TANSO) CO2 distribution GPS* receivers Low-noise Multi-transponders Tracking facility Tracking station amplifiers Dual- frequency precipitation radar (DPR) Observation Recording/ High-accuracy Ion engines Solar array 3D distribution of TTC & M* station image
    [Show full text]
  • The 2Nd JAEF 2010
    2010 NECNEC SpaceSpace BusinessBusiness OverviewOverview JAEF The 2nd Japan-Arab Economic Forum @Tunis, Tunisia 2nd December 12, 2010 TheNEC Corporation NEC Profile Company Name: NEC Corporation Address: 7-1, Shiba 5-chome, Minato-ku, Tokyo, Japan Established: July 17, 1899 Chairman of the Board: Kaoru Yano President: Nobuhiro Endo Capital: ¥ 397.2 billion - As of Mar. 31,2010 2010 - Consolidated Net Sales: ¥ 4,215.6 billion Kaoru Yano - Fiscal year ended Mar. 31, 2009 - ¥ 3,581.3 billion - Fiscal year ended Mar. 31, 2010 - Operations of NEC Group: IT Services, Platform,JAEF Carrier Network, Social Infrastructure, Personal Solutions, Others Nobuhiro Endo Employees: NEC Corporation 2nd24,871 - As of Mar. 31, 2010 - NEC Corporation and Consolidated Subsidiaries 142,358 - As of Mar. 31, 2010 - 310 (Japan:118, Oversea:192) - As of Mar. 31, 2010 - Consolidated Subsidiaries:The Financial results are based on accounting principles generally accepted in Japan. Page 1 © NEC Corporation 2010 NEC Confidential BusinessBusiness DomainsDomains andand TheirTheir ChiefChief ProductsProducts andand ServicesServices IT Services Platform Personal Solutions Cloud-Oriented Service Platform Solutions Super Computer Server Integrated Operation/ Management Middleware2010Personal Computers Unified Communication Carrier Network Social Infrastructure Long Term Evolution Network Systems Unity Cable Systems JAEFHigh Performance Small Mobile Terminals Standard Bus “NEXTER" Digital Terrestrial WiMAX Network Compact Microwave Asteroid Explorer TV Transmitters Systems Communications Systems2nd "HAYABUSA" Others Electron DevicesThe Lithium-ion Batteries Liquid Crystal Displays Page 2 © NEC Corporation 2010 NEC Confidential NEC Worldwide: “One NEC” formation in 5 regions Marketing & Service affiliates 57 in 30 countries Manufacturing affiliates 10 in 5 countries Liaison Offices 8 in 8 countries Branch Offices 8 in 7 countries Laboratories 4 in 3 2010countries North America Greater JAEF China EMEA 2nd APAC Latin America The (As of Apr.
    [Show full text]
  • LET Us MAKE More Space for Our Defence
    LET US MAKE MORE SPACE FOR OUR DEFENCE STRATEGIC GUIDELINES FOR A SPACE DEFENCE POLICY IN FRANCE AND EUROPE STRATEGIC GUIDELINES FOR A SPACE DEFENCE POLICY IN FRANCE AND EUROPE Foreword ECPAD Let us make more Space for our Defence To ensure its security as well as its autonomy in decision-making and assessment, France needs to have crisis awareness and analysis capabilities together with the means required to carry out coalition operations. In this respect, space assets play a critical role, as demonstrated during recent conflicts. Such assets enable the countries that possess them to assert their strategic influence on the international scene and to significantly enhance their efficiency during military operations. Space control has thus become pivotal to power and sovereignty, and now involves stakes comparable in nature to those of deterrence during the 1960’s. Today, France possesses real and significant space assets. The 2003-2008 Military Programme Law provides for ambitious programmes and through the development of demonstrators, contributes to preparing our future capabilities and developing our technological and industrial base. Yet, we now need to go further down this road and prepare the guidelines for our Defence Space policy during the next decade. Therefore, I entrusted French Ambassador Bujon de l’Estang with the chairmanship of a wor- king group on the strategic directions of Defence Space Policy (GOSPS). The aim was to draw from the analysis of the developments in the strategic context, to anticipate which security and defence space capabilities will enable our country to guarantee its strategic autonomy and meet its key requirements.
    [Show full text]
  • Classification of Geosynchrono
    ESA UNCLASSIFIED - Limited Distribution ! esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 F +31 (0)6151 90495 www.esa.int TECHNICAL NOTE Classification of Geosynchronous objects. Prepared by ESA Space Debris Office Reference GEN-DB-LOG-00270-OPS-SD Issue/Revision 21.0 Date of Issue 19 July 2019 Status Issued ESA UNCLASSIFIED - Limited Distribution ! Page 2/234 Classification of Geosynchronous objects. Issue Date 19 July 2019 Ref GEN-DB-LOG-00270-OPS-SD ESA UNCLASSIFIED - Limited Distribution ! Abstract This is a status report on (near) geosynchronous objects as of 1 January 2019. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1578 objects for which orbital data are available (of which 14 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 529 are actively controlled, 831 are drifting above, below or through GEO, 195 are in a libration orbit and 21 are in a highly inclined orbit. For 2 object the status could not be determined. Furthermore, there are 60 uncontrolled objects without orbital data (of which 55 have not been catalogued). Thus the total number of known objects in the geostationary region is 1638. Finally, there are 130 rocket bodies crossing GEO. If you detect any error or if you have any comment or question please contact: Stijn Lemmens European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str.
    [Show full text]
  • Space Security 2010
    SPACE SECURITY 2010 spacesecurity.org SPACE 2010SECURITY SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security 2010 ISBN : 978-1-895722-78-9 © 2010 SPACESECURITY.ORG Edited by Cesar Jaramillo Design and layout: Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Artist rendition of the February 2009 satellite collision between Cosmos 2251 and Iridium 33. Artwork courtesy of Phil Smith. Printed in Canada Printer: Pandora Press, Kitchener, Ontario First published August 2010 Please direct inquires to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 708 Fax: 519-888-0018 Email: [email protected] iv Governance Group Cesar Jaramillo Managing Editor, Project Ploughshares Phillip Baines Department of Foreign Affairs and International Trade, Canada Dr. Ram Jakhu Institute of Air and Space Law, McGill University John Siebert Project Ploughshares Dr. Jennifer Simons The Simons Foundation Dr. Ray Williamson Secure World Foundation Advisory Board Hon. Philip E. Coyle III Center for Defense Information Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research Dr. John Logsdon The George Washington University (Prof. emeritus) Dr. Lucy Stojak HEC Montréal/International Space University v Table of Contents TABLE OF CONTENTS PAGE 1 Acronyms PAGE 7 Introduction PAGE 11 Acknowledgements PAGE 13 Executive Summary PAGE 29 Chapter 1 – The Space Environment:
    [Show full text]
  • 2013 Commercial Space Transportation Forecasts
    Federal Aviation Administration 2013 Commercial Space Transportation Forecasts May 2013 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) • i • 2013 Commercial Space Transportation Forecasts About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover: The Orbital Sciences Corporation’s Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. Image Credit: NASA/Bill Ingalls NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Table of Contents EXECUTIVE SUMMARY . 1 COMSTAC 2013 COMMERCIAL GEOSYNCHRONOUS ORBIT LAUNCH DEMAND FORECAST .
    [Show full text]