Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis
fmicb-10-00155 February 8, 2019 Time: 16:55 # 1 ORIGINAL RESEARCH published: 08 February 2019 doi: 10.3389/fmicb.2019.00155 Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis Himel N. Khaleque1,2, Carolina González3, Raihan Shafique4, Anna H. Kaksonen2, David S. Holmes3,5 and Elizabeth L. J. Watkin1* 1 School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia, 2 CSIRO Land and Water, Floreat, WA, Australia, 3 Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile, 4 Sodexo Australia, Perth, WA, Australia, 5 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile There are few naturally occurring environments where both acid and salinity stress exist Edited by: together, consequently, there has been little evolutionary pressure for microorganisms to Claudia P. Saavedra, develop systems that enable them to deal with both stresses simultaneously. Members Universidad Andrés Bello, Chile of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that Reviewed by: Mario A. Vera, have developed the ability to tolerate acid and saline stress and, therefore, have the Pontificia Universidad Católica potential to bioleach ores with brackish or saline process waters under acidic conditions. de Chile, Chile T Nicolas Guiliani, The genus consists of four members, A. prosperus DSM 5130 , A. prosperus DSM Universidad de Chile, Chile 14174, A. prosperus F5 and “A. ferrooxidans” DSM 14175. An in depth genome *Correspondence: comparison was undertaken in order to provide a more comprehensive description Elizabeth L. J.
[Show full text]