Southern Stars the JOURNAL of the ROYAL ASTRONOMICAL SOCIETY of NEW ZEALAND P

Total Page:16

File Type:pdf, Size:1020Kb

Southern Stars the JOURNAL of the ROYAL ASTRONOMICAL SOCIETY of NEW ZEALAND P Southern Stars THE JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY OF NEW ZEALAND P VolumeVolume 55, No 2 2016 JuneJune ISSN Page0049-1640 1 Royal Astronomical Society Southern Stars of New Zealand (Inc.) Journal of the RASNZ Founded in 1920 as the New Zealand Astronomical Volume 55, Number 2 Society and assumed its present title on receiving the 2016 June Royal Charter in 1946. In 1967 it became a member body of the R oyal Society of New Zealand. CONTENTS P O Box 3181, Wellington 6140, New Zealand Quasars - The Brightest Objects in the Universe [email protected] http://www.rasnz.org.nz Anushka Kharbanda ................................................ 3 Subscriptions (NZ$) for 2016: Norman Dickie ........................................................... 5 Ordinary member: $40.00 Student member: $20.00 Astronomy and Me! Affi liated society: $3.75 per member. Joshua Daglish ........................................................ 6 Minimum $75.00, Maximum $375.00 Corporate member: $200.00 SN 2015lh: Printed copies of Southern Stars (NZ$): The Most Luminous Supernova Discovered $35.00 (NZ) Brent Nicholls .......................................................... 7 $45.00 (Australia & South Pacifi c) $50.00 (Rest of World) The 2015 June 29 Occultation by Pluto Brian Loader .......................................................... 10 Council & Offi cers 2016 to 2018 President: Murray Geddes Prize - Dave Cochrane ................. 17 John Drummond P O Box 113, Patutahi 4045. [email protected] Jennie McCormick - FRASNZ, MNZM .................... 18 Immediate Past President: John Hearnshaw Dep’t Physics & Astronomy, Book Review University of Canterbury, John Drummond ..................................................... 22 Private Bag 4800, Christchurch 8140. [email protected] Vice President: Nicholas Rattenbury The Department of Physics, FRONT COVER The University of Auckland, Brian Loader’s light curve of the Pluto occultation of a th th 38 Princes St, Auckland. 12 magnitude star on 2015 June 29 superimposed on [email protected] a New Horizon’s image of Pluto. Pluto is scaled to fi t that Secretary: part of the light curve that endured the total occultation. Nichola Van der Aa 32A Louvain St, Whakatane 3120. The fact that light was still getting through is explained in [email protected] Brian’s paper within. Treasurer: Simon Lowther 19 Cape Vista Crescent, Pukekohe 2120. Light curve courtesy of Brian Loader, [email protected] Members’ Councillors: Pluto image courtesy of Steve Butler 30 Hoffman Court, Invercargill 9810. NASA: National Aeronautics and Space Administration, [email protected] JHO-APL: John Hopkins University Applied Physics Bob Evans 15 Taiepa Rd, Otatara RD9, Invercargill 9879. Laboratory, [email protected] SWRI: Southwest Research Institute. Sergei Gulyaev 120 Mayoral Drive, Auckland, 1010. [email protected] Orlon Petterson Dep’t Physics & Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140. [email protected] Glen Rowe 23 Stanhope Grove, Korokoro, Lower Hutt 5012. [email protected] Affi liated Societies’ Councillors: Peter Jaquiery 31 Wright St, Dunedin 9010 [email protected] Gary Sparks 67 Meeanee Road, Taradale, Napier 4112. [email protected] Fellows’ Councillor: Karen Pollard Dep’t Physics & Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140. [email protected] Page 2 Southern Stars Quasars - The Brightest Objects in the Universe:- Anushka Kharbanda Quasars - The Brightest Objects in the Universe Anushka Kharbanda SWAPA This is one of the papers presented at the 2016 Conference in Napier by Students With A Passion for Astronomy - SWAPA. Introduction We constantly search the skies, in the hopes of fi nding more about our universe. And, most of the time what we fi nd, renders us speechless about the grand expanse of our universe and it’s majestic components. One of such components that astonished many astronomers due to their incomprehensible brightness are quasars. These are the topics we will look at: ● The backstory of quasars and how they were found ● What gives birth to them ● We will also look at their unique spectra ● Their different types ● And moreover, we will also look at some examples of quasars and will try to compare their brightness to other celestial objects so that we are able to truly appreciate their immense brightness Anushka Kharbanda Photo supplied. How were they found? However, what they actually saw was this : Back in 1936, when Grote Reber built the very fi rst radio telescope in his backyard, he had detected strong radio sources by just 1944. Those radio emissions seemed to originate from the constellation of Cassiopeia, Sagittarius and Cygnus. Two of those sources, Cassiopeia A and Sagittarius A, seemed to originate from our own galaxy, and were later found out to be just supernova remnants. However, the characteristics of Cygnus A seemed to be very puzzling. When further investigation was done on this object, it seemed to be embedded in a faint looking galaxy. But, when the source’s spectra was taken, the results that were produced were not at all expected. When we take an object’s spectra we analyse the electromagnetic radiation it emits. Each object interacts This showed emission lines which was the opposite of what differently with the electromagnetic spectrum. they expected. So, astronomers could deduce that whatever the source of brightness was, it wasn’t starlight from the galaxy. So, when the spectra of Cygnus A’s galaxy was taken, Moreover, these peaks or emission lines were redshifted. We astronomers expected absorption lines or dips in the radiation can actually calculate how far an object is from us from its intensity like this: Because that is the kind of spectra galaxies redshift, by using the Hubble Law. Cygnus A, was found to have. be 740 million light years away. This was a staggering fact, because objects hundreds of millions of light years away are not usually able to be picked up by simple backyard astronomy tools. And this signal wasn’t a faint fuzz, it was bold and it stood out. This implied that this object had to be the most luminous one ever observed. Later, there was a very heated debate about the topic, because this object was so incomprehensibly bright, astronomers thought that there must be a problem by which we calculated its distance from the Earth. But, that was not true and later, these objects came to be known as the part of the brightest objects in the Universe called Quasars. 55, 2, 2016 June Page 3 Quasars - The Brightest Objects in the Universe:- Anushka Kharbanda Their Progenitors inward motion of the matter stops abruptly. This abrupt stop To know what gives birth to the brightest objects in the causes the inner edge of the accretion to be very well defi ned Universe, we fi rst have to look at the darkest- Black Holes. as we can see in this diagram. The faster the spin, however, the closer to the black hole, that abrupt stop occurs. Quasars are powered by Active Galactic Nuclei or AGNs which are basically, Supermassive Black Holes at the centre So, only a small proportion of the matter in the accretion of galaxies, that have matter around them they can “eat” up. disc falls into the black hole. Because of that, a lot of matter When matter falls towards a supermassive black hole due to bulges and accumulates in the inner accretion disc and pressure its immense gravity, it doesn’t just fall straight in, but forms increases rapidly. This pressure is then relieved by expelling an accretion disc around it, due to a law called conservation of matter at high speeds away from the accretion disc in the form angular momentum. The particles are moving at relativistic or of Dipolar Jets. near light speeds in this accretion disc. Closer to the black hole, matter is swirling faster than at the edges of the accretion disc. This causes the particles to rub against each other and radiation is emitted due to friction, as we can see in this diagram. Moreover, the swirling hot and charged plasma in the accretion disc, creates an intense, twisted magnetic fi eld which is at right angles to the accretion disc. This also facilitates the expulsion of matter. The radiation expelled is called synchrotron radiation and has no emission or absorption lines. Different Types of Active Galactic Nuclei It is commonly believed that the different types of active Keeping in mind that these particles are moving at near light galactic nuclei observed are just due to the angular view we speeds, the amount of friction and hence the radiation emitted get of the AGN. is enormous. At fi rst, matter accelerates at near light speeds near the black hole. However, at a certain distance away from the black hole, the matter stops falling in. This phenomena occurs due to the conservation of angular momentum. We have all seen it’s effect in our lives. For example, when a ball of pizza dough is spinning the dough tends to expand outwards and become fl at. It turns out that not only pizza dough but all spinning objects, including the matter in accretion discs, has a tendency to spread out and fl atten. When this tendency to expand outwards balances the gravitational pull of the black hole, the When the jet of the quasar is pointing directly at us, we receive tons of synchrotron radiation, with no emission or absorption lines and we see a blazar. However, when we see a quasar at a more oblique angle, we observe both the synchrotron radiation and the intense thermal radiation from the accretion disc. In this case, we would report seeing a radio loud quasar. Slow spinning accretion disc Fast spinning accretion disc Page 4 Southern Stars Quasars - The Brightest Objects in the Universe:- Anushka Kharbanda However, when we are getting a nearly edge on view of the accretion disc, we cannot get much of the thermal radiation from the accretion disc but the synchrotron radiation is still visible.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Variable Star Section Circular No
    The British Astronomical Association Variable Star Section Circular No. 176 June 2018 Office: Burlington House, Piccadilly, London W1J 0DU Contents Joint BAA-AAVSO meeting 3 From the Director 4 V392 Per (Nova Per 2018) - Gary Poyner & Robin Leadbeater 7 High-Cadence measurements of the symbiotic star V648 Car using a CMOS camera - Steve Fleming, Terry Moon and David Hoxley 9 Analysis of two semi-regular variables in Draco – Shaun Albrighton 13 V720 Cas and its close companions – David Boyd 16 Introduction to AstroImageJ photometry software – Richard Lee 20 Project Melvyn, May 2018 update – Alex Pratt 25 Eclipsing Binary news – Des Loughney 27 Summer Eclipsing Binaries – Christopher Lloyd 29 68u Herculis – David Conner 36 The BAAVSS Eclipsing Binary Programme lists – Christopher Lloyd 39 Section Publications 42 Contributing to the VSSC 42 Section Officers 43 Cover image V392 Per (Nova Per 2018) May 6.129UT iTelescope T11 120s. Martin Mobberley 2 Back to contents Joint BAA/AAVSO Meeting on Variable Stars Warwick University Saturday 7th & Sunday 8th July 2018 Following the last very successful joint meeting between the BAAVSS and the AAVSO at Cambridge in 2008, we are holding another joint meeting at Warwick University in the UK on 7-8 July 2018. This two-day meeting will include talks by Prof Giovanna Tinetti (University College London) Chemical composition of planets in our Galaxy Prof Boris Gaensicke (University of Warwick) Gaia: Transforming Stellar Astronomy Prof Tom Marsh (University of Warwick) AR Scorpii: a remarkable highly variable
    [Show full text]
  • The Denver Observer July 2018
    The Denver JULY 2018 OBSERVER The globular cluster, Messier 19, one of this month’s targets in “July Skies,” in a Hubble Space Telescope image. Credit: NASA, ESA, STScI and I. King (Univer- sity of California – Berkeley) JULY SKIES by Zachary Singer The Solar System ’scopes towards the planets when they’re Sky Calendar The big news for July is that Mars comes highest in the sky on a given night, to get the 6 Last-Quarter Moon to opposition on the 27th, meaning that it sharpest image—but Mars is worth viewing 12 New Moon will be at its highest in the south on that date naked-eye when it’s rising. Surprised? The 19 First-Quarter Moon around 1 AM, and also more or less at its red (well, orange) planet appears even redder 27 Full Moon largest as seen from Earth. Now, don’t let that when rising, making for much deeper color. fool you—Mars is already very good as July It’s a guilty pleasure on an aesthetic level, if begins, showing a disk 21” across, which is not a scientific one. If you want to indulge better than we got two years ago, and only yourself, Mars rises around 10:30 PM at In the Observer slightly smaller than the 24” expected at the beginning of July, an hour earlier mid- the end of the month. (Observations in my month, and about 8:20 PM at month’s end. President’s Message . .2 6-inch reflector at the end of June showed an Meanwhile, Mercury is an evening Society Directory.
    [Show full text]
  • Livre-Ovni.Pdf
    UN MONDE BIZARRE Le livre des étranges Objets Volants Non Identifiés Chapitre 1 Paranormal Le paranormal est un terme utilisé pour qualifier un en- mé n'est pas considéré comme paranormal par les semble de phénomènes dont les causes ou mécanismes neuroscientifiques) ; ne sont apparemment pas explicables par des lois scien- tifiques établies. Le préfixe « para » désignant quelque • Les différents moyens de communication avec les chose qui est à côté de la norme, la norme étant ici le morts : naturels (médiumnité, nécromancie) ou ar- consensus scientifique d'une époque. Un phénomène est tificiels (la transcommunication instrumentale telle qualifié de paranormal lorsqu'il ne semble pas pouvoir que les voix électroniques); être expliqué par les lois naturelles connues, laissant ain- si le champ libre à de nouvelles recherches empiriques, à • Les apparitions de l'au-delà (fantômes, revenants, des interprétations, à des suppositions et à l'imaginaire. ectoplasmes, poltergeists, etc.) ; Les initiateurs de la parapsychologie se sont donné comme objectif d'étudier d'une manière scientifique • la cryptozoologie (qui étudie l'existence d'espèce in- ce qu'ils considèrent comme des perceptions extra- connues) : classification assez injuste, car l'objet de sensorielles et de la psychokinèse. Malgré l'existence de la cryptozoologie est moins de cultiver les mythes laboratoires de parapsychologie dans certaines universi- que de chercher s’il y a ou non une espèce animale tés, notamment en Grande-Bretagne, le paranormal est inconnue réelle derrière une légende ; généralement considéré comme un sujet d'étude peu sé- rieux. Il est en revanche parfois associé a des activités • Le phénomène ovni et ses dérivés (cercle de culture).
    [Show full text]
  • A Spectroscopic Study of the Scorpio-Centaurus Association
    PranllQa. Vol. 7, No.3, 1976, pp 160-\ 80. © Prmted in India. A spectroscopic study of the Scorpio-Centaurus association R RAJAMOHAN Indian Institute of Astrophysics, Bangaiore 560034 MS recehcl 5 April 1976 • I' Abstract. Rotational .... elocities as well as hydrogen and he Jlum Ine I'ntensities of .' have been one hundred. and twelve members of the Scorplo-Centaurus aSSOclatlO~ . b h derived. For stars with M~ < 0'0, the distribution of rotational velocitieS of °lt are SJlnlar the upper Scorplus subgroup and the upper Centaurus-Lupus Su b grou P 1 . I and closely resemble those of the field stars. Stars with M, > O' 0, all of w lie 1 are found in th.e dense upper Scorpius region, rotate much faster than their counter­ parts amongst field stars, the Pleiades and Alpha-Persei cluster members. The measured equivalent width of H'Y for 77 stars provide a distance nlOd~\U~ of 6·0±0·09 magnitudes for the association. Evolutionary effects in the del1;~e hydrogen line intensities are found between the two subgroups. The hydrogen- me intensities at all spectral types in the upper Centaurus-Lupus subgroup are systematically smaller than thOse of members in the upper Scorpius subgrouP. Analysis of high dispersion spectra of five members of the association y.ield a helium abundance of Nae(N. = 0·096 ± 0 004. Along with data available In the literature, the mean helium abundance of thirteen stars of this association is found to be 0·098 :±: O· 004 by number. For the two main subgroups of this association, we deflve a value of 0 105 ± 0 001 for the upper Centaurus-Lupus group from three stars and 0·096 ± 0·005 for the upper Scorpius group from ten stars.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Fy10 Budget by Program
    AURA/NOAO FISCAL YEAR ANNUAL REPORT FY 2010 Revised Submitted to the National Science Foundation March 16, 2011 This image, aimed toward the southern celestial pole atop the CTIO Blanco 4-m telescope, shows the Large and Small Magellanic Clouds, the Milky Way (Carinae Region) and the Coal Sack (dark area, close to the Southern Crux). The 33 “written” on the Schmidt Telescope dome using a green laser pointer during the two-minute exposure commemorates the rescue effort of 33 miners trapped for 69 days almost 700 m underground in the San Jose mine in northern Chile. The image was taken while the rescue was in progress on 13 October 2010, at 3:30 am Chilean Daylight Saving time. Image Credit: Arturo Gomez/CTIO/NOAO/AURA/NSF National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2010 Revised (October 1, 2009 – September 30, 2010) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 March 16, 2011 Table of Contents MISSION SYNOPSIS ............................................................................................................ IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 2 2.1 Achievements ..................................................................................................... 2 2.2 Status of Vision and Goals ................................................................................
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • La Photosynthèse Serait Apparue Chez Certains Organismes Primitifs Entre 2.800 Et -2.400 Millions D’Années Si L’On En Croit Certaines Archives Géologiques Terrestres
    La photosynthèse serait apparue chez certains organismes primitifs entre 2.800 et -2.400 millions d’années si l’on en croit certaines archives géologiques terrestres. Mais certains la font remonter bien plus tôt en faisant l’hypothèse que les stromatolites que l’on retrouve dans des couches plus anciennes encore sont bien le produit d’une activité biologique. Actuellement, nous n’en sommes sûrs que pour ceux datant de -2.724 millions d’années mais des stromatolites existaient déjà sur Terre il y a 3,5 milliards d’années environ. Quoiqu'il en soit, une certitude demeure, concernant les immenses dépôts de fer du bassin de Hamersley en Australie. Ils datent de l’époque du Sidérien alors que la surface des continents était devenue suffisamment importante pour que se forment des mers peu profondes entourées de grande plates-formes continentales. Les conditions étaient remplies pour que de grands tapis de bactéries construisent des stromatolites en quantités importantes et dégagent massivement de l’oxygène par photosynthèse. Ce gaz corrosif a alors pu oxyder le fer en solution dans les océans et entraîner sa précipitation sous forme d’hydroxyde de fer, de carbonate de fer, de silicate ou de sulfures, selon des variations de l’acidité et du degré d’oxydoréduction de l’eau de mer. C’est ce qu’on appelle la Grande oxydation ou la Catastrophe de l’oxygène. Vers -1.900 millions d’années, la presque totalité du fer présent dans les océans avait précipité et il se retrouve aujourd’hui dans les grands gisements de minerai mondiaux tels que ceux de Hamersley.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]