Avian Premaxilla and Tarsometatarsus from The

Total Page:16

File Type:pdf, Size:1020Kb

Avian Premaxilla and Tarsometatarsus from The 762 ShortCommunications andCommentaries [Auk,Vol. 112 The Auk 112(3):762-767, 1995 Avian Premaxilla and Tarsometatarsusfrom the Uppermost Cretaceous of Montana ANDRZEJ ELZANOWSKIa AND MICHAEL K. BRETT-$URMAN2 •Departmentof VertebrateZoology, National Museum of NaturalHistory, SmithsonianInstitution, Washington, D.C. 20560, USA; and 2Departmentof Geology,George Washington University, Washington, D.C. 20052,USA Despitea variety of fragmentary,apparently neog- is rounded and smooth,and the sidesare very steep. nathousavian fossilsknown from the uppermostCre- The largest among the neurovascularforamina scat- taceousdeposits (Brodkorb 1963, Olson 1985, Olson tered on each side are two elongatedorsal foramina: and Parris 1987),we still lack even an approximate the vessel from the rostral one coursed rostrad, whereas idea of how many neognathouslineages survived be- the vesselfrom the caudalone apparentlybifurcated yond the Cretaceous/Tertiaryboundary. Most of the into a smaller rostral and a larger caudal branch. In Maastrichtian avian bones reveal a charadriiform or addition, a number of smaller openingsperforates transitional charadriiform-gruiform morphology, eachside of the symphysis. which may be plesiomorphicfor most (Olson 1985) The ventral surfaceof the premaxillarysymphysis but probably not all of the neognaths(Elzanowski is strongly concave(Fig. lc, d). There are no distinct 1995). Other than that, there is some fossil evidence neurovascularforamina on the ventral (palatal) sur- for the existence of loons in the Cretaceous(Olson face,with the possibleexception of one small opening 1992)and mostly indirect evidencefor the pre-Ter- on the left side. The palatal shelvesof the premaxilla tiary origins of the relict pelecaniforms(Phaethon- begin from the symphysialtip and graduallybroaden tidae and Fregatidae) and procellariiforms (Elza- caudally where each of them occupiesone-third of nowski and Gaiton 1991). The last of these are pos- the symphysialwidth. Theyare flat and slightly sloped sibly representedin the basalportion of the Early dotsad.The tomial edgesare blunt. Betweenthe pal- PaleoceneHomerstown Formation in New Jersey atal shelvesis a deep, 1.1-mm-wide median groove (Olson and Parris 1987). whosebottom merges with the roof of the symphysis. In this paper, we describetwo fragmentaryLate The groove is imperceptibly expanded in the mid- Cretaceousavian fossils:a premaxilla that fits in the length of the symphysis.A pair of neurovascularca- charadriiform-gruiformassemblage and maypossibly nals is enclosedby the shelvesventrally. representone of the alreadyestablished genera; and The preservedfragment of the dorsalbar is com- a distalfragment of the right tarsometatarsusthat may posedexclusively of the frontal processof the pre- represent the earliest record of the anseriform lin- maxilla. It cannot be determined whether the pre- eage. maxillary processof the nasal had extendedto the Both specimenscome from the locality known as symphysisand then fell off (which would be likely Bug Creek West, Montana, Hell Creek Formation, in a juvenilebird) or terminatedmore caudally. The which is of Late Cretaceous(Maastrichtian) age; the frontal processis 3.4 mm wide and 1.8 mm thick, specimensare part of the collectionsof the Museum including a strong median ridge on the ventral sur- of Paleontologyof the University of California at facebehind the symphysis(Fig. ld, e). Berkeley(UCMP). The premaxillaUCMP 117598was In the primitive condition retained by most birds, collected in 1974 by J. D. Archibald and the tarso- the premaxillarysymphysis is openventrally (i.e. ex- metatarsusUCMP 117599in 1975 by D. Lawler. cavatedup to its roof) at least along the midline. In Premaxilla.--We have made detailed comparisons the opposite,derived condition, the palatal shelves of this specimenwith the charadriiforms,gruiforms, are fusedin the midline, enclosinga medianchamber. podicipediforms,and Gavia(i.e. with thoseextant taxa Hesperornis(Elzanowski 1991:figs. I and 3) and most having a premaxilla that showsan overall similarity of the neognathousbirds with an open premaxillary to the fossilirrespective of size).The surveycovered symphysishave the palatal surfaceof the symphysis all generaof thesegroups represented in the avian perforatedby a pair of majorneurovascular foramina osteologicalcollection (Wood and Schnell 1986) of at the rostralend, a conditionpossibly plesiomorphic the National Museum of Natural History (USNM). for the Neornithes (Elzanowski 1995). The lack of The fragmentincludes the premaxillarysymphysis these foramina seems, therefore, to be a derived con- and the rostral fragment of the dorsal bar (Fig. 1). dition that evolved in the Scolopacidae,Rallidae, He- The symphysisis 17 mm long, slightly decurvedand liornithidae, Spheniscidae,and Gayla. approximatelyas high (4.3 mm) as it is wide at its In Hesperornis(Elzanowski 1991:figs.1 and 3) and midpoint;it is slightly broadercaudally (4.8 ram).The the neognathswith an openpremaxillary symphysis, rostralend is somewhatsquared, which may or may theventral (palatal) concavity of the symphysisshows not be due to postmortemdamage. The dorsalsurface a tripartite subdivisioninto two lateral elevationsen- July1995] ShortCommunications andCommentaries 763 c d Fig. 1. PremaxillaUCMP 117598in (a) left lateral, Or)dorsal, (c) ventral, (d) ventrocaudaloblique, and (e) right ventro-obliqueviews showing neurovascularcanals. White arrows in panel a point to frontal process and in panelb to ventralgroove in premaxillarysymphysis and palatalshelf of premaxilla.Scale bar equals 10 min. 764 ShortCommunications and Commentaries [Auk, Vol. 112 closingthe neurovascularcanals and a mediantrough. view. Trochlea II has a tongue-shapedwing and no In most of these neognaths,the two lateral elevations distinct ligamental pit. Trochlea III has the lateral take the form of well-defined palatal shelvesand the margin slightly sigmoid and the ventral part of the median trough is representedby a well-definedme- articular surfacepointed and strongly asymmetrical dian groove.In the majorityof cases,the shelvestaper at the end, which is embayedmedially. Trochlea IV rostrally, whereby the tripartite shelf-and-groove hasthe lateral lip descendinggradually onto the shaft configurationdoes not extendto the symphysialtip. and bears a distinct ligamental pit. The attachment In contrast,the grooveextends to the symphysialtip scarof the sesamoidligament is distinctand slightly in the BugCreek fossil. Among extant birds, the groove elevated distally. The distal foramen is large, elon- extendsto the symphysialtip in one of the two species gate, and separatedby a very narrow bridge (which of the Rostratulidae(the American Painted Snipe; itself is much shorter than the foramen) from the Nycticryphessemicollaris), and the majority of Scolo- lateral intertrochlear incisure. pacidae,the exceptionsbeing the Broad-billedSand- The overall configurationof the trochleae agrees piper (Limicolafalcinellus), the Jack Snipe (Lymno- with: Anseriformes,including Presbyornis(Wetmore cryptesminimus), the Red Phalarope(Phalaropus fuli- 1926:figs.10-12, Olson and Parris 1987:fig.7); small carius),and the turnstones(Arenaria). In the Red-necked Phasianidae, especially Odontophorinae; Gruidae, Phalarope(P. lobatus)the rounded tomial margins Aramus,and Rallidae, which are probably closelyre- could be regardedas vestigialshelves. lated within the gruiforms; and most of the Char- What makesthe fossilpremaxilla dramatically dif- adriiformes except for the Burhinidae, Jacanidae, ferent from all rhynchokinetic charadriiformsis the Haematopodidae,Rhynchopidae, and Telmatornis(Ol- presenceof a prominent ventral ridge or bulge on son and Parris 1987:fig.7). the ventral side of the frontal processnext to the A prominent character that is shared exclusively premaxillary symphysis(Fig. ld, e). Such a structure with the anseriforms is the extremely distal position makes the dorsal bar rigid at the rostral end. The of the distal foramen in ventral view, with only a significanceof this morphologyfor cranial kinesisis narrow bridge separatingit from the lateral intertro- well illustratedby its diversityamong the Rallidae. chlear fissure(Fig. 2e). This characterhas not been In those rails (e.g. Rallus,Capellirallus) that are am- found in any other terrestrialor aquaticnonpasser- phikinetic (Zusi 1984:tableI) and, thus, have a distal ines. Although the distal foramenis relatively large bendingzone (seeOlson 1975:fig.3), the ventral sur- in the grebesand loons, it is separatedfrom the in- faceof the dorsalbar is flat, concave,or at mostslight- tertrochlearspace by a broadbony bridge.In addition, ly convex.By contrast,all prokinetic rails--including the fossil agreesspecifically with the anatids in the Atlantisia,Diaphorapteryx, Fulica, Gallinula, Porzana (see compactpositioning of the trochleae, which is prob- Olson 1977), Tribonyx(see Olson 1975:fig.1), Himan- ably a swimming adaptation,and with Presbyornisin tornis,Porphyrula, Porphyriops, Poliolimnas, and Pardir- the extraordinarysize of the distal foramen,which is allus--have the ventral surface of the dorsal bar mark- even larger than in the anatids.Since the anatidshave edly convexand/or with a distinctmedian ridge. This legsadapted for swimmingand Presbyorniswas a wad- evidencesuggests that the BugCreek bird had a pro- er, the large size and extreme distal position of the kinetic rather than rhynchokinetic or amphikinetic distal foramendo not seemto be correlatedwith any skull. particularlocomotory function.
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Insular Vertebrate Evolution: the Palaeontological Approach': Monografies De La Societat D'història Natural De Les Balears, Lz: Z05-118
    19 DESCRIPTION OF THE SKULL OF THE GENUS SYLVIORNIS POPLIN, 1980 (AVES, GALLIFORMES, SYLVIORNITHIDAE NEW FAMILY), A GIANT EXTINCT BIRD FROM THE HOLOCENE OF NEW CALEDONIA Cécile MOURER-CHAUVIRÉ & Jean Christophe BALOUET MOUREH-CHAUVIRÉ, C. & BALOUET, l.C, zoos. Description of the skull of the genus Syluiornis Poplin, 1980 (Aves, Galliformes, Sylviornithidae new family), a giant extinct bird from the Holocene of New Caledonia. In ALCOVER, J.A. & BaVER, P. (eds.): Proceedings of the International Symposium "Insular Vertebrate Evolution: the Palaeontological Approach': Monografies de la Societat d'Història Natural de les Balears, lZ: Z05-118. Resum El crani de Sylviornismostra una articulació craniarostral completament mòbil, amb dos còndils articulars situats sobre el rostrum, el qual s'insereix al crani en dues superfícies articulars allargades. La presència de dos procesos rostropterigoideus sobre el basisfenoide del rostrum i la forma dels palatins permet confirmar que aquest gènere pertany als Galliformes, però les característiques altament derivades del crani justifiquen el seu emplaçament a una nova família, extingida, Sylviornithidae. El crani de Syluiornis està extremadament eixamplat i dorsoventralment aplanat, mentre que el rostrum és massís, lateralment comprimit, dorsoventralment aixecat i mostra unes cristae tomiales molt fondes. El rostrum exhibeix un ornament ossi gran. La mandíbula mostra una símfisi molt allargada, les branques laterals també presenten unes cristae tomiales fondes, i la part posterior de la mandíbula és molt gruixada. Es discuteix el possible origen i l'alimentació de Syluiornis. Paraules clau: Aves, Galliformes, Extinció, Holocè, Nova Caledònia. Abstract The skull of Syluiornis shows a completely mobile craniorostral articulation, with two articular condyles situated on the rostrum, which insert into two elongated articular surfaces on the cranium.
    [Show full text]
  • A Classification of the Rallidae
    A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • A Loon Leg (Aves, Gaviidae) with Crocodilian Tooth from the Late Oligocene of Germany
    A Loon Leg (Aves, Gaviidae) with Crocodilian Tooth from the Late Oligocene of Germany GERALD MAYR1* AND MARKUS POSCHMANN2 1Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 2Generaldirektion Kulturelles Erbe RLP, Direktion Landesarchäologie, Referat Erdgeschichte, Große Langgasse 29, D-55116 Mainz, Germany *Corresponding author; E-mail: [email protected] Abstract.—The first late Oligocene fossil record of a loon (Gaviiformes) is described from the lacustrine depos- its of the German locality Enspel. The specimen is an isolated foot, which is associated with a crocodilian tooth. The fossil belongs to a species about half the size of the smallest extant loon, and is morphologically most similar to the Paleogene taxon Colymboides. In all probability it constitutes the prey remains of a crocodilian, which is of particular significance because the distribution ranges of loons and crocodilians hardly overlap today. The Enspel palaeocli- mate was warm-temperate and subtropical, and the Enspel specimen and other Paleogene fossils of gaviiform birds raise the, as yet, unanswered question of why loons largely disappeared from inland habitats of the warmer regions. Received 22 July 2008, accepted 30 December 2008. Key words.—Colymboides, crocodilian tooth, fossil waterbirds, Gaviiformes, palaeoecology. Waterbirds 32(3): 468-471, 2009 In recent years, the Enspel fossil site anglicus Lydekker, 1891 from late Eocene (Westerwald, Germany) has yielded several lacustrine deposits of England is represent- birds of late Oligocene age (MP 28, i.e. 24.7 ed by a coracoid (the holotype), and a re- million years ago; Mertz et al. 2007). The fos- ferred humerus and frontal portion of the siliferous sediments originated in a small skull (Harrison and Walker 1976).
    [Show full text]
  • California Clapper Rail (Rallus Longirostris Obsoletus) 5-Year Review
    California clapper rail (Rallus longirostris obsoletus ) 5-Year Review: Summary and Evaluation Photo by Allen Edwards U.S. Fish and Wildlife Service Sacramento Fish and Wildlife Office Sacramento, California April 2013 5-YEAR REVIEW California clapper rail (Rallus longirostris obsoletus) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. The California clapper rail was listed as endangered under the Endangered Species Preservation Act in 1970, so was not subject to the current listing processes and, therefore, did not include an analysis of threats to the California clapper rail. In this 5-year review, we will consider listing of this species as endangered or threatened based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of this species. We will consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed.
    [Show full text]
  • 2020 National Bird List
    2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and
    [Show full text]
  • A North American Stem Turaco, and the Complex Biogeographic History of Modern Birds Daniel J
    Field and Hsiang BMC Evolutionary Biology (2018) 18:102 https://doi.org/10.1186/s12862-018-1212-3 RESEARCHARTICLE Open Access A North American stem turaco, and the complex biogeographic history of modern birds Daniel J. Field1,2* and Allison Y. Hsiang2,3 Abstract Background: Earth’s lower latitudes boast the majority of extant avian species-level and higher-order diversity, with many deeply diverging clades restricted to vestiges of Gondwana. However, palaeontological analyses reveal that many avian crown clades with restricted extant distributions had stem group relatives in very different parts of the world. Results: Our phylogenetic analyses support the enigmatic fossil bird Foro panarium Olson 1992 from the early Eocene (Wasatchian) of Wyoming as a stem turaco (Neornithes: Pan-Musophagidae), a clade that is presently endemic to sub-Saharan Africa. Our analyses offer the first well-supported evidence for a stem musophagid (and therefore a useful fossil calibration for avian molecular divergence analyses), and reveal surprising new information on the early morphology and biogeography of this clade. Total-clade Musophagidae is identified as a potential participant in dispersal via the recently proposed ‘North American Gateway’ during the Palaeogene, and new biogeographic analyses illustrate the importance of the fossil record in revealing the complex historical biogeography of crown birds across geological timescales. Conclusions: In the Palaeogene, total-clade Musophagidae was distributed well outside the range of crown Musophagidae in the present day. This observation is consistent with similar biogeographic observations for numerous other modern bird clades, illustrating shortcomings of historical biogeographic analyses that do not incorporate information from the avian fossil record.
    [Show full text]
  • Waterfowl in the Prehistory of South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 89 (2010) 165 WATERFOWL IN THE PREHISTORY OF SOUTH DAKOTA David C. Parris1* and Kenneth F. Higgins2 1New Jersey State Museum P.O. Box 530 Trenton, NJ 08625-0530 2Wildlife and Fisheries South Dakota State University Brookings, SD 57007 *[email protected] ABSTRACT The paleontological and archaeological records of waterfowl have provided extensive evidence of a sixty million year prehistory of the Order Anseriformes. The distinctive shapes of the skulls and many of the limb bones have enabled recognition of this group in many paleofaunas of the Cenozoic Era, especially in North America. Abundant and useful, waterfowl have had a long association with human populations as well, especially in South Dakota. We compiled an extensive bibliography and examined a number of actual spec- imens in order to provide this review of waterfowl prehistory, focused on South Dakota. The earliest waterfowl, related to the Anseranatidae (Magpie Geese), are fossils from the earliest Paleocene. They are found in sediments laid down shortly after the extinction event that ended the reign of the dinosaurs. Later fossils attributed to waterfowl have been reported from Eocene sediments in Wyoming and from Oligocene, Miocene, and Pliocene rocks in South Dakota. One bone of a duck was recovered from the Late Pleistocene Lange-Ferguson Site (Shannon County), a mammoth kill attributed to early humans. Archaeological sites of the Missouri Basin dam salvage projects produced wa- terfowl bones, demonstrating that the Arikara and other cultures made use of at least thirteen species of swans, geese, and ducks.
    [Show full text]
  • Part Ii. Zoölogy
    Text extracted from a scan by Google Book Search. satisfactory account of the exact progress of the work, or even to embody the results accomplished when so much FIRST BIENNIAL REPORT remains unfinished. OF THE The subjoined catalogue of the species known to inhabit PROGRESS our State, will, perhaps, best present an outline of the OF THE labor already performed, and at the same time furnish GEOLOGICAL SURVEY desirable information in regard to the geographical range OF MICHIGAN, of species. EMBRACING OBSERVATIONS ON THE In addition to the list here presented there are large GEOLOGY, ZOÖLOGY, AND BOTANY numbers of specimens that remain to be identified and OF THE described, which will materially increase the number of LOWER PENINSULA known species in the State. The fishes, insects, and crustaceans have not been worked up and for that reason have been omitted from MADE TO THE GOVERNOR, DECEMBER 31, 1860. the catalogue. BY AUTHORITY. It may not be out of place in this connection to make a brief statement of the aims to be kept in view, and the LANSING: results which may be expected to follow from the earnest Hosmer & Kerr, Printers to the State. prosecution of the study of the Zoology of our State. 1861. From the intimate and important relations existing Digitized by Google between man and the various branches of the Animal REPORT OF THE STATE GEOLOGIST. kingdom, he is particularly interested in becoming acquainted with the forms, structure, metamorphoses, habits, and dispositions of the animate beings which surround him. He would thus be better fitted to act intelligently in availing himself of the benefits to be PART II.
    [Show full text]
  • Avian Evolution, Gondwana Biogeography and the Cretaceous
    doi 10.1098/rspb.2000.1368 Avian evolution, Gondwana biogeography and the Cretaceous±Tertiary mass extinction event Joel Cracraft Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, NewYork, NY 10024, USA ( [email protected]) The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous^Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders.These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Phylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaeognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoaves (Gruiformes, Caprimulgiformes, Passeriformes and others) demonstrate pervasive trans- Antarctic distribution patterns.The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous^Tertiary extinction event. Keywords: Neornithes; avian evolution; biogeography; Gondwana; Cretaceous^Tertiary extinction marker of neornithine beginnings.The fact that the 1. INTRODUCTION preponderance of the fossils are found in North America The relationships of modern birds, or Neornithes, to non- and Europe is taken as evidence that most higher taxa of avian theropods and Mesozoic pre-neornithine avian birds diversi¢ed on the Laurasian landmass and had lineages, is now well established (Chiappe 1995; Padian little, if anything, to do with Gondwana (Feduccia 1995). & Chiappe 1998; Chiappe et al.
    [Show full text]