Composition and Molecular Identification of Bacterial Community in Seawater Desalination Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Information For
Supplementary Information for Broad spectrum antibiotic-degrading metallo-β-lactamases are phylogenetically diverse and widespread in the environment. Marcelo Monteiro Pedroso1,2†, David W. Waite1,2†, Okke Melse3, Liam Wilson1, Nataša Mitić4, Ross P. McGeary1, Iris Antes3, Luke W. Guddat1, Philip Hugenholtz1,2*, Gerhard Schenk1,2* 1School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072; Brisbane, Australia. 2Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD 4072; Brisbane, Australia. 3Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany 4Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland. †These authors contributed equally to the work *Corresponding authors: [email protected]; [email protected] 1 Methods Phylogenetic Analysis Putative protein orthologues of the B3 family of MBLs were identified from the Genome Taxonomy Database using GeneTreeTK (version 0.0.11; https://github.com/dparks1134/ GeneTreeTk). Sequences were manually curated, then aligned with MAFFT (1). Columns representing six residues critical for metal ion binding were manually identified in the L1 alignment (His105, His107 and His181 for the α site, and Asp109, His110 and His246 for the β site), and proteins categorized according to their motif (B3: HHH/DHH, B3-RQK: HRH/DQK, B3-Q: QHH/DHH and B3-E: EHH/DHH for their α/β metal binding sites, respectively). For phylogenetic inference, sequences were dereplicated into clusters of proteins sharing at least 70% amino acid identity using usearch (v8.1) (2). A total of 673 representative protein sequences (518 B3, 77 B3-Q, 35 B3-E and 43 B3-RQK) were aligned using MAFFT and columns filtered using TrimAl (1). -
BMC Microbiology Biomed Central
BMC Microbiology BioMed Central Research article Open Access Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector Asha Rani1, Anil Sharma1, Raman Rajagopal1, Tridibesh Adak2 and Raj K Bhatnagar*1 Address: 1Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110 067, India and 2National Institute of Malaria Research (ICMR), Sector 8, Dwarka, Delhi, 110077, India Email: Asha Rani - [email protected]; Anil Sharma - [email protected]; Raman Rajagopal - [email protected]; Tridibesh Adak - [email protected]; Raj K Bhatnagar* - [email protected] * Corresponding author Published: 19 May 2009 Received: 14 January 2009 Accepted: 19 May 2009 BMC Microbiology 2009, 9:96 doi:10.1186/1471-2180-9-96 This article is available from: http://www.biomedcentral.com/1471-2180/9/96 © 2009 Rani et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. -
Domestic Shower Hose Biofilms Contain Fungal Species Capable of Causing Opportunistic Infection
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Health: Medicine, Dentistry and Human Sciences School of Biomedical Sciences 2016-04-01 Domestic shower hose biofilms contain fungal species capable of causing opportunistic infection Moat, J http://hdl.handle.net/10026.1/11067 10.2166/wh.2016.297 Journal of Water and Health All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Pre-review submitted version archived under RoMEO Yellow policy Accepted article available at – DOI:10.2166/wh.2016.297 Domestic shower hose biofilms contain fungal species capable of causing opportunistic infection John Moat1*, Athanasios Rizoulis2, Graeme Fox1 & Mathew Upton1,3# 1Faculty of Medical and Human Sciences and 2School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, M13 9WL, UK. 3Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL4 8AA, UK. #Author for correspondence Dr Mathew Upton School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Portland Square, Drake Circus, Plymouth, PL4 8AA Tel: +44 1752 5884466 Email: [email protected] *Current Address – AV Hill Building, University of Manchester, Rumford Street, Manchester. M13 9PT Key words: Exophiala, Fusarium, Malassezia, opportunistic pathogen, pyrosequencing, shower hose biofilm 1 Pre-review submitted version archived under RoMEO Yellow policy Accepted article available at – DOI:10.2166/wh.2016.297 Abstract The domestic environment can be a source of pathogenic bacteria. -
Comparative Analysis of the Core Proteomes Among The
Diversity 2020, 12, 289 1 of 25 Article Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species‐Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis Marios Nikolaidis 1, Dimitris Mossialos 2, Stephen G. Oliver 3 and Grigorios D. Amoutzias 1,* 1 Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 2 Microbial Biotechnology‐Molecular Bacteriology‐Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 3 Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; [email protected] * Correspondence: [email protected]; Tel.: +30‐2410‐565289; Fax: +30‐2410‐565290 Received: 22 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core‐orthologues. The subsequent phylogenomic analysis revealed two well‐defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus‐level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group‐specific core proteins were also identified, with P. -
Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS .................................................................................................... -
Pseudomonas/Brachypodium As a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress
The University of Southern Mississippi The Aquila Digital Community Master's Theses Fall 12-1-2018 Pseudomonas/Brachypodium as a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress Janiece McWilliams University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/masters_theses Recommended Citation McWilliams, Janiece, "Pseudomonas/Brachypodium as a Model System for Studying Rhizosphere Plant Microbe Interactions Under Water Stress" (2018). Master's Theses. 602. https://aquila.usm.edu/masters_theses/602 This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. PSEUDOMONAS/BRACHYPODIUM AS A MODEL SYSTEM FOR STUDYING RHIZOSPHERE PLANT-MICROBE INTERACTIONS UNDER WATER STRESS by Janiece Hutchins McWilliams A Thesis Submitted to the Graduate School, the College of Arts and Sciences and the School of Biological, Environmental, and Earth Sciences at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Master of Science Approved by: Dr. Dmitri Mavrodi, Committee Chair Dr. Kevin Kuehn Dr. Micheal Davis ____________________ ____________________ ____________________ Dr. Dmitri Mavrodi Dr. Jake Schaefer Dr. Karen S. Coats Committee Chair Director of School Dean of the Graduate School December 2018 ABSTRACT In contrast to well-studied mechanisms of drought tolerance in plants, the interactions between plants and their microbiome during water stress are still poorly understood. This missing knowledge is crucial for the exploitation of beneficial microbial communities to improve the sustainability of agriculture under changing climatic conditions. -
Wild Apple-Associated Fungi and Bacteria Compete to Colonize the Larval Gut of an Invasive Wood-Borer Agrilus Mali in Tianshan Forests
Wild apple-associated fungi and bacteria compete to colonize the larval gut of an invasive wood-borer Agrilus mali in Tianshan forests Tohir Bozorov ( [email protected] ) Xinjiang Institute of Ecology and Geography https://orcid.org/0000-0002-8925-6533 Zokir Toshmatov Plant Genetics Research Unit: Genetique Quantitative et Evolution Le Moulon Gulnaz Kahar Xinjiang Institute of Ecology and Geography Daoyuan Zhang Xinjiang Institute of Ecology and Geography Hua Shao Xinjiang Institute of Ecology and Geography Yusufjon Gafforov Institute of Botany, Academy of Sciences of Uzbekistan Research Keywords: Agrilus mali, larval gut microbiota, Pseudomonas synxantha, invasive insect, wild apple, 16S rRNA and ITS sequencing Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-287915/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Background: The gut microora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of gut bacteria to address this absence of fungi in the larval gut. Results: The results demonstrated that gut bacteria were able to selectively inhibit wild apple tree-associated fungi. However, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identied. -
ORIGIN and FATE of ODOROUS METABOLITES, 2-METHYLISOBORNEOL and GEOSMIN, in a EUTROPHIC RESERVOIR Nicolas André Clercin Submit
ORIGIN AND FATE OF ODOROUS METABOLITES, 2-METHYLISOBORNEOL AND GEOSMIN, IN A EUTROPHIC RESERVOIR Nicolas André Clercin Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University June 2019 Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ______________________________________ Gregory K. Druschel, PhD, Chair ______________________________________ Pierre-André Jacinthe, PhD November 13, 2018 ______________________________________ Gabriel Filippelli, PhD ______________________________________ Max Jacobo Moreno-Madriñán, PhD ______________________________________ Sarath Chandra Janga, PhD ii © 2019 Nicolas André Clercin iii DEDICATION I would like to dedicate this work to my family, my wife Angélique and our three sons Pierre-Adrien, Aurélien and Marceau. I am aware that the writing of this manuscript has been an intrusion into our daily life and its achievement now closes the decade-long ‘Indiana’ chapter of our family. Another dedication to my parents and my young brother who have always been supportive and respectful of my choices even if they never fully understood the content of my research. A special thought to my dad (†2005) who loved so much sciences and technologies but never got the chance to study as a kid. Him who idolized his own father, a WWII resistant but became head of the family upon his father’s death when he was only 8. Him who had to work to support his widowed mother and his two younger brothers. Him who decided to join the French navy at the age of 16 as a seaman recruit in order to finally reach his personal goal and study, learn diesel engine mechanics, a skill that served him later in the civilian life. -
(12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep. -
Phenotypic and Genetic Diversity of Pseudomonads
PHENOTYPIC AND GENETIC DIVERSITY OF PSEUDOMONADS ASSOCIATED WITH THE ROOTS OF FIELD-GROWN CANOLA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon By Danielle Lynn Marie Hirkala © Copyright Danielle Lynn Marie Hirkala, November 2006. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 i ABSTRACT Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria. -
Broad Spectrum Antibiotic-Degrading Metallo-Β-Lactamases Are Phylogenetically Diverse
Supplementary Material Broad spectrum antibiotic-degrading metallo-β-lactamases are phylogenetically diverse. 12 All B3 B3-RQK B3-Q B3-E Fig. S1| Bacterial host affiliation and environmental distribution of B3 enzymes. Pie charts are scaled by the number of component protein sequences in each enzyme category. Host affiliation is shown for the top seven phyla and environments are categorised according to the legend to the right of the figure. Overlaying the B3 MBL tree with the host phylogeny (ring 1 in Fig. 1) indicates extensive lateral transfer of the MBL genes, most conspicuously at the phylum level. Using Class D SBLs as an outgroup suggests that B3 MBLs originated in the Actinobacteria and from there distributed to other phyla via lateral gene transfer. The B3- RQK and B3-E variants were found exclusively in the Proteobacteria and B3-Q were mostly identified in the Bacteroidetes. Localisation of the B3-RQK genes in the family Enterobacteriaceae and genus Acinetobacter is particularly striking, suggesting that these changes to the active site are relatively recent and lateral transfer has been limited thus far. A majority of habitats linked to the identified sequences are associated with humans (typically hospital or farming environments) or soil and rhizosphere samples (outer ring in Fig. 1). Previously studied, clinically relevant MBLs were not clustered together as a single monophyletic unit, but rather interspersed throughout the tree. This finding suggests that clinical MBLs have entered into the hospital environment through multiple, independent incursion events and are not the result of a single human-associated MBL undergoing diversification. Notably, an increasing proportion of B3-like MBLs were identified in water-borne bacteria in the deeper branching regions of the tree (closer to the Class D outgroup). -
Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
(19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.