Part Ii. Zoölogy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of the Rallidae
A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times. -
An Early Pleistocene Eagle from Nebraska
248 SHORT COMMUNICATIONS kunthii blossoms by Bombus queens occurred and depend on many factors. That hummingbirds and the workers were unable to secure nectar while positioned ancestor of P. kunthii co-existed may be assumed; within the floral tube, probably as much as lo-20 otherwise its adaptation to hummingbird pollination per cent more nectar was available to Bombus p&her would make little sense. Thus it is possible that P. and Bombus trinominatus populations during this kunthii could have undergone much of its development period due to the feeding activity of Diglossa. under selective pressure from hummingbirds; still, it is clear that Diglossa baritula has co-existed with DISCUSSION AND CONCLUSIONS hummingbirds throughout New World montane hab- Grant and Grant (1968) have proposed an explanation itats for some time and therefore an earlier and more for the reciprocal evolution of hummingbirds and the important role in the evolution of P. kunthii would plants upon which they feed. According to this inter- not be unexpected. This is not to suggest that exploita- pretation most hummingbird-pollinated flowers, espe- tion late in the evolutionary development of P. kunthii cially temperate species, have evolved from bee flowers would be insignificant. Even at present, given the (Grant 1961; Grant and Grant 1965). The process potential counter-selection pressures on P. kunthii involves an incipient stage during which a primitive from bees, the presence of Dglossa perforations un- hummingbird or progenitor already “preadapted” to doubtedly precludes a certain amount of bee pollina- feed on a particular bee flower (in the sense of tion which would probably otherwise occur, helping securing insects within the corolla, or nectar, or both), to maintain the selection pressures on P. -
Avian Premaxilla and Tarsometatarsus from The
762 ShortCommunications andCommentaries [Auk,Vol. 112 The Auk 112(3):762-767, 1995 Avian Premaxilla and Tarsometatarsusfrom the Uppermost Cretaceous of Montana ANDRZEJ ELZANOWSKIa AND MICHAEL K. BRETT-$URMAN2 •Departmentof VertebrateZoology, National Museum of NaturalHistory, SmithsonianInstitution, Washington, D.C. 20560, USA; and 2Departmentof Geology,George Washington University, Washington, D.C. 20052,USA Despitea variety of fragmentary,apparently neog- is rounded and smooth,and the sidesare very steep. nathousavian fossilsknown from the uppermostCre- The largest among the neurovascularforamina scat- taceousdeposits (Brodkorb 1963, Olson 1985, Olson tered on each side are two elongatedorsal foramina: and Parris 1987),we still lack even an approximate the vessel from the rostral one coursed rostrad, whereas idea of how many neognathouslineages survived be- the vesselfrom the caudalone apparentlybifurcated yond the Cretaceous/Tertiaryboundary. Most of the into a smaller rostral and a larger caudal branch. In Maastrichtian avian bones reveal a charadriiform or addition, a number of smaller openingsperforates transitional charadriiform-gruiform morphology, eachside of the symphysis. which may be plesiomorphicfor most (Olson 1985) The ventral surfaceof the premaxillarysymphysis but probably not all of the neognaths(Elzanowski is strongly concave(Fig. lc, d). There are no distinct 1995). Other than that, there is some fossil evidence neurovascularforamina on the ventral (palatal) sur- for the existence of loons in the Cretaceous(Olson face,with the possibleexception of one small opening 1992)and mostly indirect evidencefor the pre-Ter- on the left side. The palatal shelvesof the premaxilla tiary origins of the relict pelecaniforms(Phaethon- begin from the symphysialtip and graduallybroaden tidae and Fregatidae) and procellariiforms (Elza- caudally where each of them occupiesone-third of nowski and Gaiton 1991). -
California Clapper Rail (Rallus Longirostris Obsoletus) 5-Year Review
California clapper rail (Rallus longirostris obsoletus ) 5-Year Review: Summary and Evaluation Photo by Allen Edwards U.S. Fish and Wildlife Service Sacramento Fish and Wildlife Office Sacramento, California April 2013 5-YEAR REVIEW California clapper rail (Rallus longirostris obsoletus) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. The California clapper rail was listed as endangered under the Endangered Species Preservation Act in 1970, so was not subject to the current listing processes and, therefore, did not include an analysis of threats to the California clapper rail. In this 5-year review, we will consider listing of this species as endangered or threatened based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of this species. We will consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed. -
Repeated Sequence Homogenization Between the Control and Pseudo
Repeated Sequence Homogenization Between the Control and Pseudo-Control Regions in the Mitochondrial Genomes of the Subfamily Aquilinae LUIS CADAH´IA1*, WILHELM PINSKER1, JUAN JOSE´ NEGRO2, 3 4 1 MIHAELA PAVLICEV , VICENTE URIOS , AND ELISABETH HARING 1Molecular Systematics, 1st Zoological Department, Museum of Natural History Vienna, Vienna, Austria 2Department of Evolutionary Ecology, Estacio´n Biolo´gica de Don˜ana, Sevilla, Spain 3Centre of Ecological and Evolutionary Synthesis (CEES), Department of Biology, Faculty for Natural Sciences and Math, University of Oslo, Oslo, Norway 4Estacio´n Biolo´gica Terra Natura (Fundacio´n Terra Natura—CIBIO), Universidad de Alicante, Alicante, Spain ABSTRACT In birds, the noncoding control region (CR) and its flanking genes are the only parts of the mitochondrial (mt) genome that have been modified by intragenomic rearrangements. In raptors, two noncoding regions are present: the CR has shifted to a new position with respect to the ‘‘ancestral avian gene order,’’ whereas the pseudo-control region (CCR) is located at the original genomic position of the CR. As possible mechanisms for this rearrangement, duplication and transposition have been considered. During characterization of the mt gene order in Bonelli’s eagle Hieraaetus fasciatus, we detected intragenomic sequence similarity between the two regions supporting the duplication hypothesis. We performed intra- and intergenomic sequence comparisons in H. fasciatus and other falconiform species to trace the evolution of the noncoding mtDNA regions in Falconiformes. We identified sections displaying different levels of similarity between the CR and CCR. On the basis of phylogenetic analyses, we outline an evolutionary scenario of the underlying mutation events involving duplication and homogenization processes followed by sporadic deletions. -
2020 National Bird List
2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and -
The Coracoid Sulci Are Peculiar in Their Depth and Narrowness. the Dorsal
M. JOLLIE, FALCONIFORMES(part IV) 1(201) The coracoid sulci are peculiar in their depth and narrowness. The dorsal margins of the sulci have distinct, anteriorly facing coracoid pads, correlated with the reduced posterior flange of the coracoid. In Henpetothenee there are large, separate, lateral processcs, while Mieraetun, Miluago, Polyborua, and some species of Faleo have these processes noved toward the midline; a single median dorsal spine is found typically in Faleo (fig. 166). These processes are produced by ossifications in the origins of the supraeo"aeoi-deus muscles. Sna1l lateral processes are indicated in Spiziapteryx along with a nedian one. The sternocoracoid processes jut upward, out, and forward and end bluntly. The sternocoracoid fossa is like that of the accipitrid. The costal margin has five to six distinct rib articulations separated by pneunatic fossae (fig, 767). The Fig. L67. Lateral views of sterna of A. Faleo merieanus, B. Henpetothenes eaehinnans. sternal plates are cupped anteriorly.for the viscera but atre flat posteriorly. The posterior margin is square; it may be complete, or have a pair of fenestrae or notches (fig. 168). B Fig. 168. Ventral views of posterior part of sterna of A. Ealco mesieanua, two specimens (a and b); B. Microhierat eaeruleseens. The keel is thin; it is usually deepest along its anterior pi1lar. In outline it is roughly triangular with the anterior margin jutting slightly or distinctly forward and showing only a *** Evol. Theory 3:1-141 (October, f977) Part IV recelved September 9, L975; May 27 , I9TT 1977, The Unlverslty of Chlcago 9 2(202) M. -
Birds of Indiana
Birds of Indiana This list of Indiana's bird species was compiled by the state's Ornithologist based on accepted taxonomic standards and other relevant data. It is periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* Anseriformes Anatidae Dendrocygna autumnalis Black-bellied Whistling-Duck Waterfowl: Swans, Geese, and Ducks Dendrocygna bicolor Fulvous Whistling-Duck Anser albifrons Greater White-fronted Goose Anser caerulescens Snow Goose Anser rossii Ross's Goose Branta bernicla Brant Branta leucopsis Barnacle Goose Branta hutchinsii Cackling Goose Branta canadensis Canada Goose Cygnus olor Mute Swan X Cygnus buccinator Trumpeter Swan SE Cygnus columbianus Tundra Swan Aix sponsa Wood Duck Spatula discors Blue-winged Teal Spatula cyanoptera Cinnamon Teal Spatula clypeata Northern Shoveler Mareca strepera Gadwall Mareca penelope Eurasian Wigeon Mareca americana American Wigeon Anas platyrhynchos Mallard Anas rubripes American Black Duck Anas fulvigula Mottled Duck Anas acuta Northern Pintail Anas crecca Green-winged Teal Aythya valisineria Canvasback Aythya americana Redhead Aythya collaris Ring-necked Duck Aythya marila Greater Scaup Aythya affinis Lesser Scaup Somateria spectabilis King Eider Histrionicus histrionicus Harlequin Duck Melanitta perspicillata Surf Scoter Melanitta deglandi White-winged Scoter ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* Melanitta americana Black Scoter Clangula hyemalis Long-tailed Duck Bucephala -
Accipitridae Species Tree
Accipitridae I: Hawks, Kites, Eagles Pearl Kite, Gampsonyx swainsonii ?Scissor-tailed Kite, Chelictinia riocourii Elaninae Black-winged Kite, Elanus caeruleus ?Black-shouldered Kite, Elanus axillaris ?Letter-winged Kite, Elanus scriptus White-tailed Kite, Elanus leucurus African Harrier-Hawk, Polyboroides typus ?Madagascan Harrier-Hawk, Polyboroides radiatus Gypaetinae Palm-nut Vulture, Gypohierax angolensis Egyptian Vulture, Neophron percnopterus Bearded Vulture / Lammergeier, Gypaetus barbatus Madagascan Serpent-Eagle, Eutriorchis astur Hook-billed Kite, Chondrohierax uncinatus Gray-headed Kite, Leptodon cayanensis ?White-collared Kite, Leptodon forbesi Swallow-tailed Kite, Elanoides forficatus European Honey-Buzzard, Pernis apivorus Perninae Philippine Honey-Buzzard, Pernis steerei Oriental Honey-Buzzard / Crested Honey-Buzzard, Pernis ptilorhynchus Barred Honey-Buzzard, Pernis celebensis Black-breasted Buzzard, Hamirostra melanosternon Square-tailed Kite, Lophoictinia isura Long-tailed Honey-Buzzard, Henicopernis longicauda Black Honey-Buzzard, Henicopernis infuscatus ?Black Baza, Aviceda leuphotes ?African Cuckoo-Hawk, Aviceda cuculoides ?Madagascan Cuckoo-Hawk, Aviceda madagascariensis ?Jerdon’s Baza, Aviceda jerdoni Pacific Baza, Aviceda subcristata Red-headed Vulture, Sarcogyps calvus White-headed Vulture, Trigonoceps occipitalis Cinereous Vulture, Aegypius monachus Lappet-faced Vulture, Torgos tracheliotos Gypinae Hooded Vulture, Necrosyrtes monachus White-backed Vulture, Gyps africanus White-rumped Vulture, Gyps bengalensis Himalayan -
Phylogeny, Historical Biogeography and the Evolution of Migration in Accipitrid Birds of Prey (Aves: Accipitriformes)
Ornis Hungarica 2014. 22(1): 15–35. DOI: 10.2478/orhu-2014-0008 Phylogeny, historical biogeography and the evolution of migration in accipitrid birds of prey (Aves: Accipitriformes) Jenő nagy1 & Jácint tökölyi2* Jenő Nagy & Jácint Tökölyi 2014. Phylogeny, historical biogeography and the evolution of mig ration in accipitrid birds of prey (Aves: Accipitriformes). – Ornis Hungarica 22(1): 15–35. Abstract Migration plays a fundamental part in the life of most temperate bird species. The re gu lar, largescale seasonal movements that characterize temperate migration systems appear to have originated in parallel with the postglacial northern expansion of tropical species. Migratoriness is also in- fluenced by a number of ecological factors, such as the ability to survive harsh winters. Hence, understanding the origins and evolution of migration requires integration of the biogeographic history and ecology of birds in a phylogenetic context. We used molecular dating and ancestral state reconstruction to infer the origins and evolu- tionary changes in migratory behavior and ancestral area reconstruction to investigate historical patterns of range evolution in accipitrid birds of prey (Accipitriformes). Migration evolved multiple times in birds of prey, the ear- liest of which occurred in true hawks (Accipitrinae), during the middle Miocene period, according to our analy- ses. In most cases, a tropical ancestral distribution was inferred for the nonmigratory ancestors of migratory line- ages. Results from directional evolutionary tests indicate that migration evolved in the tropics and then increased the rate of colonization of temperate habitats, suggesting that temperate species might be descendants of tropi- cal ones that dispersed into these seasonal habitats. -
List of Icelandic Birds
BIRDWATCHING IN ICELAND FAMILLE / GENRE LATIN ICELANDIC ENGLISH BR ENGLISH AM FRENCH Gaviidae Gavia stellata Lómur Red-throated Diver Red-throated Loon Plongeon catmarin Gaviidae Gavia immer Himbrimi Great Northern Dive Common Loon Plongeon imbrin Podicipedidae Podiceps auritus Flórgoði Slavonian Grebe Horned Grebe Grèbe esclavon Procellariidae Fulmarus glacialis Fýll Fulmar Northern Fulmar Pétrel fulmar Procellariidae Puffinus Puffinus Skrofa Manx Shearwater Manx Shearwater Puffin des Anglais Hydrobatidae Oceanites oceanicus Hafsvala Wilson's Storm Petrel Wilson's Storm Petrel Océanite de Wilson Hydrobatidae Hydrobates pelagicus Stormsvala Storm Petrel Storm Petrel Pétrel tempéte Hydrobatidae Oceanodroma leucorhoa Sjósvala Leach´s Petrel Leach´s Storm Petrel Pétrel culblanc Sulidae Sula bassana Súla Gannet Gannet Fou de Bassan Phalacrocoracidae Phalacrocorax carbo Dílaskarfur Cormorant Great Cormorant Grand cormoran Phalacrocoracidae Phalacrocorax aristotelis Toppskarfur Shag Shag Cormoran huppé Ardeidae Ardea cinerea Gráhegri Grey Heron Grey Heron Héron cendré Anatidae Cygnus cygnus Álft Whooper Swan Whooper Swan Cygna sauvage Anatidae Anser brachyrhynchus Heiðagæs Pink-footed Goose Pink-footed Goose Oie à bec court Anatidae Anser albifrons Blesgæs White-fronted Goose White-fronted Goose Oie rieuse Anatidae Anser anser Grágæs Grey-lag Goose Grey-lag Goose Oie cendrée Anatidae Branta leucopsis Helsinki Barnacle Goose Barnacle Goose Bernache nonnette Anatidae Branta bernicla Margæs Brent Goose Brant Bernache cravant Anatidae Tadorna tadorna -
King Rail (Rallus Elegans) in Canada
COSEWIC Assessment and Update Status Report on the King Rail Rallus elegans in Canada ENDANGERED 2000 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2000. COSEWIC assessment and update status report on the King Rail Rallus elegans in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 10 pp. (www.sararegistry.gc.ca/status/status_e.cfm) James, R.D. 2000. Update COSEWIC status report on the King Rail Rallus elegans in Canada, in COSEWIC assessment and update status report on the King Rail Rallus elegans in Canada Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-10 pp. Previous Report: Page, A.M. 1994. Update COSEWIC status report on the King Rail Rallus elegans in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 24 pp. Cosens, S.E. 1985. COSEWIC status report on the King Rail Rallus elegans in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 64 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Rapport du COSEPAC sur la situation du Râle élégant (Rallus elegans) au Canada – Mise à jour Cover illustration: King Rail — illustration by Ross D.