Guide 55 Kari of Strand, FINLAND Juha Köykkä and Jarmo Kohonen (Eds.) GEOLOGICAL SURVEY of FINLAND Guide 55 2010

Total Page:16

File Type:pdf, Size:1020Kb

Guide 55 Kari of Strand, FINLAND Juha Köykkä and Jarmo Kohonen (Eds.) GEOLOGICAL SURVEY of FINLAND Guide 55 2010 GEOLOGICAL SURVEY OF FINLAND OF • Guide 55 SURVEY GEOLOGICAL GEOLOGICAL SURVEY OF FINLAND Guide 55 2010 Kari Strand, Juha Köykkä and Jarmo Kohonen Jarmo and Köykkä Juha Strand, Kari (eds.) Guidelines and Procedures for Naming ISBN 978-952-217-140-5 (PDF) ISSN 0781-643X Precambrian Geological Units in Finland 2010 Edition Stratigraphic Commission of Finland: Precambrian Sub-Commission Kari Strand, Juha Köykkä and Jarmo Kohonen (eds.) GEOLOGIAN TUTKIMUSKESKUS GEOLOGICAL SURVEY OF FINLAND Opas 55 Guide 55 Kari Strand, Juha Köykkä and Jarmo Kohonen (eds.) GUIDELINES AND PROCEDURES FOR NAMING PRECAMBRIAN GEOLOGICAL UNITS IN FINLAND 2010 Edition Stratigraphic Commission of Finland: Precambrian Sub-Commission Espoo 2010 Cover photo: Bedforms in quartzites of the Kometto Formation in Siikavaara, northern Finland. Photo: Kari Strand. Strand, K., Köykkä, J. & Kohonen, J. (eds.) 2010. Guidelines and Procedures for Naming Precambrian Geological Units in Finland. 2010 Edition Stratigraphic Commission of Finland: Precambrian Sub-Commission. Geological Survey of Finland, Guide 55, 41 pages, 6 figures and 1 table. This guide and procedure for naming Precambrian geological units in Finland was produced under the supervision of the Stratigraphic Commission of Finland. The role of the commission is to provide guidance for stratigraphic procedures, terminology and the revision of geological units in Finland. An increasing need for advice on the use of stratigraphic terminology and for rules for establishing geological units has clearly been apparent in recent years, both nation- ally and internationally. Effective communication in geosciences requires accurate and precise internationally acceptable terminology and procedures. In this guide, the principal types of stratigraphy related to Precambrian geology are outlined and guidelines and recommendations are provided on the procedure for recognizing and formalizing geological units and termino- logical usage. A significant development in principles has included recognition of the meaning of correlative unconformities in the rock record as a part of stratigraphy, and their application in sequence stratigraphy. The definition and description of geological units and their possible stratigraphic order forms an essential part of every country’s geological vocabulary. To avoid misunderstanding and confusion and to help in transferring knowledge of geoscience infor- mation and systems, geological units need to be named and classified according to accepted guidelines and stratigraphic codes. This guide seeks to be taken as an essential tool for geoscientists, students and information professionals in defining and naming geological units in Finland. The adopted procedures will then also provide valid information for the stratigraphic databases used in the country. The Geological Survey of Finland is maintaining the stratigraphic database under its map services (http://www.geo.fi) in collaboration with the Stratigraphic Commission of Finland. With sig- nificant new international recommendations, online updates of this guide will appear under the guidance of the Stratigraphic Commission of Finland. The use of the guide in everyday work is the best way to ensure best practices in naming the Precambrian geological units in Finland. Keywords (GeoRef Thesaurus, AGI): lithostratigraphy, stratigraphic units, lithodemic units, tectonostratigraphic units, sequence stratigraphy, chronostratigraphy, Precambrian, nomencla- ture, guidelines, Finland Kari Strand* Thule Institute, University of Oulu P.O. Box 7300, FI-90014, Oulu, Finland E-mail: [email protected] * Corresponding editor Juha Köykkä Department of Geology, University of Oulu P.O. Box 3000, FI-90014, Oulu, Finland Jarmo Kohonen Geological Survey of Finland P.O. Box 96, FI-02151, Espoo, Finland ISBN 978-952-217-140-5 (PDF) ISSN 0781-643X Strand, K., Köykkä, J. & Kohonen, J. (toim.) 2010. Guidelines and Procedures for Naming Precambrian Geological Units in Finland. 2010 Edition Stratigraphic Commission of Finland: Precambrian Sub-Commission. Geologian tutkimuskeskus, Opas 55, 41 sivua, 6 kuvaa ja 1 taulukko. Tämä Suomen prekambristen geologisten yksiköiden nimeämisohjeet ja käytännöt kokoava opas valmisteltiin Suomen stratigrafisen komitean johdolla. Komitean tehtävänä on ohjeistaa, uudistaa ja valvoa Suomen stratigrafisen luokittelun ja nimistön käyttöä. Viime aikoina kan- sainvälisesti ja kansallisesti on tullut esille selkeä tarve saada ohjeet ja käytänteet stratigrafisen terminologian käytöstä ja siitä, miten nimetä geologisia yksiköitä. Johdonmukainen geologi- nen keskustelu vaatii käyttämään kansainvälisesti hyväksyttyä ja tarkkaa terminologiaa ja käy- täntöjä. Tässä oppaassa on koottuna prekambrisen geologian kannalta keskeisimmät stratigra- fiset menetelmät ja annetaan ohjeet ja suositukset käytänteistä ja keskeisen terminologian käy- töstä. Merkittävä kehitys stratigrafisissa periaatteissa on ollut korreloitavien epäjatkuvuuksien merkityksen ymmärtäminen kiviseurannoissa ja näiden soveltaminen sekvenssistratigrafiassa. Geologisten yksiköiden kuvaus ja systemaattinen nimeäminen sekä mahdollisen stratigrafisen järjestyksen määrittäminen ovat keskeisiä jokaisen maan kannalta. Väärinkäsitysten välttämi- seksi ja geotieteellisen tiedonsiirron ja -hallinnan kannalta on tärkeää, että geologiset yksiköt nimetään ja luokitellaan hyväksyttyjen ohjeiden ja stratigrafisen käytänteiden mukaisesti. Tämä opas halutaan geotieteiden tekijöiden, opiskelijoiden ja tietoammattilaisten keskei- seksi työvälineeksi nimettäessä ja kirjattaessa Suomen prekambrisia geologisia yksiköitä. Opas antaa ohjeita myös Suomen stratigrafisten tietokantojen kokoamiseen. Geologian tutki- muskeskus ylläpitää stratigrafista tietokantaa karttapalvelunsa kautta (http://www.geo.fi) yh- teistyössä Suomen stratigrafisen komitean kanssa. Jos merkittäviä uusia kansainvälisiä suosi- tuksia ilmaantuu, tämä opas tullaan päivittämään Suomen stratigrafisen komitean ohjauksessa. Oppaan mukaanotto käytännön työhön takaa parhaiten sen, että Suomen prekambriset yksiköt tulee nimettyä parhaiden käytäntöjen mukaisesti. Asiasanat (Geosanasto, GTK): litostratigrafia, stratigrafiset yksiköt, litodeemiset yksiköt, tek- tonostratigrafiset yksiköt, sekvenssistratigrafia, kronostratigrafia, prekambri, terminologia, ohjeet, Suomi Kari Strand* Thule-instituutti, Oulun yliopisto PL 7300, 90014 Oulu Sähköposti: [email protected] * Vastaava toimittaja Juha Köykkä Geotieteiden laitos, Oulun yliopisto PL 3000, 90014 Oulu Jarmo Kohonen Geologian tutkimuskeskus PL 96, 02151 Espoo CONTENTS Contents 4 PREFACE 6 CONTENTS 1 INTRODUCTION 7 1.1 Background 7 PREFACE ............................................................................................................................................. 6 1.2 Purpose of the guide 7 2 GENERAL RULES FOR NAMING AND DEFINING GEOLOGICAL UNITS 1 INTRODUCTION ............................................................................................................................ 7 8 1.1 Background ................................................................................................................................ 7 2.1 Categories and ranking of geological units 8 1.2 Purpose of the guide .................................................................................................................. 7 2.1.1 Material categories 9 2 GENERAL RULES FOR NAMING AND DEFINING GEOLOGICAL UNITS .......................... 8 2.1.2 Categories based on geological time or age 9 2.1 Categories and ranking of geological units ............................................................................... 8 2.1.3 Other categories 9 2.1.1 Material categories ........................................................................................................... 9 2.2 Formal and informal units 10 2.1.2 Categories based on geological time or age ..................................................................... 9 2.2.1 Definition of formal units 10 2.1.3 Other categories ............................................................................................................... 9 2.2.1.1 Naming 12 2.2 Formal and informal units ......................................................................................................... 10 2.2.1.2 Stratotypes 12 2.2.1 Definition of formal units ................................................................................................. 10 2.2.1.3 Boundaries, dimensions and age 13 2.2.1.1 Naming ................................................................................................................ 12 2.2.2 Definition of informal units 13 2.2.1.2 Stratotypes ........................................................................................................... 12 2.2.2.1 Naming and designation 13 2.2.1.3 Boundaries, dimensions and age ......................................................................... 13 2.2.3 Revision and abandonment of formal units 14 2.2.2 Definition of informal units .............................................................................................. 13 2.2.3.1 Redefinition and revision 14 2.2.2.1 Naming and designation ..................................................................................... 13 2.2.3.2 Abandonment 14 2.2.3 Revision and abandonment of formal units ...................................................................... 14 2.2.4 Procedure in Finland 14 2.2.3.1 Redefinition and revision ...................................................................................
Recommended publications
  • LIBRO GEOLOGIA 30.Qxd:Maquetaciûn 1
    Trabajos de Geología, Universidad de Oviedo, 29 : 278-283 (2010) From ductile to brittle deformation – the structural development and strain variations along a crustal-scale shear zone in SW Finland T. TORVELA1* AND C. EHLERS1 1Åbo Akademi University, Department of geology and mineralogy, Tuomiokirkontori 1, 20500 Turku, Finland. *e-mail: [email protected] Abstract: This study demonstrates the impact of variations in overall crustal rheology on crustal strength in relatively high P-T conditions at mid- to lower mid-crustal levels. In a crustal-scale shear zone, along-strike variations in the rheological competence result in large-scale deformation partition- ing and differences in the deformation style and strain distribution. Keywords: shear zone, deformation, strain partitioning, terrane boundary, Finland, Palaeoproterozoic. The structural behaviour of the crustal-scale Sottunga- several orogenic periods from the Archaean to the Jurmo shear zone (SJSZ) in SW Finland is described. Caledonian orogen 450-400 Ma ago (Fig. 1; e.g. The shear zone outlines a significant crustal disconti- Nironen, 1997; Lahtinen et al., 2005). The bulk of nuity, and it probably also represents a terrain bound- the shield (central and southern Finland, central and ary between the amphibolite-to-granulite facies, dome- northern Sweden) was formed during the and-basin-style crustal block to the north and the Palaeoproterozoic orogeny, ca. 2.0-1.85 Ga ago, amphibolite facies rocks with dominantly steeply dip- which is often referred to in literature as the ping structures to the south. The results of this study Svecofennian orogeny (Gaál and Gorbatschev, 1987). also imply that the late ductile structures (~1.80-1.79 The main direction of convergence against the Ga) can be attributed to the convergence of an Archaean nucleus to the NE (Fig.
    [Show full text]
  • Do Gssps Render Dual Time-Rock/Time Classification and Nomenclature Redundant?
    Do GSSPs render dual time-rock/time classification and nomenclature redundant? Ismael Ferrusquía-Villafranca1 Robert M. Easton2 and Donald E. Owen3 1Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México, DF, MEX, 45100, e-mail: [email protected] 2Ontario Geological Survey, Precambrian Geoscience Section, 933 Ramsey Lake Road, B7064 Sudbury, Ontario P3E 6B5, e-mail: [email protected] 3Department of Geology, Lamar University, Beaumont, Texas 77710, e-mail: [email protected] ABSTRACT: The Geological Society of London Proposal for “…ending the distinction between the dual stratigraphic terminology of time-rock units (of chronostratigraphy) and geologic time units (of geochronology). The long held, but widely misunderstood distinc- tion between these two essentially parallel time scales has been rendered unnecessary by the adoption of the global stratotype sections and points (GSSP-golden spike) principle in defining intervals of geologic time within rock strata.” Our review of stratigraphic princi- ples, concepts, models and paradigms through history clearly shows that the GSL Proposal is flawed and if adopted will be of disservice to the stratigraphic community. We recommend the continued use of the dual stratigraphic terminology of chronostratigraphy and geochronology for the following reasons: (1) time-rock (chronostratigraphic) and geologic time (geochronologic) units are conceptually different; (2) the subtended time-rock’s unit space between its “golden spiked-marked”
    [Show full text]
  • Metamorphic Evolution of Relict Eclogite-Facies Rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland”
    “Metamorphic evolution of relict eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland” Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Geowissenschaften Sascha Müller aus Münster Berichter: PD Annika Dziggel Ph.D. Prof. Dr. Jochen Kolb Tag der mündlichen Prüfung: 14. Dezember 2018 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. Foreword and Acknowledgements The following thesis was written over the course of 5 years, starting in August 2013, in the framework of the joint GEUS-MMR “SEGMENT (South-East Greenland Mineral Endowment Task)”-project. During the course of this study, I had the opportunity to witness the beautiful scenery and outstanding geology of Greenland firsthand during a one-month fieldtrip to the area around Tasiilaq in June and August of 2014, for which I greatly appreciate funding by the Geological Survey of Denmark and Greenland (GEUS) and the Ministry of Mineral Resources of Greenland (MMR). Regular funding was provided by the Deutsche Forschungsgemeinschaft from 2013 to 2016, with additional funding until late 2017 by employment at the Institute of Applied Mineralogy and Economic Geology at RWTH Aachen. At first, I want to thank my supervisor Annika Dziggel for her great support and guidance, but also for initiating this interesting project in the first place. Thank you for your support during fieldwork, for encouraging me to keep a sharp mind during analysis and interpretation and for teaching me how to properly present my data. Many thanks also go out to my Co-Supervisor Sven Sindern for his support during the countless hours I spent in the laboratory, as well as with the whole-rock data and isotopic dating.
    [Show full text]
  • Soils in the Geologic Record
    in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2015/01 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Geologic Time – Part I - Practice Questions and Answers Revised October 2007
    Geologic Time – Part I - Practice Questions and Answers Revised October 2007 1. The study of the spatial and temporal relationships between bodies of rock is called ____________________. 2. The geological time scale is the ____________ framework in which geologists view Earth history. 3. Both _________________ and absolute scales are included in the geological time scale. 4. Beds represent a depositional event. They are _________ 1 cm in thickness. 5. Laminations are similar to beds but are ___________ 1 cm in thickness. 6. The idea that most beds are laid down horizontally or nearly so is called the (a) Principle of Original Continuity (b) Principle of Fossil Succession (c) Principle of Cross-Cutting Relationships (d) Principle of Original Horizontality (e) Principle of Superposition 7. The idea that beds extend laterally in three dimensions until they thin to zero thickness is called the (a) Principle of Cross-Cutting Relationships (b) Principle of Original Horizontality (c) Principle of Original Continuity (d) Principle of Fossil Succession (e) Principle of Superposition 8. The idea that younger beds are deposited on top of older beds is called the (a) Principle of Original Horizontality (b) Principle of Fossil Succession (c) Principle of Cross-Cutting Relationships (d) Principle of Original Continuity (e) Principle of Superposition 9. The idea that a dike transecting bedding must be younger than the bedding it crosses is called the (a) Principle of Original Horizontality (b) Principle of Original Continuity (c) Principle of Fossil Succession (d) Principle of Cross-Cutting Relationships (e) Principle of Superposition 10. The idea that fossil content will change upward within a formation is called the (a) Principle of Cross-Cutting Relationships (b) Principle of Original Horizontality (c) Principle of Fossil Succession (d) Principle of Original Continuity (e) Principle of Superposition 11.
    [Show full text]
  • PHANEROZOIC and PRECAMBRIAN CHRONOSTRATIGRAPHY 2016
    PHANEROZOIC and PRECAMBRIAN CHRONOSTRATIGRAPHY 2016 Series/ Age Series/ Age Erathem/ System/ Age Epoch Stage/Age Ma Epoch Stage/Age Ma Era Period Ma GSSP/ GSSA GSSP GSSP Eonothem Eon Eonothem Erathem Period Eonothem Period Eon Era System System Eon Erathem Era 237.0 541 Anthropocene * Ladinian Ediacaran Middle 241.5 Neo- 635 Upper Anisian Cryogenian 4.2 ka 246.8 proterozoic 720 Holocene Middle Olenekian Tonian 8.2 ka Triassic Lower 249.8 1000 Lower Mesozoic Induan Stenian 11.8 ka 251.9 Meso- 1200 Upper Changhsingian Ectasian 126 ka Lopingian 254.2 proterozoic 1400 “Ionian” Wuchiapingian Calymmian Quaternary Pleisto- 773 ka 259.8 1600 cene Calabrian Capitanian Statherian 1.80 Guada- 265.1 Proterozoic 1800 Gelasian Wordian Paleo- Orosirian 2.58 lupian 268.8 2050 Piacenzian Roadian proterozoic Rhyacian Pliocene 3.60 272.3 2300 Zanclean Kungurian Siderian 5.33 Permian 282.0 2500 Messinian Artinskian Neo- 7.25 Cisuralian 290.1 Tortonian Sakmarian archean 11.63 295.0 2800 Serravallian Asselian Meso- Miocene 13.82 298.9 r e c a m b i n P Neogene Langhian Gzhelian archean 15.97 Upper 303.4 3200 Burdigalian Kasimovian Paleo- C e n o z i c 20.44 306.7 Archean archean Aquitanian Penn- Middle Moscovian 23.03 sylvanian 314.6 3600 Chattian Lower Bashkirian Oligocene 28.1 323.2 Eoarchean Rupelian Upper Serpukhovian 33.9 330.9 4000 Priabonian Middle Visean 38.0 Carboniferous 346.7 Hadean (informal) Missis- Bartonian sippian Lower Tournaisian Eocene 41.0 358.9 ~4560 Lutetian Famennian 47.8 Upper 372.2 Ypresian Frasnian Units of the international Paleogene 56.0 382.7 Thanetian Givetian chronostratigraphic scale with 59.2 Middle 387.7 Paleocene Selandian Eifelian estimated numerical ages.
    [Show full text]
  • Ages of Detrital Zircons (U/Pb, LA-ICP-MS) from the Latest
    Precambrian Research 244 (2014) 288–305 Contents lists available at ScienceDirect Precambrian Research jo urnal homepage: www.elsevier.com/locate/precamres Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within Rodinia a,∗ b c Nikolay B. Kuznetsov , Joseph G. Meert , Tatiana V. Romanyuk a Geological Institute, Russian Academy of Sciences, Pyzhevsky Lane, 7, Moscow 119017, Russia b Department of Geological Sciences, University of Florida, 355 Williamson Hall, Gainesville, FL 32611, USA c Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, B. Gruzinskaya ul. 10, Moscow 123810, Russia a r t i c l e i n f o a b s t r a c t Article history: A study of U-Pb ages on detrital zircons derived from sedimentary sequences in the western flank of Received 5 February 2013 Urals (para-autochthonous or autochthonous with Baltica) was undertaken in order to ascertain/test Received in revised form source models and paleogeography of the region in the Neoproterozoic. Samples were collected from the 16 September 2013 Ediacaran-Cambrian(?) age Asha Group (Basu and Kukkarauk Formations) and the Early Devonian-aged Accepted 18 September 2013 Takaty Formation. Available online 19 October 2013 Ages of detrital zircons within the Basu Formation fall within the interval 2900–700 Ma; from the Kukkarauk Formation from 3200 to 620 Ma. Ages of detrital zircons from the Devonian age Takaty For- Keywords: Australia mation are confined to the Paleoproterozoic and Archean (3050–1850 Ma).
    [Show full text]
  • 295-309 Elsevier Science Publishers BV, Amsterdam 295 the Late
    Precambrian Research, 64 (1993) 295-309 295 Elsevier Science Publishers B.V., Amsterdam The late Svecofennian granite-migmatite zone of southern Finland—a belt of transpressive deformation and granite emplacement Carl Ehlers*, Alf Lindroos and Olavi Selonen Department of Geology and Mineralogy, Abo Akademi University, SF-20500 Abo, Finland Received March 21, 1991; revised version accepted November 3,1992 ABSTRACT The late Svecofennian granite-migmatite (LSGM) zone in southwestern Finland is a ~ 100 km wide and 500 km long belt transecting the southern Svecofennides from WSW to ENE. It was formed in an area of thin pillow lavas, volcaniclastic sediments and limestones. The area is interpreted as having been an early basin of crustal extension which was the locus of an inherited zone of weakness in the Proterozoic crust. Early recumbent folding was followed by crustal thickening and intrusions of ~ 1.89-1.8 8 Ga old plutonics. The LSGM-zone is characterized by 1.84-1.83 Ga old rhomboidal sheets of late Svecofennian microcline granite and is bounded by ductile shears. Amongst the two major phases of deformation defined in the LSGM-zone, the earlier one (Dl) affected only the supracmstals and the 1.89-1.88 Ga old early plutonics. In contrast, the later phase (D2) also deformed the late Svecofennian migmatites and granites. Dl represents a complex and long-lasting deformation event which in- cluded overturning and thrusting of the Svecofennian strata. D2 comprised ENE-WSW directed drag accompanied by NNW-SSE compression. The Svecofennian crust was thick- ened further and anatectic microcline granites intruded along thrusts.
    [Show full text]
  • Finnish Lithosphere Meeting
    INSTITUTE OF SEISMOLOGY UNIVERSITY OF HELSINKI REPORT S-65 LITHOSPHERE 2016 NINTH SYMPOSIUM ON THE STRUCTURE, COMPOSITION AND EVOLUTION OF THE LITHOSPHERE IN FENNOSCANDIA Geological Survey of Finland, Espoo, November 9-11, 2016 PROGRAMME AND EXTENDED ABSTRACTS edited by Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen, Markku Poutanen, Eija Tanskanen and Timo Tiira Helsinki 2016 INSTITUTE OF SEISMOLOGY UNIVERSITY OF HELSINKI REPORT S-65 LITHOSPHERE 2016 NINTH SYMPOSIUM ON STRUCTURE, COMPOSITION AND EVOLUTION OF THE LITHOSPHERE IN FENNOSCANDIA PROGRAMME AND EXTENDED ABSTRACTS Edited by Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen, Markku Poutanen, Eija Tanskanen and Timo Tiira Geological Survey of Finland, Espoo, November 9-11, 2016 Helsinki 2016 Series Editor-in-Chief: Annakaisa Korja Guest Editors: Ilmo Kukkonen, Suvi Heinonen, Kati Oinonen, Katriina Arhe, Olav Eklund, Fredrik Karell, Elena Kozlovskaya, Arto Luttinen, Raimo Lahtinen, Juha Lunkka, Vesa Nykänen, Markku Poutanen, Eija Tanskanen and Timo Tiira Publisher: Institute of Seismology P.O. Box 68 FI-00014 University of Helsinki Finland Phone: +358-294-1911 (switchboard) http://www.helsinki.fi/geo/seismo/ ISSN 0357-3060 ISBN 978-952-10-5081-7 (Paperback) Helsinki University Print Helsinki 2016 ISBN 978-952-10-9282-5 (PDF) i LITHOSPHERE 2016 NINTH SYMPOSIUM
    [Show full text]
  • North American Stratigraphic Code1
    NORTH AMERICAN STRATIGRAPHIC CODE1 North American Commission on Stratigraphic Nomenclature FOREWORD TO THE REVISED EDITION FOREWORD TO THE 1983 CODE By design, the North American Stratigraphic Code is The 1983 Code of recommended procedures for clas- meant to be an evolving document, one that requires change sifying and naming stratigraphic and related units was pre- as the field of earth science evolves. The revisions to the pared during a four-year period, by and for North American Code that are included in this 2005 edition encompass a earth scientists, under the auspices of the North American broad spectrum of changes, ranging from a complete revision Commission on Stratigraphic Nomenclature. It represents of the section on Biostratigraphic Units (Articles 48 to 54), the thought and work of scores of persons, and thousands of several wording changes to Article 58 and its remarks con- hours of writing and editing. Opportunities to participate in cerning Allostratigraphic Units, updating of Article 4 to in- and review the work have been provided throughout its corporate changes in publishing methods over the last two development, as cited in the Preamble, to a degree unprece- decades, and a variety of minor wording changes to improve dented during preparation of earlier codes. clarity and self-consistency between different sections of the Publication of the International Stratigraphic Guide in Code. In addition, Figures 1, 4, 5, and 6, as well as Tables 1 1976 made evident some insufficiencies of the American and Tables 2 have been modified. Most of the changes Stratigraphic Codes of 1961 and 1970. The Commission adopted in this revision arose from Notes 60, 63, and 64 of considered whether to discard our codes, patch them over, the Commission, all of which were published in the AAPG or rewrite them fully, and chose the last.
    [Show full text]
  • Uranium Resources, Production and Demand, Commonly Known As the "Red Book"
    A^3«s..*s< Uo\«.-*^'- 18^ RESOURCES, PRODUCTION AND DEMAND A JOINT REPORT BY THE OECD NUCLEAR ENERGY AGENCY AND THE INTERNATIONAL mATOMIC ENERG Y AGENCY 198* ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to article 1 of the Convention signed in Paris on 14th December 1960, and which came into f-^rce on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: - to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; - to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and - to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, the Federal Republic of Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971) and New Zealand (29th May 1973). The Socialist Federal Republic of Yugoslavia takes part in some of the work of the OECD (agreement of 28th October 1961). The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agerxy. It received its present designation on 20th April 1972, when Japan became its first non-European full Member.
    [Show full text]