Pseudomonas/Brachypodium As a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress

Total Page:16

File Type:pdf, Size:1020Kb

Pseudomonas/Brachypodium As a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress The University of Southern Mississippi The Aquila Digital Community Master's Theses Fall 12-1-2018 Pseudomonas/Brachypodium as a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress Janiece McWilliams University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Recommended Citation McWilliams, Janiece, "Pseudomonas/Brachypodium as a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress" (2018). Master's Theses. 602. https://aquila.usm.edu/masters_theses/602 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. PSEUDOMONAS/BRACHYPODIUM AS A MODEL SYSTEM FOR STUDYING RHIZOSPHERE PLANT-MICROBE INTERACTIONS UNDER WATER STRESS by Janiece Hutchins McWilliams A Thesis Submitted to the Graduate School, the College of Arts and Sciences and the School of Biological, Environmental, and Earth Sciences at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science Approved by: Dr. Dmitri Mavrodi, Committee Chair Dr. Kevin Kuehn Dr. Micheal Davis ____________________ ____________________ ____________________ Dr. Dmitri Mavrodi Dr. Jake Schaefer Dr. Karen S. Coats Committee Chair Director of School Dean of the Graduate School December 2018 ABSTRACT In contrast to well-studied mechanisms of drought tolerance in plants, the interactions between plants and their microbiome during water stress are still poorly understood. This missing knowledge is crucial for the exploitation of beneficial microbial communities to improve the sustainability of agriculture under changing climatic conditions. The research described here bridged this gap by focusing on the molecular interactions between beneficial rhizobacterium Pseudomonas synxantha 2-79 and annual grass Brachypodium distachyon Bd21. 2-79 exemplifies a group of rhizobacteria associated with dryland wheat, while B. distachyon originates from the Middle East and has emerged as a model for valuable biomass, food, forage, and turf crops. The experimental system was used to test the hypothesis that the adaptation of rhizobacteria to water stress is mediated by the exchange of metabolites between the host plant and its microbiota. Results revealed that Brachypodium root exudates contain a mixture of plant metabolites that serve as carbon and energy sources for rhizobacteria and include compounds that act as osmoprotectants and may help rhizobacteria maintain physiological activity and mutualistic interactions with their plant host in dry soils. The genome of P. synxantha 2-79 encodes numerous pathways involved in de novo synthesis and uptake of osmoprotectants and formation of biofilms for protection from desiccation. Some of these pathways are conserved across many taxa, while others are strain-specific and may contribute to the differential affinity toward plants growing in under different soil water regimens. Future studies will inactivate these pathways and test resultant mutants for rhizosphere fitness under drought stress. ii ACKNOWLEDGMENTS I would like to thank Drs. Dmitri Mavrodi and Olga Mavrodi; if it not been for their persistence and encouragement, I could not have finished. The standards, knowledge and discipline they instilled made me a better scientist, researcher and person. Thanks to my committee member Dr. Kevin Kuehn for accepting me into graduate school, supporting my transition to Dr. Mavrodi’s lab, and teaching me how to use the lyophilizer. Thanks also to my committee member Dr. Micheal Davis for his help and lab space for experiments. Thanks to Dr. Mac Alford for his interest in my research and teaching me about monocot seed embryos. I cannot leave out my friend and unofficial committee member Dr. Glenn Shearer, whom I thank for all the advice and support through this journey. I also thank Dr. Anna Berim from the WSU Laboratory for Cellular Metabolism and Engineering for the metabolomic analysis of root exudates. Thanks to Bio Soil Enhancers, Inc. for enabling me to pursue a graduate degree and to Wayne Wade and Dr. Lalithakumari Janarthanum for igniting my interest and excitement in plant- microbe relationships. Thank you to all my family and friends; I could not have done this without their personal support and prayers. Many thanks to my Mavrodi lab family for all their help. Special thanks to my husband, Chris McWilliams, who endured all my tears and anxiety through the challenges and rejoiced with me through the accomplishments. This work was supported by NSF grant IOS-1656872 and by the Mississippi INBRE, funded by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant P20GM103476. iii TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES ............................................................................................................ vii LIST OF ILLUSTRATIONS ........................................................................................... viii LIST OF SCHEMES........................................................................................................... x LIST OF ABBREVIATIONS ............................................................................................ xi CHAPTER I - INTRODUCTION ...................................................................................... 1 1.1 Plant-microbe interactions under water stress .......................................................... 1 1.2 Root exudates and their role in the selection of rhizosphere microbiome ................ 3 1.3 Microbial response to water stress ............................................................................ 4 1.4 Brachypodium distachyon and Pseudomonas synxantha as a model to study rhizosphere plant-microbe interactions ........................................................................... 6 1.5 Aims of this study ..................................................................................................... 9 CHAPTER II - MATERIALS AND METHODS ............................................................ 11 2.1 Establishment and propagation of B. distachyon Bd21 at USM ............................ 11 2.2 Collection and analysis of sterile root exudates ...................................................... 11 2.3 Annotation and analysis of P. synxantha 2-79 genome .......................................... 13 2.4 Bacterial strains and plasmids ................................................................................. 14 2.5 Osmoprotection assays............................................................................................ 14 iv 2.6 Rhizosphere colonization assays............................................................................. 15 2.7 Construction of 2-79 reporter derivatives ............................................................... 16 2.8 Bioreporter GFP assays........................................................................................... 17 2.9 Microscopic observations ....................................................................................... 17 2.10 Flow cytometry ..................................................................................................... 18 CHAPTER III - RESULTS ............................................................................................... 20 3.1 Collection and processing of root exudates of B. distachyon Bd21 ....................... 20 3.2 Analytical profiling of root exudates for the presence of osmoprotectant compounds .................................................................................................................... 21 3.3 P. synxantha 2-79 is a competent colonizer of the rhizosphere of B. distachyon Bd21 .............................................................................................................................. 25 3.4 Analysis of water stress response pathways in the P. synxantha 2-79 genome ...... 26 3.5 The protective effect of root exudates and their constituents on P. synxantha 2-79 under conditions of water stress .................................................................................... 35 3.6 The effect of water stress on the expression of defense pathways present in the 2-79 genome .......................................................................................................................... 36 CHAPTER IV – DISCUSSION........................................................................................ 41 APPENDIX A - Metabolites in root exudates from B. distachyon Bd21 ......................... 50 APPENDIX B - Amino Acid in root exudates of B. distachyon Bd21 ............................. 53 APPENDIX C - Putative pathways and homologs ........................................................... 54 v APPENDIX D - Bacterial strains and plasmids used in this study ................................... 62 APPENDIX E – Oligonucleotides used in this study ....................................................... 64 REFERENCES ................................................................................................................
Recommended publications
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated `Omics' Technologies Permalink https://escholarship.org/uc/item/259113st Author Justice, Nicholas Bruce Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/259113st#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies By Nicholas Bruce Justice A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Mary Firestone Professor Mary Power Professor John Coates Fall 2013 Abstract Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies by Nicholas Bruce Justice Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Understanding how microorganisms contribute to nutrient transformations within their community is critical to prediction of overall ecosystem function, and thus is a major goal of microbial ecology. Communities of relatively tractable complexity provide a unique opportunity to study the distribution of metabolic characteristics amongst microorganisms and how those characteristics subscribe diverse ecological functions to co-occurring, and often closely related, species. The microbial communities present in the low-pH, metal-rich environment of the acid mine drainage (AMD) system in Richmond Mine at Iron Mountain, CA constitute a model microbial community due to their relatively low diversity and extensive characterization over the preceding fifteen years.
    [Show full text]
  • Product Sheet Info
    Master Clone List for NR-19279 ® Vibrio cholerae Gateway Clone Set, Recombinant in Escherichia coli, Plates 1-46 Catalog No. NR-19279 Table 1: Vibrio cholerae Gateway® Clones, Plate 1 (NR-19679) Clone ID Well ORF Locus ID Symbol Product Accession Position Length Number 174071 A02 367 VC2271 ribD riboflavin-specific deaminase NP_231902.1 174346 A03 336 VC1877 lpxK tetraacyldisaccharide 4`-kinase NP_231511.1 174354 A04 342 VC0953 holA DNA polymerase III, delta subunit NP_230600.1 174115 A05 388 VC2085 sucC succinyl-CoA synthase, beta subunit NP_231717.1 174310 A06 506 VC2400 murC UDP-N-acetylmuramate--alanine ligase NP_232030.1 174523 A07 132 VC0644 rbfA ribosome-binding factor A NP_230293.2 174632 A08 322 VC0681 ribF riboflavin kinase-FMN adenylyltransferase NP_230330.1 174930 A09 433 VC0720 phoR histidine protein kinase PhoR NP_230369.1 174953 A10 206 VC1178 conserved hypothetical protein NP_230823.1 174976 A11 213 VC2358 hypothetical protein NP_231988.1 174898 A12 369 VC0154 trmA tRNA (uracil-5-)-methyltransferase NP_229811.1 174059 B01 73 VC2098 hypothetical protein NP_231730.1 174075 B02 82 VC0561 rpsP ribosomal protein S16 NP_230212.1 174087 B03 378 VC1843 cydB-1 cytochrome d ubiquinol oxidase, subunit II NP_231477.1 174099 B04 383 VC1798 eha eha protein NP_231433.1 174294 B05 494 VC0763 GTP-binding protein NP_230412.1 174311 B06 314 VC2183 prsA ribose-phosphate pyrophosphokinase NP_231814.1 174603 B07 108 VC0675 thyA thymidylate synthase NP_230324.1 174474 B08 466 VC1297 asnS asparaginyl-tRNA synthetase NP_230942.2 174933 B09 198
    [Show full text]
  • BMC Microbiology Biomed Central
    BMC Microbiology BioMed Central Research article Open Access Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector Asha Rani1, Anil Sharma1, Raman Rajagopal1, Tridibesh Adak2 and Raj K Bhatnagar*1 Address: 1Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110 067, India and 2National Institute of Malaria Research (ICMR), Sector 8, Dwarka, Delhi, 110077, India Email: Asha Rani - [email protected]; Anil Sharma - [email protected]; Raman Rajagopal - [email protected]; Tridibesh Adak - [email protected]; Raj K Bhatnagar* - [email protected] * Corresponding author Published: 19 May 2009 Received: 14 January 2009 Accepted: 19 May 2009 BMC Microbiology 2009, 9:96 doi:10.1186/1471-2180-9-96 This article is available from: http://www.biomedcentral.com/1471-2180/9/96 © 2009 Rani et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota.
    [Show full text]
  • Comparative Genomics Study of Polyhydroxyalkanoates (PHA) and Ectoine Relevant Genes from Halomonas Sp
    Cai et al. Microbial Cell Factories 2011, 10:88 http://www.microbialcellfactories.com/content/10/1/88 RESEARCH Open Access Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships Lei Cai1†, Dan Tan1†, Gulsimay Aibaidula2, Xin-Ran Dong3, Jin-Chun Chen1, Wei-Dong Tian3* and Guo-Qiang Chen1* Abstract Background: Halophilic bacteria have shown their significance in industrial production of polyhydroxyalkanoates (PHA) and are gaining more attention for genetic engineering modification. Yet, little information on the genomics and PHA related genes from halophilic bacteria have been disclosed so far. Results: The draft genome of moderately halophilic bacterium, Halomonas sp. TD01, a strain of great potential for industrial production of short-chain-length polyhydroxyalkanoates (PHA), was analyzed through computational methods to reveal the osmoregulation mechanism and the evolutionary relationship of the enzymes relevant to PHA and ectoine syntheses. Genes involved in the metabolism of PHA and osmolytes were annotated and studied in silico. Although PHA synthase, depolymerase, regulator/repressor and phasin were all involved in PHA metabolic pathways, they demonstrated different horizontal gene transfer (HGT) events between the genomes of different strains. In contrast, co-occurrence of ectoine genes in the same genome was more frequently observed, and ectoine genes were more likely under coincidental horizontal gene transfer than PHA related genes. In addition, the adjacent organization of the homologues of PHA synthase phaC1 and PHA granule binding protein phaP was conserved in the strain TD01, which was also observed in some halophiles and non-halophiles exclusively from g- proteobacteria.
    [Show full text]
  • Comparative Analysis of the Core Proteomes Among The
    Diversity 2020, 12, 289 1 of 25 Article Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species‐Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis Marios Nikolaidis 1, Dimitris Mossialos 2, Stephen G. Oliver 3 and Grigorios D. Amoutzias 1,* 1 Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 2 Microbial Biotechnology‐Molecular Bacteriology‐Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 3 Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; [email protected] * Correspondence: [email protected]; Tel.: +30‐2410‐565289; Fax: +30‐2410‐565290 Received: 22 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core‐orthologues. The subsequent phylogenomic analysis revealed two well‐defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus‐level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group‐specific core proteins were also identified, with P.
    [Show full text]
  • Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS ....................................................................................................
    [Show full text]
  • Systems Metabolic Engineering of Basfia Succiniciproducens For
    Systems metabolic engineering of Corynebacterium glutamicum for production of L-lysine and ectoine Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultät der Universität des Saarlandes von Gideon Gießelmann Saarbrücken 2019 Tag des Kolloquiums: 16.7.2019 Dekan: Prof. Guido Kickelbick Berichterstatter 1: Prof. Christoph Wittmann Berichterstatter 2: Prof. Gert-Wieland Kohring Vorsitz: Prof. Bruce Morgan Akad. Mitarbeiter: Dr. Björn Becker Publications Partial results of this work have been published previously. This was authorized by the Institute of Systems Biotechnology, represented by Prof. Dr. Christoph Wittmann. Peer-reviewed articles: Gießelmann G, D. Dietrich, L. Jungmann, M. Kohlstedt, E. Jung Jeon, S. Sun Yim, F. Sommer, D. Zimmer, T. Mühlhaus, M. Schroda, K. Jun Jeong, J. Becker, and C. Wittmann, 2019. Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production – design, combinatorial assembly and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnology Journal, under revision Becker J, G. Gießelmann, SL. Hoffmann, C. Wittmann, 2016: Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. In: Zhao H., Zeng AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham The following peer-reviewed articles were published during this work, but are not part of the dissertation: Rohles CM, L. Gläser, M. Kohlstedt, G. Gießelmann, S. Pearson, A. del Campo, J. Becker, C. Wittmann, 2018. A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum, Green Chemistry 20:4662-4674. Vassilev I, G. Gießelmann, SK. Schwechheimer, C. Wittmann, B Virdis, JO.
    [Show full text]
  • Metabolic Engineering of Escherichia Coli for Ectoine Production with the Fermentation Strategy of Supplementing Amino Donor
    Metabolic Engineering of Escherichia Coli for Ectoine Production With the Fermentation Strategy of Supplementing Amino Donor Hao Zhang Nanjing Tech University Yingying Cao Nanjing Tech University Yingsheng Dong Nanjing Tech University Ming Zhao Nanjing Tech University Yanqin Ma Nanjing Tech University Zhengshan Luo Nanjing Tech University Sha Li ( [email protected] ) Nanjing Tech University https://orcid.org/0000-0001-8256-1263 Hong Xu Nanjing Tech University Research Keywords: Ectoine, Escherichia coli, Metabolic engineering, Medium optimization, Amino donor, RT qPCR Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-134030/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: Ectoine, a compatible solute, has broad application prospects in food biotechnology, agriculture, medicine, and cosmetics because of its protective action on biological compounds. Industrially, ectoine is produced by halophilic bacteria in a complex process. Recently, various works focus on improving ectoine production by using engineered strains, but there are still problems of low yield and low ectoine production eciency. Results: To overcome the drawback, a nal metabolic engineered strain E. coli ET08 was constructed by eliminating lysine synthesis branch and by-product metabolic pathways, and ectoine production reached 10.2 g/L through culture medium optimization. Compared with nitrate, addition of ammonium salt contributed more to the ectoine synthesis. Furthermore, the ammonium sulphate boosted more ectoine titers than ammonium chloride and sodium glutamate. The analysis of transcriptional levels revealed that the ammonium sulfate enhanced ectoine biosynthesis by enhancing metabolic ux toward ectoine biosynthesis and providing auent synthetic precursors.
    [Show full text]
  • Wild Apple-Associated Fungi and Bacteria Compete to Colonize the Larval Gut of an Invasive Wood-Borer Agrilus Mali in Tianshan Forests
    Wild apple-associated fungi and bacteria compete to colonize the larval gut of an invasive wood-borer Agrilus mali in Tianshan forests Tohir Bozorov ( [email protected] ) Xinjiang Institute of Ecology and Geography https://orcid.org/0000-0002-8925-6533 Zokir Toshmatov Plant Genetics Research Unit: Genetique Quantitative et Evolution Le Moulon Gulnaz Kahar Xinjiang Institute of Ecology and Geography Daoyuan Zhang Xinjiang Institute of Ecology and Geography Hua Shao Xinjiang Institute of Ecology and Geography Yusufjon Gafforov Institute of Botany, Academy of Sciences of Uzbekistan Research Keywords: Agrilus mali, larval gut microbiota, Pseudomonas synxantha, invasive insect, wild apple, 16S rRNA and ITS sequencing Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-287915/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: The gut microora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of gut bacteria to address this absence of fungi in the larval gut. Results: The results demonstrated that gut bacteria were able to selectively inhibit wild apple tree-associated fungi. However, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identied.
    [Show full text]
  • Cellular Adjustments of Bacillus Subtilis and Other Bacilli to Fluctuating Salinities
    Chapter 15 Cellular Adjustments of Bacillus subtilis and Other Bacilli to Fluctuating Salinities Marco Pittelkow and Erhard Bremer 15.1 The Osmotic Challenge Bacilli are exposed, either suddenly or on a sustained basis, to changes in the osmotic conditions of the varied ecological niches that they can colonize. This can be vividly visualized by considering the main habitat of Bacillus subtilis, the upper layers of the soil (Earl et al. 2008). Rainfall and drying of the soil cause fluctuations in water availability and in the osmotic potential of this ecological niche. Such changes pose a considerable challenge to the microbial cell since they elicit water fluxes across the cytoplasmic membrane. These water fluxes are driven by the differential in the osmotic potential between the cell’s interior and that of the surrounding microenvironment (Bremer and Kr€amer 2000). Water entry at low osmolarity can increase turgor to such an extent that the elastic and stress-bearing peptidoglycan sacculus can no longer cope with it and the cell will rupture. Water efflux at high osmolarity will trigger dehydration of the cytoplasm and the ensuing reduction or even collapse of turgor will cause growth arrest or even cell death. Turgor, an intracellular hydrostatic pressure considered to be essential for cell expansion and growth, is difficult to determine experimentally but has been estimated at 1.9 MPa (19.37 atm) for B. subtilis (Whatmore and Reed 1990), a pressure that is close to ten times the pressure present in a standard car tire. To maintain turgor within physiologically acceptable boundaries, the B. subtilis cell needs to take active countermeasures to redirect the flow of water in or out of the cell when it faces decreases or increases in the external osmolarity.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
    USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep.
    [Show full text]
  • "Ectoine Synthase: an Iron-Dependent Member of the Cupin Superfamily" In
    Ectoine synthase: an iron-dependent member of the cupin superfamily Laura Czech†,‡, Astrid Hoeppner§, Sander HJ Smits§,¶, and Erhard Bremer†,‡ †Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Marburg, Germany ‡SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany §Center for Structural Studies, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany ¶Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany FUNCTIONAL CLASS harbors a catalytically critical Fe2+ ion. The three residues Enzyme; ectoine synthase (EctC), EC 4.2.1.108. EctC coordinating this metal protrude into the lumen of the belongs to the carbon–oxygen lyases (EC 4.2) and cupin barrel in which the EctC-promoted enzyme reaction, more specifically to the hydro-lyases (EC 4.2.1), a a water elimination, is catalyzed, using N-γ-ADABA as the 1 group of enzymes that cleaves carbon–oxygen bonds. substrate. The EctC enzyme catalyzes in an Fe2+-dependent fashion the last step of ectoine [(S)-2-methyl-1,4,5,6- tetrahydropyrimidine-4-carboxylic acid] synthesis through OCCURENCE cyclocondensation of the EctA-formed substrate N- γ-acetyl-L-2,4-diaminobutyric acid (N-γ-ADABA) via a EctC is the diagnostic enzyme of the ectoine biosynthetic 7–10 water-elimination reaction. The reaction product, ectoine, route, a set of three enzymes that produces this effective 11–13 is a member of the so-called compatible solutes and microbial stress-protectant and chemical chaperone. 14 serves as a cytoprotectant against osmotic stress and Biosynthesis of ectoine initiates from the central micro- 9,10,15–17 growth temperature extremes. It also functions as a bial metabolite L-aspartate-β-semialdehyde.
    [Show full text]