º'‡ Èõàπõπ§ ∫ (Lepidoptera: Geometridae) ¢Õ߇¢Μ√—°…“Æ

Total Page:16

File Type:pdf, Size:1020Kb

º'‡ Èõàπõπ§ ∫ (Lepidoptera: Geometridae) ¢Õ߇¢Μ√—°…“Æ π‘æπ∏åµâπ©∫—∫ º’‡ ◊ÈÕÀπÕπ§◊∫ (Lepidoptera: Geometridae) ¢Õ߇¢µ√—°…“æ—π∏ÿå —µ«åªÉ“ Œ“≈“-∫“≈“ ®—ßÀ«—¥π√“∏‘«“ »ÿ¿ƒ°…å «—≤π ‘∑∏‘Ï 1 ™—¬«—≤πå ª√–¡«≈2 ÿ√‰°√ ‡æ‘Ë¡§”3 ·≈– »‘√‘æ√ ∑ÕßÕ“√’¬å 4 Abstract Watanasit, S.1, Pramual, C.1, Permkam, S.2, and Thong-Aree, S.3 Geometrid moths (Lepidoptera: Geometridae) in Hala-Bala Wildlife Sanctuary, Narathiwat Province Songklanakarin J. Sci. Technol., 2004, 26(2) : 197-210 The purpose of this research was to investigate the species diversity and abundance of geometrid moths in tropical rain forest of Hala-Bala Wildlife Sanctuary (< 200 meters above sea level), Narathiwat Province, southern Thailand. Field data were collected every 2 months from July 2001 to July 2002. Three light traps were placed 200 meters apart. Moths were collected every 2 hours between 18.00 - 24.00 pm for 1Department of Biology, Faculty of Science, 2Department of Pest Management, Faculty of Natural Resourecs, Prince of Songkla University, Hat Yai, Songkhla, 90112, 3Peat Swamp Hala-Bala Research Station, Narathiwat, 96160 Thailand. 1«∑.¡. ( —µ««‘∑¬“) √Õß»“ µ√“®“√¬å 2«∑.¡. (𑇫»«‘∑¬“) π—°»÷°…“ ¿“§«‘™“™’««‘∑¬“ §≥–«‘∑¬“»“ µ√å 3Ph.D. (Entomology) √Õß»“ µ√“®“√¬å ¿“§«‘™“°“√®—¥°“√»—µ√Ÿæ◊™ §≥–∑√—欓°√∏√√¡™“µ‘ ¡À“«‘∑¬“≈—¬ ߢ≈“π§√‘π∑√å Õ”‡¿ÕÀ“¥„À≠à ®—ßÀ«—¥ ߢ≈“ 90112 4«∑.¡. (™’««‘∑¬“ªÉ“‰¡â) π—°«‘™“°“√ ∂“π’«‘®—¬ —µ«åªÉ“ ªÉ“æ√ÿªÉ“Œ“≈“-∫“≈“ 96160 π√“∏‘«“ Corresponding e-mail : [email protected] √—∫µâπ©∫—∫ 10 µÿ≈“§¡ 2546 √—∫≈ßæ‘¡æå 18 µÿ≈“§¡ 2546 Songklanakarin J. Sci. Technol. Geometrid moths in Hala-Bala Wildlife Sanctuary, Narathiwat Vol. 26 No. 2 Mar.-Apr. 2004 198 Watanasit, S., et al. 3 consecutive nights. Seven hundred and fifty six individuals of geometrid moths comprising 5 subfamilies, 17 tribes, 67 genera and 129 species were collected and identified. According to the numbers of species and individuals, moths in subfamily Ennominae (79 species, 522 individuals respectively) were the predominant group followed by Geometrinae (32 species, 88 individuals), Desmobathrinae (8 species, 42 individuals), Sterrhinae (7 species, 24 individuals) and Larentiinae (3 species, 80 individuals). The number of species and individuals varied with collecting time as follows: 18.00 - 20.00 pm (61 species, 199 individuals); 20.00 - 22.00 pm (90 species, 298 individuals); 22.00 - 24.00 pm (75 species, 259 individuals). However, the most abundant / / species were Hypocecis costaria Guenee , Omiza lycoraria Guenee , Ectropis bhurmitra Walker, Hypomecis sommereri Sato and Eois memorata Walker. No association between rainfall or temperature and total number of species or individuals was found. The total numbers of individuals in subfamilies Ennominae and Geometrinae were positively correlated with temperature (P<0.01, rs = 0.893 and 0.964 respectively). No difference in total number of species or individu- als was found between dry and wet season. Key words : geometridae, seasonal change, physical factors, diversity, Hala-Bala Wildlife Sanctuary, Narathiwat ∫∑§—¥¬àÕ »ÿ¿ƒ°…å «—≤π ‘∑∏‘Ï ™—¬«—≤πå ª√–¡«≈ ÿ√‰°√ ‡æ‘Ë¡§” ·≈– »‘√‘æ√ ∑ÕßÕ“√’¬å º’‡ ◊ÈÕÀπÕπ§◊∫ (Lepidoptera: Geometridae) ¢Õ߇¢µ√—°…“æ—π∏ÿå —µ«åªÉ“ Œ“≈“-∫“≈“ ®—ßÀ«—¥π√“∏‘«“ «. ߢ≈“π§√‘π∑√å «∑∑. 2547 26(2) : 197-210 «—µ∂ÿª√– ߧå¢Õß°“√»÷°…“„π§√—Èßπ’ȇªìπ°“√»÷°…“§«“¡À≈“°À≈“¬·≈–®”π«π¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫„πªÉ“∫“≈“ ‡¢µ√—°…“æ—π∏ÿå —µ«åªÉ“Œ“≈“ - ∫“≈“ ®—ßÀ«—¥π√“∏‘«“ (∑’Ë¡’§«“¡ Ÿß‰¡à‡°‘π 200 ‡¡µ√ ®“°√–¥—∫πÈ”∑–‡≈) µ—Èß·µà‡¥◊Õπ °√°Æ“§¡ æ.». 2544 - ‡¥◊Õπ°√°Æ“§¡ æ.». 2545 ∑”°“√«“ß°—∫¥—°· ߉ø®”π«π 3 ™ÿ¥ ·µà≈–™ÿ¥Àà“ß°—π 200 ‡¡µ√ °“√‡°Á∫µ—«Õ¬à“ß∑ÿ°Ê 2 ™—Ë«‚¡ß µ—Èß·µà‡«≈“ 18.00 π. - 24.00 π. ‡ªìπ‡«≈“ 3 §◊𵑥µàÕ°—π ®“°°“√ ”√«®æ∫º’‡ ◊ÈÕ ÀπÕπ§◊∫∑—ÈßÀ¡¥ 756 µ—« 129 ™π‘¥ 67 °ÿ≈ 17 ‡ºà“ „π 5 «ß»å¬àÕ¬‰¥â·°à Ennominae (79 ™π‘¥ 522 µ—«) Geometrinae (32 ™π‘¥ 88 µ—«) Desmobathrinae (8 ™π‘¥ 42 µ—«) Sterrhinae (7 ™π‘¥ 24 µ—«) ·≈– Larentiinae (3 ™π‘¥ 80 µ—«) ”À√—∫™à«ß‡«≈“æ∫«à“¡’§«“¡À≈“°À≈“¬¢Õß™π‘¥·≈–®”π«π·µ°µà“ß°—π‰ª §◊Õ„π™à«ß√–¬–‡«≈“ 18.00 π. - 20.00 π. (61 ™π‘¥ 199 µ—«) ™à«ß√–¬–‡«≈“ 20.00 π. - 22.00 π. (90 ™π‘¥ 298 µ—«) ·≈–™à«ß√–¬–‡«≈“ 22.00 π. - 24.00 π. (75 ™π‘¥ 259 µ—«) πÕ°®“°π’Èæ∫«à“ º’‡ ◊ÈÕÀπÕπ§◊∫∑’Ëæ∫®”π«πµ—«¡“°‰¥â·°à º’‡ ◊ÈÕÀπÕπ§◊∫™π‘¥ Hypomecis / / costaria Guenee , Omiza lycoraria Guenee , Ectropis bhurmitra Walker, Hypomecis sommereri Sato ·≈– Eois memorata Walker §«“¡ —¡æ—π∏å√–À«à“ߪ√‘¡“≥πÈ”Ωπ·≈–Õÿ≥À¿Ÿ¡‘ °—∫®”π«π™π‘¥·≈–®”π«πµ—«√«¡ º≈°“√»÷°…“æ∫«à“‰¡à¡’ §«“¡ —¡æ—π∏å°—∫®”π«π™π‘¥·≈–®”π«πµ—«√«¡¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫ „π¢≥–∑’ËÕÿ≥À¿Ÿ¡‘¡’§«“¡ —¡æ—π∏å„π‡™‘ß∫«°°—∫ ®”π«πµ—«¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫„π«ß»å¬àÕ¬ Ennominae ·≈– Geometrinae (P<0.01, r = 0.89 ·≈– 0.96 µ“¡≈”¥—∫) s ”À√—∫°“√‡ª≈’ˬπ·ª≈ߢÕߺ’‡ ◊ÈÕÀπÕπ§◊∫µ“¡ƒ¥Ÿ°“≈ æ∫«à“®”π«π™π‘¥·≈–®”π«πµ—«√«¡√–À«à“߃¥Ÿ·≈âß·≈–ƒ¥ŸΩπ ‰¡à¡’§«“¡·µ°µà“ß°—π º’‡ ◊ÈÕÀπÕπ§◊∫®—¥Õ¬Ÿà„π«ß»å Geometridae ‡ªìπ doptera ‡ªìπº’‡ ◊ÈÕ°≈“ߧ◊π∑’Ë¡’¢π“¥‡≈Á°®π∂÷ß¢π“¥°≈“ß «ß»åÀπ÷Ëß∑’Ë¡’§«“¡À≈“°À≈“¬¢Õß™π‘¥¡“°„πÕ—π¥—∫ Lepi- µ—«ÀπÕπ¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫¡’≈—°…≥–‡¥àπ§◊Õ ª√–°Õ∫ «. ߢ≈“π§√‘π∑√å «∑∑. º’‡ ◊ÈÕÀπÕπ§◊∫¢Õ߇¢µ√—°…“æ—π∏ÿå —µ«åªÉ“Œ“≈“-∫“≈“ π√“∏‘«“ ªï∑’Ë 26 ©∫—∫∑’Ë 2 ¡’.§.-‡¡.¬. 2547 199 »ÿ¿ƒ°…å «—≤π ‘∑∏‘Ï ·≈–§≥– ¥â«¬¢“‡∑’¬¡ 2 À√◊Õ 3 §Ÿà ¡’°“√‡§≈◊ËÕπ∑’ˇªìπ·∫∫§◊∫§≈“π sacharlis (F) ·≈– Eoreuma loftini (Dyar) ¡’®”π«π ®÷ß¡’™◊ËÕ‡√’¬°µà“ßÊ ‡™àπ geometer, measuring worm, ª√–™“°√‡æ‘Ë¡¢÷Èπ¡“°„π™à«ßƒ¥ŸΩπ geometrid moth À√◊Õ inchworm (Common, 1970; ªí®®—¬∑“ß°“¬¿“æ‚¥¬‡©æ“–ª√‘¡“≥πÈ”Ωπ∑’Ë¡’º≈ Little, 1972) º’‡ ◊ÈÕÀπÕπ§◊∫¡’∫∑∫“∑∑’Ë ”§—≠„π√–∫∫ µàÕ§«“¡™ÿ°™ÿ¡¢Õߺ’‡ ◊ÈÕ°≈“ߧ◊𠇙àπ ‡¡◊ËÕª√‘¡“≥πÈ”Ωπ 𑇫» ‡™à𠇪ìπµ—«™à«¬º ¡‡° √¢Õßæ◊™ (Nagamitsu and ¡“°®–∑”„À⧫“¡™ÿ°™ÿ¡¢Õߺ’‡ ◊ÈÕ°≈“ߧ◊π™π‘¥ Spodop- Inoue, 1997) ·≈–¬—߇ªìπ°≈ÿà¡∑’Ë„™â‡ªìπ¥—™π’«—¥§«“¡Õÿ¥¡ tera exempta ·≈– Heliothis zea ≈¥πâÕ¬≈ß ·≈–§«“¡ ¡∫Ÿ√≥åÀ√◊Õ§«“¡‡ ◊ËÕ¡‚∑√¡¢Õß ‘Ëß·«¥≈âÕ¡ (bioindicator) ™ÿ°™ÿ¡‡æ‘Ë¡¡“°¢÷Èπ‡¡◊ËÕ¡’ª√‘¡“≥πÈ”ΩπµË”Ê (Speight et al., ‰¥â‡æ√“–¡’°“√µÕ∫ πÕßµàÕ°“√‡ª≈’ˬπ·ª≈ߢÕßªí®®—¬ ‘Ëß 1999) ‡™àπ‡¥’¬«°—∫º’‡ ◊ÈÕÀπÕπ§◊∫¢Õß¡“‡≈‡´’¬ ´÷Ëß ·«¥≈âÕ¡·≈–ƒ¥Ÿ°“≈‰¥âÕ¬à“ß√«¥‡√Á« (Holloway, 1985 Intachat ·≈–§≥– (2001) æ∫«à“„π‡¥◊Õπ∑’Ë¡’ª√‘¡“≥ and 1998) πÈ”ΩππâÕ¬®–æ∫§«“¡À≈“°À≈“¬¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫‡æ‘Ë¡ º’‡ ◊ÈÕÀπÕπ§◊∫¡’°“√·æ√à°√–®“¬‰ª∑—Ë«∑ÿ°æ◊Èπ∑’Ë∑’Ë¡’ ¡“°¢÷Èπ ¢≥–∑’Ë¡≈±≈ (2544) æ∫«à“„π‡¥◊Õπ∑’Ë¡’ª√‘¡“≥ æ◊™Õ“À“√ ‚¥¬‡©æ“–„πªÉ“¥‘∫™◊Èπ´÷Ëß¡’§«“¡À≈“°À≈“¬™π‘¥ πÈ”ΩππâÕ¬®–æ∫º’‡ ◊ÈÕÀπÕπ§◊∫¢Õ߇¢µ√—°…“æ—π∏ÿå —µ«åªÉ“ æ◊™¡“° ‡™àπ ∑’Ë∫√‘‡«≥‡°“–∫Õ√å‡π’¬«„πª√–‡∑»¡“‡≈‡´’¬ ‚µπß“™â“ßπâÕ¬µ“¡‰ª¥â«¬ ”√«®æ∫º’‡ ◊ÈÕÀπÕπ§◊∫∑—ÈßÀ¡¥ 1,064 ™π‘¥ (Holloway, ”À√—∫Õÿ≥À¿Ÿ¡‘‡ªìπªí®®—¬∑’Ë¡’§«“¡ ”§—≠µàÕ°“√ 1993, 1996 and 1997) ∑’Ë∫√‘‡«≥‡¢µ√—°…“æ—π∏ÿå —µ«åªÉ“ ‡®√‘≠‡µ‘∫‚µ °“√«“߉¢à °“√°‘πÕ“À“√ ·≈–°“√ ◊∫æ—π∏ÿå Lanjak - Entimau „π√—∞´“√“«—§ æ∫º’‡ ◊ÈÕÀπÕπ§◊∫ ¢Õß·¡≈ß (Rosmoser and Stoffolano, 1994; Gullan ∑—ÈßÀ¡¥ 255 ™π‘¥ (Chey, 2000) „πª√–‡∑»‰∑¬ Sato and Cranston, 1994; Young, 1982) àߺ≈„Àâ®”π«π (1991, 1995) ‰¥â∑”°“√»÷°…“º’‡ ◊ÈÕÀπÕπ§◊∫„πÀ≈“¬ ª√–™“°√¢Õß·¡≈߇æ‘Ë¡¢÷ÈπÀ√◊Õ≈¥≈߉¥â ‡™àπ∑’ˇ¢µ√—°…“ ®—ßÀ«—¥¢Õ߉∑¬‚¥¬‡©æ“–∑’ˇ™’¬ß„À¡àæ∫™π‘¥„À¡à¢Õß‚≈° æ—π∏ÿå —µ«å‚µπß“™â“ß Boonvanno ·≈–§≥– (2000) ‰¡àæ∫ 4 ™π‘¥ ”À√—∫„π¿“§„µâ¢Õ߉∑¬π—Èπ ®ÿ±“¡“ ·≈– §«“¡ —¡æ—π∏å√–À«à“ß®”π«π™π‘¥·≈–®”π«πµ—«√«¡¢Õß §≥– (2542) ·≈– ¡≥±≈ (2544) ‰¥â∑”°“√»÷°…“º’‡ ◊ÈÕ º’‡ ◊ÈÕ°≈“ß«—π°—∫Õÿ≥À¿Ÿ¡‘ ¢≥–∑’Ë¡≈±≈ (2544) æ∫«à“ ÀπÕπ§◊∫∑’ˇ¢µ√—°…“æ—π∏ÿå —µ«åªÉ“‚µπß“™â“ß ®. ߢ≈“ ‚¥¬ ®”π«π™π‘¥·≈–®”π«πµ—«√«¡¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫≈¥≈߇¡◊ËÕ ®ÿ±“¡“ ·≈–§≥– (2542) √“¬ß“π«à“Õ“®‡ªìπ™π‘¥„À¡à∂÷ß Õÿ≥À¿Ÿ¡‘ Ÿß¢÷Èπ 7 ™π‘¥∑’ˉ¥â∑”°“√ ”√«® ”À√—∫°“√ ”√«®¿“¬À≈—ߢÕß ®–‡ÀÁπ‰¥â«à“ƒ¥Ÿ°“≈·≈–ªí®®—¬ ‘Ëß·«¥≈âÕ¡ àߺ≈ ¡≥±≈ (2544) æ∫º’‡ ◊ÈÕÀπÕπ§◊∫∑—ÈßÀ¡¥ 123 ™π‘¥ °√–∑∫∑—Èß∑“ßµ√ß·≈–∑“ßÕâÕ¡µàÕ§«“¡À≈“°À≈“¬¢Õß ”À√—∫§«“¡À≈“°À≈“¬¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫„π‡¢µ√—°…“æ—π∏ÿå º’‡ ◊ÈÕÀπÕπ§◊∫ ¥—ßπ—Èπ«—µ∂ÿª√– ߧå¢Õß°“√»÷°…“§√—Èßπ’È —µ«åªÉ“Œ“≈“-∫“≈“ ¬—߉¡à‡§¬¡’√“¬ß“π°“√»÷°…“¡“°àÕπ ‡æ◊ËÕ»÷°…“∂÷ߧ«“¡À≈“°À≈“¬¢Õߺ’‡ ◊ÈÕÀπÕπ§◊∫ ·≈–º≈ ƒ¥Ÿ°“≈∑”„À⇰‘¥°“√‡ª≈’ˬπ·ª≈ßªí®®—¬°“¬¿“æ ¢Õ߃¥Ÿ°“≈·≈–ªí®®—¬°“¬¿“æ∑’Ë¡’º≈µàÕº’‡ ◊ÈÕÀπÕπ§◊∫ µà“ßÊ ‡™àπ ª√‘¡“≥πÈ”Ωπ Õÿ≥À¿Ÿ¡‘ §«“¡™◊Èπ —¡æ—∑∏å ¢Õ߇¢µ√—°…“æ—π∏ÿå —µ«åªÉ“Œ“≈“-∫“≈“ ‡æ◊ËÕ‡ªìπ¢âÕ¡Ÿ≈æ◊Èπ∞“𠇪ìπµâπ ´÷Ëßªí®®—¬‡À≈à“π’È àߺ≈°√–∑∫µàÕ°“√·æ√à°√–®“¬ „π°“√Õπÿ√—°…å·≈–®—¥°“√æ◊Èπ∑’˪ɓ‰¡âµàÕ‰ª„πÕ𓧵 ®”π«π™π‘¥·≈–§«“¡™ÿ°™ÿ¡¢Õß·¡≈ß„πÀ≈“¬Ê °≈ÿà¡ √«¡ ∑—Èß°≈ÿࡺ’‡ ◊Èե⫬ (Vane - Wright et al., 1984; Samways, «‘∏’°“√»÷°…“ 1994) ‡™àπ º’‡ ◊ÈÕ°≈“ߧ◊π„π«ß»å Pyralidae ¡’®”π«π ™π‘¥·≈–®”π«πµ—«‡æ‘Ë¡¡“°¢÷Èπ„π™à«ßƒ¥Ÿ√âÕπ ¢≥–∑’˺’‡ ◊ÈÕ æ◊Èπ∑’Ë»÷°…“ °≈“ߧ◊π„π«ß»å Geometridae ¡’®”π«π™π‘¥·≈–®”π«π ªÉ“∫“≈“ ‡ªìπªÉ“¥‘∫™◊Èπ´÷ËßÕ¬Ÿà„π‡¢µ√—°…“æ—π∏ÿå —µ«å µ—«≈¥≈ß„π™à«ßƒ¥Ÿ√âÕπ (Ito et al., 1997) πÕ°®“°π’È ªÉ“Œ“≈“-∫“≈“ ª√–°Õ∫¥â«¬æ◊Èπ∑’˪ɓª√–¡“≥ 105,625 ‰√à Bosque ·≈–§≥– (1990) √“¬ß“π«à“º’‡ ◊ÈÕ°≈“ߧ◊π„π«ß»å ≈—°…≥–∑—Ë«‚¥¬‰ª‡ªìπ¿Ÿ‡¢“ Ÿß™—π ≈—°…≥–¿Ÿ¡‘Õ“°“»¢Õß Pyralidae ™π‘¥ Diatraea lineolata (Walker), D. ªÉ“∫“≈“¡’ 2 ƒ¥Ÿ°“≈ §◊Õ ƒ¥ŸΩπ·≈–ƒ¥Ÿ√âÕπ ª√‘¡“≥πÈ”Ωπ Songklanakarin J. Sci. Technol. Geometrid moths in Hala-Bala Wildlife Sanctuary, Narathiwat Vol. 26 No. 2 Mar.-Apr. 2004 200 Watanasit, S., et al. ¡“°°«à“ 2,500 ¡¡/ªï Õÿ≥À¿Ÿ¡‘‡©≈’ˬª√–¡“≥ 28 oC °“√‡°Á∫¢âÕ¡Ÿ≈ ·≈–§«“¡™◊Èπ —¡æ—∑∏剡àµË”°«à“ 60% —ߧ¡æ◊™ “¡“√∂ °”Àπ¥®ÿ¥‡°Á∫µ—«Õ¬à“ß 3 ®ÿ¥ (®ÿ¥∑’Ë 1 Õ¬Ÿà∑’Ëæ‘°—¥ ·∫àßÕÕ°‰¥â‡ªìπ 3 ª√–‡¿∑ ‰¥â·°à —ߧ¡æ◊™ªÉ“¥‘∫™◊Èπ„π 47N0814377 ®ÿ¥∑’Ë 2 Õ¬Ÿà∑’Ëæ‘°—¥ 47N0814464 ·≈–®ÿ¥ √–¥—∫µË” (tropical lowland rainforest) ¢÷ÈπÕ¬Ÿà∑’Ë√–¥—∫ ∑’Ë 3 Õ¬Ÿà∑’Ëæ‘°—¥ 47N08145478) ∑’Ë¡’≈—°…≥–„°≈⇧’¬ß°—𠧫“¡ ŸßµË”°«à“ 1,000 ‡¡µ√ ®“°√–¥—∫πÈ”∑–‡≈ —ߧ¡æ◊™ ·µà≈–®ÿ¥Àà“ß°—πª√–¡“≥ 200 ‡¡µ√ (Figure 1) ∑”°“√ ªÉ“¥‘∫‡¢“ (lower montane rainforest) æ∫°√–®“¬∑—Ë«‰ª ‡°Á∫µ—«Õ¬à“ߺ’‡ ◊ÈÕÀπÕπ§◊∫¥â«¬°—∫¥—°· ߉ø (black µ—Èß·µà 1,000 ‡¡µ√ ‡Àπ◊Õ√–¥—∫πÈ”∑–‡≈¢÷Èπ‰ª ·≈– —ߧ¡ light) ∑’Ë¡’°”≈—ß àÕß «à“ß 12 ‚«≈µå „™â·À≈àß°”‡π‘¥‰øøÑ“ æ◊™ªÉ“‡¢“À‘πªŸπ (vegetation over limestone hill) ‚¥¬ ®“°∂à“π‰ø©“¬ 1.5 ‚«≈µå ®”π«π 8 °âÕπ ∑’˵‘¥µ—È߉«â„π æ∫∑’˧«“¡ Ÿß‡Àπ◊Õ√–¥—∫πÈ”∑–‡≈ 500 - 700 ‡¡µ√ (™«≈‘µ, ºâ“¡ÿâߧ≈⓬°√¥æ√–∏ÿ¥ß§å ‚¥¬µ‘¥µ—Èß°—∫¥—°· ߉ø 1 °—∫¥—°/ 2543) æ◊Èπ∑’Ë 1 ∫√‘‡«≥ ‡°Á∫µ—«Õ¬à“ߺ’‡ ◊ÈÕÀπÕπ§◊∫∑’Ë¡“‡≈àπ· ß °“√»÷°…“§√—Èßπ’È¥”‡π‘π°“√«‘®—¬„πªÉ“¥‘∫™◊Èπæ◊Èπ∑’Ë√“∫ ‰ø´÷Ëß®–‡°“–Õ¬Ÿà¢â“ߺⓡÿâß∑ÿ°Ê 2 ™—Ë«‚¡ß ‚¥¬‡√‘Ë¡µ—Èß·µà ‡«≈“ µË” ∑’Ë√–¥—∫§«“¡ ŸßµË”°«à“ 200 ‡¡µ√ ®“°√–¥—∫πÈ”∑–‡≈ 18.00 π.
Recommended publications
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Butterflies and Moths of Gwinnett County, Georgia, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • (Prout)(Geometridae
    The LepidopterologicalSocietyLepidopterological Society of Japan eetva Z'ans. tepid. Soc. Jopan 59 (2): 171-185,March 2008 Notes onAlcis variegata (Moore),A. colorijlera (Prout) (Geometridae, Ennominae), and their allies from the Sunda Islands, with descriptions of two new species Rikio SATo 2-27-29, Shindori-nishi, Nishi-ku, Niigata, 950-2036 Japan Abstract Two species-groups ofAlcis from the Sunda Islands are revised. The A. variegata cum- plex: A, variegata (Moore), A. com,ariata (Prout), stat. & comb. nov,, A. hemiphanes (ProuO, A. cockaynei (Prout), A. Iuizi sp. nov. (Sumatra), A. paukstadti sp. nov, (Flores>, A. praevariegata (ProuO. Alcis taiwanovariegata nom. nov. is proposed for Boarmia suhochrearia Wileman & South, 1917, currently assigned to Alcis and preeccupied by Leech, IS97, The A. colorCfera com- plex: A. coloritlera (Prout), A. periphracta (Prout). Key words Geumetridae, Ennominae, Atcis variegata, Alcis color(fera, taxonomic notes, new species, Sunda Islands. In my previous paper (Sato, 2005), two species groups of the genus Atcis Cunis from Southeast Asia, the pammicra and maculata cQmplexes, were revised. In this paper, I will give a taxonomic account of two further species groups of Alcis from the Sunda Islands (Borneo, Sumatra, Java, Flores) in Southeast Asia, with descriptions of two new species, A, "variegata variegata andA. color(feva, and species allied to them will be named here the L`colorijleia complex" and complex" without strict definition, for the sake of convenience, No species belonging to the two complexes have been found from Sulawesi. For precise identification of the taxonomically more confusing species, I examined all available type specimens and their genitalia at the Natura] History Museum, London, UK, when I visited there in 2002.
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Jahresber. 05
    museumFORSCHUNGS KOENIG JAHRES BERICHT 2006 ZOOLOGISCHES FORSCHUNGSMUSEUM ALEXANDER KOENIG www.zfmk.de JAHRESBERICHT 2006 INHALT 1 GRUSSWORT DES DIREKTORS 1 1 Bericht über die Evaluierung 3 2 2 AUS DER AKTUELLEN ARBEIT 3 2 Die Opisthobranchia - Forschung an einer facettenreichen Schneckengruppe 3 2 BIOTA Ostafrika - Biodiversitätsforschung in Afrika - Forschung für den Menschen 9 Zugvogelforschung mit Weltraumtechnologie 13 2 1 FORSCHUNG AM ZFMK 17 1.1 Forschungsprojekte (tabellarisch) 17 1.2 Kongresse, Vorträge und Forschungsreisen 23 1.2.1 Kongresse 23 1.2.2 Auswärtige Vorträge 25 1.2.3 Forschungsreisen 28 1.3 Drittmitteleinwerbungen 30 1.4 Kooperationen 33 1.5 Weitere wissenschaftliche Aktivitäten 38 1.5.1 Zeitschriften und Buchprojekte 38 1.5.2 Gremien- und Gutachtertätigkeit 40 1.6 Gastwissenschaftler 45 1.6.1 Gastwissenschaftler im Portrait 45 1.6.2 Gastwissenschaftler (tabellarisch) 46 2 SAMMLUNGEN UND BIBLIOTHEKEN 49 2.1 Sammlungszugänge 2006 49 2.1.1 Besondere Sammlungszugänge 49 2.2.2 Sammlungszugänge (tabellarisch) 51 2.2 Bibliothek 52 3 LEHRE 55 3.1 Vorlesungen, Seminare, Praktika 55 3.2 Kandidatenbetreuung 56 3.2.1 Laufende Arbeiten 56 3.2.2 Abgeschlossene Arbeiten 59 3.3 Evolutionsbiologisches Kolloquium - Vorträge 2006 61 JAHRESBERICHT 2006 4 ÖFFENTLICHKEITSARBEIT 63 4.1 Ausstellungswesen 63 4.1.1 Dauerausstellung 63 4.1.2 Sonderausstellungen 64 4.2 Veranstaltungen 2006 66 4.2.1 Museumsmeilenfest 66 4.2.2 Winterabendvorträge 67 4.2.3 Weitere Veranstaltungen 68 4.3 Museumspädagogik 70 4.3.1 Museumspädagogische Programme
    [Show full text]
  • Moths of North Carolina - Early Draft 1
    Geometridae Cleora projecta Projecta Gray Moth 40 n=0 30 High Mt. N 20 u • m 10 b e 0 • r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 10 • • Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec • o 40 • • f n=0 • = Sighting or Collection 30 • Low Mt. High counts of: • in NC since 2001 F • = Not seen since 2001 l 20 37 - Brunswick - 1994-03-19 • i 10 24 - Brunswick - 2006-04-24 g Status Rank h 24 - Pender - 1995-04-17 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 40 40 t n=0 n=89 e 30 Pd 30 CP s 20 20 10 10 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Geometridae SUBFAMILY: Ennominae TRIBE: Boarmiini TAXONOMIC_COMMENTS: This genus occurs over much of the world but in North America there are only two species and both occur in North Carolina FIELD GUIDE DESCRIPTIONS: Covell (1984) ONLINE PHOTOS: TECHNICAL DESCRIPTION, ADULTS: Forbes (1948; as C.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Spatial Structure of Natural Boxwood and the Invasive Box Tree Moth Can Promote Coexistence
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.388322; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spatial structure of natural boxwood and the invasive box tree moth can promote coexistence. Léo Ledru1, Jimmy Garnier2, Christiane Gallet1, Camille Noûs3, Sébastien Ibanez1 1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France 2CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, LAMA, 73000 Chambery, France 3Laboratory Cogitamus Adresses for correspondance: LL: [email protected], JG: [email protected], CG: christiane.gallet@univ- smb.fr, CN: [email protected], SI: [email protected], 1 Abstract 2 In the absence of top-down and bottom-up controls, herbivores eventually drive themselves to extinction by ex- 3 hausting their host plants. Poorly mobile herbivores may experiment only local disappearance, because they can 4 recolonize intact plant patches elsewhere, leaving time to previously over-exploited patches to regrow. However 5 most herbivores such as winged insects are highly mobile, which may prevent the formation of spatial heterogeneity. 6 We test if long-distance dispersal can preclude coexistence using the invasion of box tree moth (Cydalima 7 perspectalis) in Europe as a model system. We build a lattice model and estimate the parameters with a combination 8 of field measurements, experimental data and literature sources.
    [Show full text]
  • Walker, 1859) in Emilia Romagna (Italy) (Lepidoptera: Crambidae, Spilomelinae
    Nachr. entomol. Ver. Apollo, N. F. 34 (1/2): 91–93 (2013) 91 New record of the invasive pest species Cydalima perspectalis (Walker, 1859) in Emilia Romagna (Italy) (Lepidoptera: Crambidae, Spilomelinae) Britta Uhl and Mirko Wölfling B.Sc. Britta Uhl, University of Würzburg, Department of Animal Ecology and Tropical Biology, Theodor­Boveri­Institut für Biowissenschaften, Biocenter, Am Hubland, D­97074 Würzburg, Germany Dipl.­Biol. Mirko Wölfling, University of Vienna, Department of Tropical Ecology and Animal biodiversity, Rennweg 14, A­1030 Wien (Vienna), Austria; [email protected] (corresponding author) Abstract: Cydalima perspectalis (Walker, 1859) is one of Fund in der Emilia Romagna zu verzeichnen, wo C. per spec- the most intensively observed pest species in Europe. Once ta lis in Pineta san Vitale, einem geschützten Teilstück des in troduced, the moth has spread from Germany, where the Par co regionale del Delta del Po in der Nähe von Ravenna, first record was made in 2007, over Switzerland, France, the ge funden wurde. Netherlands and Austria. In 2008 the moth reached the Uni­ ted Kingdom. In the south this species was also found in Nuove evidenze della specie infestante neozoica Cyda- Turkey, Hungary, Slovenia and 2011 in Italy. Our new record lima perspectalis (Walker, 1859) in Emilia Romagna of C. perspectalis in Italy confirms the further southwar d (Italia) (Lepidoptera: Crambidae, Spilomelinae) expansion of this species. Now, there is a new locality in the Emilia Romagna, where C. perspectalis was found in Pi neta Riassunto: Al momento Cydalima perspectalis (Walker, san Vitale, a protected area of the Parco regionale del Delta 1859) è certo una delle specie infestanti invasive più inten­ del Po near Ravenna.
    [Show full text]