Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations The Neotropical rodent genus Rhipidom ys (Cricetidae: Sigmodontinae) - a taxonomic revision Christopher James Tribe Thesis submitted for the degree of Doctor of Philosophy University College London 1996 ProQuest Number: 10106759 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10106759 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT South American climbing mice and rats, Rhipidomys, occur in forests, plantations and rural dwellings throughout tropical South America. The genus belongs to the thomasomyine group, an informal assemblage of plesiomorphous Sigmodontinae. Over 1700 museum specimens were examined, with the aim of providing a coherent taxonomic framework for future work. A shortage of discrete and consistent characters prevented the use of strict cladistic methodology; instead, morphological assessments were supported by multivariate (especially principal components) analyses. The morphometric data were first assessed for measurement error, ontogenetic variation and sexual dimorphism; measurements with most variation from these sources were excluded from subsequent analyses. The genus is characterized by a combination of reddish-brown colour, long tufted tail, broad feet with long toes, long vibrissae and large eyes; the skull has a small zygomatic notch, squared or ridged supraorbital edges, large oval braincase and short palate. Three main divisions of the genus are recognized. The R. julviventer section contains four species - Julviventer, wetzeli, caucensis and ochrogaster - inhabiting montane forests in the northern Andes and Guiana Highlands of Colombia and Venezuela; they share grey-based ventral pelage, dark extremities, a rounded interorbital region, broad braincase, and (except for caucensis) a primitive carotid circulation pattern; R. julviventer consists of a chain of isolated subspecies, including venustus. The monospecific R. macconnelli section is restricted to the Guiana Highlands of Venezuela; it differs in certain external characters - darker colour (especially ventrally), longer metatarsals, bicoloured tail - but is similar cranially. The R. leucodactylus section is usually paler with broad feet, stronger cranial ridges and a derived carotid circulation pattern, and occurs mainly at lower levels. It contains 13 species: couesi, leucodactylus, modicus, austrinus, latimanus (including venezuelae), nitela, emiliae, macrurus, mastacalis and four as yet unnamed. Three species occur in N£ Brazil; in SE Brazil the material currently available does not permit a clear-cut arrangement. CONTENTS Abstract 2 List of tables 7 List of illustrations 8 Acknowledgements 11 1. Introduction 14 2. The systematic context 2.1 Muroidea 19 2.2 New World Cricetids 20 2.3 Sigmodontinae: historical zoogeography 25 2.4 The position of Rhipidomys withinthe Sigmodontinae 30 3. Material examined and data collected 3.1 Collections and specimens 35 3.2 Data sets: a) Non-metric characters 36 b) Dental age classes 37 c) Morphometric data 39 4. Numerical methods and preparatory analyses 4.1 Overview 44 4.2 Preparatory procedures: (a) Measurement error analysis 45 (b) Ontogenetic variation and sexual dimorphism 50 (c) Imputation of missing values 56. 4.3 Exploratory analyses 57 4.4 Discrimination of taxa 61 Delimitation of the genus 64 5.1 External morphology 65 5.2 Cranial characters 73 5.3 Dental characters 79 5.4 Postcranial skeleton and soft anatomy 85 5.5 Phylogenetic analyses 87 Diversity within Rhipidomys 6.1 Primary division of the genus 89 6.2 The Rhipidomys Julviventer section 91 6.3 The Rhipidomys macconnelli section 106 6.4 Rhipidomys leucodactylus 110 Karyotypes 111 Large-bodied species 114 Medium and small-bodied species: a) Northwestern South America 129 b) The Guiana Highlands and Amazon Basin 133 c) Eastern Brazil 144 Taxonomic synthesis Rhipidomys 166 The Rhipidomys julviventer section: R. julviventer 175 R. wetzeli 185 R. caucensis 187 R. ochrogaster 190 The Rhipidomys macconnelli section: R. macconnelli 192 The Rhipidomys leucodactylus section: R. couesi 196 R. cf. couesi 200 R. leucodactylus 200 R. modicus 209 Rhipidomys sp. 1 213 R, austrinus 215 Rhipidomys sp. 2 218 R. latimanus 220 Rhipidomys sp. 3 231 R. nitela 232 ' R. emiliae 238 R. macrurus 241 R. cf. macrurus 246 Rhipidomys incertae sedis 246 R. mastacalis 247 Rhipidomys sp. 4 251 8. Conclusions 254 Literature cited 258 Appendices: I Specimens examined for preparatory analyses 283 II Allocation of nominal taxa within Rhipidomys 285 III Gazetteer and maps of Rhipidomys collecting localities: Gazetteer 287 Map of collecting localities (general) 314 Map of collecting localities in southern Colombia, Ecuador and northern Peru 315 Map of collecting localities in Venezuela, Guyana and northern Brazil 316 List of tables Table 3.1 - Collections holding specimens of Rhipidomys examined for this study, with acronyms. 36 Table 4.1 - Results of measurement error analysis: Number of specimens, grand mean, total variance, percent measurement error and coefficient of among-specimen variation for two untransformed data sets. 47 Table 4.2 - Measurement error: greatest absolute difference in mm among three repeated measurements (largest minus smallest value) averaged over specimens, for two untransformed data sets. 48 Table 4.3 - Analysis of variance due to dental age class (DAQ, sex, and DAC/sex interaction in two series of specimens: summary of significant results ip<\7o and l%<p<5% for acceptance of Ho: no difference between groups) in three replications with different random selections of specimens. Left-hand half of table corresponds to whole series, right-hand half restricted to adults. 52 Table 4.4 - Multivariate analysis of variance due to dental age class (DAQ, sex, and DAC/sex interaction in two series of specimens: summary of significant results (p<l% and l%</?<5% for acceptance of Hg: no difference between groups) for approximate chi-squared and F-tests in three replications with different random selections of specimens. 54 Table 4.5 - Principal components analysis of Rhipidomys "cearanus" adults using standardized, log-transformed data: t-test results on differences in scores according to sex and dental age class along the principal component axes. 60 Table 6.1 - Summary of karyotype data on Rhipidomys. 113 List of figures Fig. 1.1- Rhipidomys mastacalis from Fazenda Uniao, Casimiro de Abreu, Rio de Janeiro, Brazil (Universidade Federal do Rio de Janeiro, Laboratdrio de Ecologia, no. FU 19). Photo: Lena Geise. 13 Fig. 3.1 - Measurements taken on Rhipidomys skulls. 41 Fig. 5.1- Representative Rhipidomys skulls, dorsal and ventral views (X 1.5). Left to right, first and third rows: R. ochrogaster (holotype, AMNH 16481), R. couesi (holotype, AMNH 5956/4585), R. latimanus venezuelae (AMNH 24347); second and fourth rows: R. macconnelli (AMNH 75604), R. caucensis (holotype, AMNH 32466). 70 Fig. 5.2 - Representative Rhipidomys skulls, lateral view (X 1.5). Specimens as in Fig. 5.1. Top left: R. ochrogaster (reversed); top right: R. latimanus venezuelae, centre: R, couesi; bottom left: R. macconnelli; bottom right R. caucensis ( rtvJi rç* <A). 71 Fig. 5.3 - Bones and structures of a Rhipidomys skull (/?. ochrogaster, holotype, AMNH 16481): dorsal, ventral and lateral views. 72 Fig. 5.4 - Occlusal structures of typical Rhipidomys molars. Above: upper left molar row; below: lower right molar row. Homologous elements in the second and third molars are not labelled. Nomenclature from Reig (1977). 80 Fig. 6.1 - Rhipidomys "ochrogaster" and "leucodactylus" from Inka region, Peru: Plot of scores on the first two principal component axes. 92 Fig. 6.2 - Rhipidomys "venustus" and "venezuelae" from N and NW Venezuela: Plot of scores on the first two principal component axes. 93 Fig. 6.3 - Rhipidomys julviventer ("fiilviventer" and "venustus" size classes from Colombia and Mérida, Venezuela) and R. latimanus (from Ecuador and Colombia) : plot of scores on the first two principal component a x e s.^ Fig. 6.4 - Rhipidomys "wetzeli" and "caucensis" from Venezuela and Colombia: plot of scores on the first two principal component axes. 95 Fig. 6.5 - The Rhipidomys julviventer group: plot of scores on the first two component axes (8-variable analysis). 99 Fig. 6.6 - Rhipidomys macconnelli and/?, nitela from Bolivar (Venezuela) and Roraima (Brazil): plot of scores on the first two principal component axes. 108 Fig. 6.7 - Rhipidomys "goodfeliowi", "leucodactylus" and western Andean specimens: plot of scores on the second and third principal component axes. 118 Fig. 6.8 - Rhipidomys "couesi", "cuzco", "goodfellowi", "leucodactylus" and W Andean specimens: plot of scores on the first two principal component axes. 119 Fig. 6.9 - Large-bodied forms of Rhipidomys occurring wholly or partly in Peru: plot of scores on the first three principal component axes. 121 Fig. 6.10 - Large-bodied Rhipidomys from SE Peru to N Argentina: plot of scores on the first two principalcomponent axes. 122 Fig. 6.11- Medium-sized Rhipidomys specimens from central
Recommended publications
  • Volume 41, 2000
    BAT RESEARCH NEWS Volume 41 : No. 1 Spring 2000 I I BAT RESEARCH NEWS Volume 41: Numbers 1–4 2000 Original Issues Compiled by Dr. G. Roy Horst, Publisher and Managing Editor of Bat Research News, 2000. Copyright 2011 Bat Research News. All rights reserved. This material is protected by copyright and may not be reproduced, transmitted, posted on a Web site or a listserve, or disseminated in any form or by any means without prior written permission from the Publisher, Dr. Margaret A. Griffiths. The material is for individual use only. Bat Research News is ISSN # 0005-6227. BAT RESEARCH NEWS Volume41 Spring 2000 Numberl Contents Resolution on Rabies Exposure Merlin Tuttle and Thomas Griffiths o o o o eo o o o • o o o o o o o o o o o o o o o o 0 o o o o o o o o o o o 0 o o o 1 E - Mail Directory - 2000 Compiled by Roy Horst •••• 0 ...................... 0 ••••••••••••••••••••••• 2 ,t:.'. Recent Literature Compiled by :Margaret Griffiths . : ....••... •"r''• ..., .... >.•••••• , ••••• • ••< ...... 19 ,.!,..j,..,' ""o: ,II ,' f 'lf.,·,,- .,'b'l: ,~··.,., lfl!t • 0'( Titles Presented at the 7th Bat Researc:b Confei'ebee~;Moscow :i'\prill4-16~ '1999,., ..,, ~ .• , ' ' • I"',.., .. ' ""!' ,. Compiled by Roy Horst .. : .......... ~ ... ~· ....... : :· ,"'·~ .• ~:• .... ; •. ,·~ •.•, .. , ........ 22 ·.t.'t, J .,•• ~~ Letters to the Editor 26 I ••• 0 ••••• 0 •••••••••••• 0 ••••••• 0. 0. 0 0 ••••••• 0 •• 0. 0 •••••••• 0 ••••••••• 30 News . " Future Meetings, Conferences and Symposium ..................... ~ ..,•'.: .. ,. ·..; .... 31 Front Cover The illustration of Rhinolophus ferrumequinum on the front cover of this issue is by Philippe Penicaud . from his very handsome series of drawings representing the bats of France.
    [Show full text]
  • The Fur Mites (Acari: Listrophoridae) of the Round-Tailed Muskrat, Neofiber Alieni
    919 Bull. Ann1s Soc. r. be1ge Ent. 122 (1986): 171-181 The fur mites (Acari: Listrophoridae) of the Round-tailed Muskrat, Neofiber alIeni by A. FAIN°o, M. A. SMITHooo and J. O. WHITAKER Jrooo Abstract Three new species of fur mites of the family Listrophoridae (Acari) are described from the Round-tailed Muskrat Neofiber alIeni, from Florida, U.S.A. They are Listrophorus laynei sp. n., L. caudatus sp. n. and Prolistrophorus birkenholzi sp. n. Resume Trois nouvelles especes d'acariens pilicoles de la famille Listrophoridae (Acari) sont decrites de Neofiber alIeni, des U.S.A.: Listrophorus laynei sp. n., L. caudatus sp. n. et Prolistrophorus birkenholzi sp. n. BIRKENHOLZ (1963) reported that nearly all Round-tailed muskrats, Neofober aJJeni, he examined were infested with "Listrophoridae, probably an undescribed species." We have now collected additional material from this host and herein describe three new species ofListrophoridae (Acari). Seventeen Round-tailed Muskrats, mostly collected by James N. Layne, were examined for parasites by M.A.S., along with mites from 8 additional muskrats collected earlier by Layne. The muskrats included were collected between 1968 and 1984. Further information on abundance and occurrence on the host will be presented later. Two of the species belong to the genus Listrophorus PAGENSTECHER, 1861 (L. 1aynei sp. n. and L. caudatus sp. n.) and one to the genus ProJistrophorus FAIN, 1970 (P. birkenho1zi sp. n.). Fur mites of other groups (Myobiidae, Myocoptidae and hypopi of Glycyphagidae) were not regularly found on Neofiber aJJeni. The mite fauna of this rodent appears therefore much poorer than that of the Muskrat, Ondatra zibethicus, another species o Depose le 5 novembre 1985.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Repositiorio | FAUBA | Artículos De Docentes E Investigadores De FAUBA
    Biodivers Conserv (2011) 20:3077–3100 DOI 10.1007/s10531-011-0118-9 REVIEW PAPER Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina Diego Medan • Juan Pablo Torretta • Karina Hodara • Elba B. de la Fuente • Norberto H. Montaldo Received: 23 July 2010 / Accepted: 15 July 2011 / Published online: 24 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract In this paper we summarize for the first time the effects of agriculture expansion and intensification on animal diversity in the Pampas of Argentina and discuss research needs for biodiversity conservation in the area. The Pampas experienced little human intervention until the last decades of the 19th century. Agriculture expanded quickly during the 20th century, transforming grasslands into cropland and pasture lands and converting the landscape into a mosaic of natural fragments, agricultural fields, and linear habitats. In the 1980s, agriculture intensification and replacement of cattle grazing- cropping systems by continuous cropping promoted a renewed homogenisation of the most productive areas. Birds and carnivores were more strongly affected than rodents and insects, but responses varied within groups: (a) the geographic ranges and/or abundances of many native species were reduced, including those of carnivores, herbivores, and specialist species (grassland-adapted birds and rodents, and probably specialized pollinators), sometimes leading to regional extinction (birds and large carnivores), (b) other native species were unaffected (birds) or benefited (bird, rodent and possibly generalist pollinator and crop-associated insect species), (c) novel species were introduced, thus increasing species richness of most groups (26% of non-rodent mammals, 11.1% of rodents, 6.2% of birds, 0.8% of pollinators).
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Mcconnell's Flycatcher Mionectes Macconnelli Is More Than One Species
    Steven L. Hilty & David Ascanio 270 Bull. B.O.C. 2014 134(4) McConnell’s Flycatcher Mionectes macconnelli is more than one species by Steven L. Hilty & David Ascanio Received 25 April 2014 Summary.—Information on voice, display behaviour, elevational distribution and morphology of McConnell’s Flycatcher Mionectes macconnelli indicate that the two northern populations, long regarded as a single species, actually comprise two species-level taxa—a widespread lowland form macconnelli and a highland form roraimae. The two forms are similar in plumage, but difer signifcantly in wing and tail length, and most importantly in vocalisations and display behaviour. They are separated by elevation, with macconnelli found in humid lowland forest up to c.500 m and roraimae usually well above 500 m. Another highland taxon, mercedesfosteri, difers litle from roraimae and is not recognised here as distinct, although its voice is unknown. Two isolated populations, one in central Peru, the other in lowland Amazonia are not evaluated, but merit additional study. During the past few decades a beter understanding of mechanisms underpinning reproductive isolation has sparked a re-examination of species limits of many taxa. Avian vocalisations and habitat preferences, in particular, have been shown to be important isolating mechanisms (Zimmer 1997, Isler et al. 1999, Zimmer & Whitaker 2000, Whitaker 2002, Salaman et al. 2003, Braun et al. 2005). This paper documents an example of two morphologically similar forms, Mionectes m. macconnelli and M. m. roraimae, which we believe have achieved reproductive isolation through voice, behaviour and diferences in elevational distribution. McConnell’s Flycatcher Mionectes macconnelli is a drab, mostly olive-plumaged Tyrannidae found east of the South American Andes.
    [Show full text]
  • Advances in Cytogenetics of Brazilian Rodents: Cytotaxonomy, Chromosome Evolution and New Karyotypic Data
    COMPARATIVE A peer-reviewed open-access journal CompCytogenAdvances 11(4): 833–892 in cytogenetics (2017) of Brazilian rodents: cytotaxonomy, chromosome evolution... 833 doi: 10.3897/CompCytogen.v11i4.19925 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data Camilla Bruno Di-Nizo1, Karina Rodrigues da Silva Banci1, Yukie Sato-Kuwabara2, Maria José de J. Silva1 1 Laboratório de Ecologia e Evolução, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil 2 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP 05508-900, São Paulo, SP, Brazil Corresponding author: Maria José de J. Silva ([email protected]) Academic editor: A. Barabanov | Received 1 August 2017 | Accepted 23 October 2017 | Published 21 December 2017 http://zoobank.org/203690A5-3F53-4C78-A64F-C2EB2A34A67C Citation: Di-Nizo CB, Banci KRS, Sato-Kuwabara Y, Silva MJJ (2017) Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data. Comparative Cytogenetics 11(4): 833–892. https://doi. org/10.3897/CompCytogen.v11i4.19925 Abstract Rodents constitute one of the most diversified mammalian orders. Due to the morphological similarity in many of the groups, their taxonomy is controversial. Karyotype information proved to be an important tool for distinguishing some species because some of them are species-specific. Additionally, rodents can be an excellent model for chromosome evolution studies since many rearrangements have been described in this group.This work brings a review of cytogenetic data of Brazilian rodents, with information about diploid and fundamental numbers, polymorphisms, and geographical distribution.
    [Show full text]
  • Parasite Communities of Tropical Forest Rodents: Influences of Microhabitat Structure and Specialization
    PARASITE COMMUNITIES OF TROPICAL FOREST RODENTS: INFLUENCES OF MICROHABITAT STRUCTURE AND SPECIALIZATION By Ashley M. Winker Parasitism is the most common life style and has important implications for the ecology and evolution of hosts. Most organisms host multiple species of parasites, and parasite communities are frequently influenced by the degree of host specialization. Parasite communities are also influenced by their habitat – both the host itself and the habitat that the host occupies. Tropical forest rodents are ideal for examining hypotheses relating parasite community composition to host habitat and host specialization. Proechimys semispinosus and Hoplomys gymnurus are morphologically-similar echimyid rodents; however, P. semispinosus is more generalized, occupying a wider range of habitats. I predicted that P. semispinosus hosts a broader range of parasite species that are less host-specific than does H. gymnurus and that parasite communities of P. semispinosus are related to microhabitat structure, host density, and season. During two dry and wet seasons, individuals of the two rodent species were trapped along streams in central Panama to compare their parasites, and P. semispinosus was sampled on six plots of varying microhabitat structure in contiguous lowland forest to compare parasite loads to microhabitat structure. Such structure was quantified by measuring thirteen microhabitat variables, and dimensions were reduced to a smaller subset using factor analysis to define overall structure. Ectoparasites were collected from each individual, and blood smears were obtained to screen for filarial worms and trypanosomes. In support of my prediction, the habitat generalist ( P. semispinosus ) hosted more individual fleas, mites, and microfilaria; contrary to my prediction, the habitat specialist (H.
    [Show full text]
  • Ficha Catalográfica Online
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA – IB SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE CAMPINAS, SÃO PAULO 2018 SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Plant Biology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Biologia Vegetal ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA Suzana Maria dos Santos Costa E ORIENTADA PELA Profa. Maria do Carmo Estanislau do Amaral (UNICAMP) E CO- ORIENTADA pelo Prof. William Wayt Thomas (NYBG). Orientadora: Maria do Carmo Estanislau do Amaral Co-Orientador: William Wayt Thomas CAMPINAS, SÃO PAULO 2018 Agência(s) de fomento e nº(s) de processo(s): CNPq, 142322/2015-6; CAPES Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Suzana Maria dos Santos, 1987- C823s CosSystematic studies in Cryptangieae (Cyperaceae) / Suzana Maria dos Santos Costa. – Campinas, SP : [s.n.], 2018. CosOrientador: Maria do Carmo Estanislau do Amaral. CosCoorientador: William Wayt Thomas. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Savanas. 2. Campinarana. 3. Campos rupestres. 4. Filogenia - Aspectos moleculares. 5. Cyperaceae. I. Amaral, Maria do Carmo Estanislau do, 1958-. II. Thomas, William Wayt, 1951-. III. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título.
    [Show full text]
  • Chromatic Anomalies in Akodontini (Cricetidae: Sigmodontinae) F
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.214680 ISSN 1519-6984 (Print) Notes and Comments ISSN 1678-4375 (Online) Chromatic anomalies in Akodontini (Cricetidae: Sigmodontinae) F. A. Silvaa,b* , G. Lessab , F. Bertuolc , T. R. O. Freitasd,e and F. M. Quintelaf aPrograma de Pós-graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul – UFMS, Cidade Universitária, CEP 79070-900, Campo Grande, MS, Brasil bLaboratório de Mastozoologia, Programa de Pós-graduação em Biologia Animal, Museu de Zoologia João Moojen, Universidade Federal de Viçosa – UFV, Vila Gianetti, Casa 32, Campus Universitário, CEP 36571-000, Viçosa, MG, Brasil cLaboratório de Evolução e Genética Animal, Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Universidade Federal do Amazonas – UFAM, Av. General Rodrigo Otávio Jordão Ramos, 3000, CEP 69077-000, Manaus, AM, Brasil dPrograma de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, 1500, CEP 90040-060, Porto Alegre, RS, Brasil ePrograma de Pós-graduação em Biologia Animal, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, 1500, CEP 90040-060, Porto Alegre, RS, Brasil fLaboratório de Vertebrados, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Av. Itália, CEP 96203-900, Rio Grande, RS, Brasil *e-mail: [email protected] Received: September 27, 2018 – Accepted: February 15, 2019 – Distributed: May 31, 2020 (With 1 figure) The patterns and variability of colors in extant and Álvarez-León, 2014), birds (e. g.
    [Show full text]
  • Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits
    RESEARCH ARTICLE Extensive Chromosomal Reorganization in the Evolution of New World Muroid Rodents (Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits Adenilson Leão Pereira1, Stella Miranda Malcher1, Cleusa Yoshiko Nagamachi1,2, Patricia Caroline Mary O’Brien3, Malcolm Andrew Ferguson-Smith3, Ana Cristina Mendes- Oliveira4, Julio Cesar Pieczarka1,2* 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil, 2 CNPq Researcher, Brasília, Brasil, 3 Cambridge Resource Center for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 4 Laboratório de Zoologia e Ecologia de Vertebrados, ICB, Universidade Federal do Pará, Belém, Pará, Brasil * [email protected] OPEN ACCESS Citation: Pereira AL, Malcher SM, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Mendes-Oliveira Abstract AC, et al. (2016) Extensive Chromosomal Reorganization in the Evolution of New World Muroid Sigmodontinae rodents show great diversity and complexity in morphology and ecology. Rodents (Cricetidae, Sigmodontinae): Searching for This diversity is accompanied by extensive chromosome variation challenging attempts to Ancestral Phylogenetic Traits. PLoS ONE 11(1): reconstruct their ancestral genome. The species Hylaeamys megacephalus–HME (Oryzo- e0146179. doi:10.1371/journal.pone.0146179 myini, 2n = 54), Necromys lasiurus—NLA (Akodontini, 2n = 34) and Akodon sp.–ASP (Ako- Editor: Riccardo Castiglia, Universita degli Studi di dontini, 2n = 10) have extreme diploid numbers that make it difficult to understand the Roma La Sapienza, ITALY rearrangements that are responsible for such differences. In this study we analyzed these Received: June 5, 2015 changes using whole chromosome probes of HME in cross-species painting of NLA and Accepted: December 13, 2015 ASP to construct chromosome homology maps that reveal the rearrangements between Published: January 22, 2016 species.
    [Show full text]
  • With Focus on the Genus Handleyomys and Related Taxa
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2015-04-01 Evolution and Biogeography of Mesoamerican Small Mammals: With Focus on the Genus Handleyomys and Related Taxa Ana Villalba Almendra Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Villalba Almendra, Ana, "Evolution and Biogeography of Mesoamerican Small Mammals: With Focus on the Genus Handleyomys and Related Taxa" (2015). Theses and Dissertations. 5812. https://scholarsarchive.byu.edu/etd/5812 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Evolution and Biogeography of Mesoamerican Small Mammals: Focus on the Genus Handleyomys and Related Taxa Ana Laura Villalba Almendra A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Duke S. Rogers, Chair Byron J. Adams Jerald B. Johnson Leigh A. Johnson Eric A. Rickart Department of Biology Brigham Young University March 2015 Copyright © 2015 Ana Laura Villalba Almendra All Rights Reserved ABSTRACT Evolution and Biogeography of Mesoamerican Small Mammals: Focus on the Genus Handleyomys and Related Taxa Ana Laura Villalba Almendra Department of Biology, BYU Doctor of Philosophy Mesoamerica is considered a biodiversity hot spot with levels of endemism and species diversity likely underestimated. For mammals, the patterns of diversification of Mesoamerican taxa still are controversial. Reasons for this include the region’s complex geologic history, and the relatively recent timing of such geological events.
    [Show full text]