A Process Model for the Development of Airborne Electronic Equipment
Total Page:16
File Type:pdf, Size:1020Kb
A Process Model for the Development of Airborne Electronic Equipment A DISSERTATION PRESENTED TO THE SCHOOL FOR COMPUTER AND ELECTRONIC ENGINEERING NORTH-WEST UNIVERSITY POTCHEFSTROOM CAMPUS As part of the fulfilment of the requirements for the degree Magister Ingeneriae in Computer and Electronic Engineering by D.A. Viljoen supervised by Prof. J.E.W. (Johann) Holm November 2008 Acknowledgements The author wishes to acknowledge contributions in terms of understanding and refining concepts described in this dissertation from the following persons: from Denel Aviation, messrs. Abhi Raghu, Andrew Douglas, Andries Jansen Van Rensburg, Anton Jacobs, Bernhard Meier, Chris Versluis, Danie Dreyer, Dewald Steyn, Dougie Lawson, Garth Tolmie, Jan van Niekerk, Johan (JC) Botha, Johan Zietsman, Jorge Pinto, Jimmy Nel, Justin Shulman, Kevin Ward, Kobus Pieters, Luke Sibisi, Nic du Plessis, Phil Smalman, Philip van Rooyen, Pieter Gerber, and Pieter Booyse; from Saab AB (Sweden), messrs. Carl Stocklassa, Rikard Johanssen, Lars-Olof Ohberg, Kjell Alm, and Anders Petterson; from Armscor, Mr Andre Kok and Mrs Madalein Young and from the South African Air Force, Mr. Philip Nell, Lt Col Hannes Oosthuizen and Lt Col Willie Möller. Other mentors with whom I have had the privilege to discuss topics addressed in this study are Dr Jerry Lake, Prof Johann Kruger, and Prof Ad Sparrius. I am indebted to my study leader, Prof Johann Holm for his guidance, enthusiasm, patience and motivation. And finally, thank you to my wife Thelma and my family for their support in more ways that can be listed here. ii Summary Developments in systems engineering concepts and in the regulatory environment necessitated improvements to the processes used by Denel Aviation for the development of electronic equipment and software for use on board aircraft. A project was undertaken to improve the existing systems and software development processes. Shortcomings in the existing development processes used by the organisation were identified. A set of process requirements was determined, referring to general characteristics of airborne electronic equipment and to regulatory standards. A process model, the Airborne Electronic System Development Process (AESDP) to be used by Denel Aviation, was developed. This proposed process model was designed to support incremental and iterative development. The process employs a strict requirements based development methodology in accordance with the standards and recommended best practises. Important aspects of the proposed model include the following: (i) verification of requirement implementation commences in the definition stages of the project and (ii) a parallel (in time) breadboarding process is used to validate requirements and test implementation strategies and trade-offs - this is done without using the rigorous configuration management and other control process applicable to the life cycle data of the item under development. The process model represents hierarchical development, i.e. system (or product), software and hardware layers. The organisational context of the model was delineated, project stages and decision gates were identified and different development “threads” and associated activities were described. Requirements for detailed methods and procedures associated with theses activities were identified. The process model that resulted from this work, was approved by Denel and SAAB and is currently being applied to manage the upgrade of the Oryx helicopter fleet of the South African air force. iii Opsomming Ontwikkelinge op die gebied van stelselingenieurswese, asook veranderinge in die toepasike lugvaartregulasies, het Denel Lugvaart genoodsaak om hulle prosesse vir die ontwikkeling van elektroniese toerusting en verwante sagteware, vir gebruik aan boord vliegtuie en helikopters, te verbeter. ‘n Projek is van stapel gestuur om die bestaande prosesse vir die ontwikkeling van aan- boord stelsels en sagteware te verbeter. Tekortkominge in die bestaande ontwikkelingsprosesse wat die maatskappy gebruik, is geïdentifiseer. ‘n Stel vereistes vir ‘n ontwikkelingsproses is bepaal, deur te verwys na eienskappe van elektroniese stelsels wat aan boord vliegtuie gebruik word, en na die toepaslike regulasies en standaarde. ‘n Prosesmodel (genoem AESDP, afgelei van Airborne Electronic System Development Process) om deur Denel Lugvaart gebruik te word, is ontwikkel. Hierdie model is ontwerp om inkrementele en iteratiewe ontwikkeling te steun. Die proses is op ‘n streng behoeftestellinggebasserde (requirements based) metodologie gebaseer, in ooreenstemming met aanvaarde praktyk en voorgeskrewe regulasies. Belangrike aspekte van die proses sluit die volgende in: (i) verifikasie van implementering van behoeftes begin reeds in die konsepsuele stadiums van die projek en (ii) ‘n parallele subproses word bedryf waar behoeftestellings gevalideer kan word en waar konsepte getoets kan word sonder om die streng konfigurasie- en ander beheerprosesse te gebruik wat vir die item onder ontwikkeling gebruik word (“breadboarding”). Die prosesmodel implementeer hiërargiese ontwikkeling, onderskeibaar tussen die vlakke van ontwikkeling van die stelsel, sagteteware, en hardeware. Die organisatoriese konteks van die proses is geïsoleer, projekfases en besluitnemingsafsnypunte is geïdentifiseer en verskeie parallelopende ontwikkelings fokusfunksies (“threads”) en gepaardgaande aktiwiteite is beskryf. Die vereistes vir gedetaileerde definisies van metodes en prosedures is geïdentifiseer. Die prosesmodel, wat gevolg het as ‘n resultaat van hierdie werk, is goedgekeur deur Denel en SAAB en word tans aangewend om die opgradering van die Oryx helikopter vloot van die Suid- Afrikaanse lugmag mee te bestuur. iv Abbreviations AB Aktie Bolag (Swedish – share company) AESDP Airborne Electronic System Development Process) AFCS Automatic Flight Control System ARINC Aeronautical Radio Incorporated ARP Aerospace Recommended Practice AS Aerospace Standard ATP Acceptance Test Procedure CCB Configuration / Change Control Board CDR Critical Design Review CFT Certificate for Flight Trials CMMI Capability Maturity Model Integration COSPAS Cosmicheskaya Sistyema Poiska Avariynich Sudov (Russian - Space System for the Search of Vessels in Distress) CRT Cathode Ray Tube DDP Declaration of Design and Performance DEF STAN Defence Standard (British) DSI Directorate System Integrity EIA Electronic Industries Alliance FAA Federal Aviation Authority FAR Federal Aviation Regulation FCA Functional Configuration Audit FHA Functional Hazard Assessment FMECA Failure Mode, Effect and Criticality Assessment v GPS Global Positioning Satellite / System HF High Frequency HMI Human - Machine Interface IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronic Engineers INCOSE International Council on Systems Engineering ISO International Standards Organisation JAR Joint Aviation Regulation LCD Liquid Crystal Display MAB Military Airworthiness Board MOC Means of Compliance MRI Master Record Index OCD Operational Concept Definition OT&E Operational Test and Evaluation PCA Physical Configuration Audit PRACAS Problem Reporting and Corrective Action System PSAC Plan for Software Aspects of Certification PSSA Preliminary System Safety Assessment Req Requirement RF Radio Frequency RFC Request For Change RSA Republic of South Africa RTCA Radio Technical Commission for Aeronautics SAAF South African Air Force SAE Society of Automotive Engineers vi SARSAT Search and Rescue Satellite SEMP Systems Engineering Management Plan SSA System Safety Assessment STD Standard TEMP Test and Evaluation Master Plan TSO Technical Standard Order UHF Ultra High Frequency URS Users Requirements Specification USB Universal Serial Bus VHF Very High Frequency vii Table of contents Acknowledgements .......................................................................ii Summary ......................................................................................iii Opsomming .................................................................................. iv Abbreviations ................................................................................ v Chapter 1: Introduction............................................................... 1 1.1 Introduction......................................................................................................... 1 1.2 Background......................................................................................................... 1 1.2.1 Modern avionics equipment .......................................................................... 1 1.2.2 Airworthiness................................................................................................. 3 1.2.3 The engineering of complex systems ............................................................ 4 1.2.4 Engineering processes ................................................................................... 5 1.3 Purpose of this study........................................................................................... 5 1.4 Summary............................................................................................................. 7 Chapter 2: Literature study and shortcomings.......................... 8 2.1 Introduction......................................................................................................... 8 2.2 Regulatory aspects .............................................................................................. 8 2.2.1 Airworthiness................................................................................................