Kurt Gödel Metamathematical Results on Formally Undecidable Propositions: Completeness Vs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
REFERENCE in ARITHMETIC §1. to Prove His Famous First
REFERENCE IN ARITHMETIC LAVINIA PICOLLO Abstract. Self-reference has played a prominent role in the development of metamath- ematics in the past century, starting with G¨odel'sfirst incompleteness theorem. Given the nature of this and other results in the area, the informal understanding of self-reference in arithmetic has sufficed so far. Recently, however, it has been argued that for other related issues in metamathematics and philosophical logic a precise notion of self-reference and, more generally, reference, is actually required. These notions have been so far elusive and are surrounded by an aura of scepticism that has kept most philosophers away. In this paper I suggest we shouldn't give up all hope. First, I introduce the reader to these issues. Second, I discuss the conditions a good notion of reference in arithmetic must satisfy. Accordingly, I then introduce adequate notions of reference for the language of first-order arithmetic, which I show to be fruitful for addressing the aforementioned issues in metamathematics. x1. To prove his famous first incompleteness result for arithmetic, G¨odel[5] developed a technique called \arithmetization" or “g¨odelization".It consists in codifying the expressions of the language of arithmetic with numbers, so that the language can `talk' about its own formulae. Then, he constructed a sentence in the language that he described as stating its own unprovability in a system satisfying certain conditions,1 and showed this sentence to be undecidable in the system. His method led to enormous progress in metamathematics and computer science, but also in philosophical logic and other areas of philosophy where formal methods became popular. -
The Logic of Provability
The Logic of Provability Notes by R.J. Buehler Based on The Logic of Provability by George Boolos September 16, 2014 ii Contents Preface v 1 GL and Modal Logic1 1.1 Introduction..........................................1 1.2 Natural Deduction......................................2 1.2.1 ...........................................2 1.2.2 3 ...........................................2 1.3 Definitions and Terms....................................3 1.4 Normality...........................................4 1.5 Refining The System.....................................6 2 Peano Arithmetic 9 2.1 Introduction..........................................9 2.2 Basic Model Theory..................................... 10 2.3 The Theorems of PA..................................... 10 2.3.1 P-Terms........................................ 10 2.3.2Σ,Π, and∆ Formulas................................ 11 2.3.3 G¨odelNumbering................................... 12 2.3.4 Bew(x)........................................ 12 2.4 On the Choice of PA..................................... 13 3 The Box as Bew(x) 15 3.1 Realizations and Translations................................ 15 3.2 The Generalized Diagonal Lemma............................. 16 3.3 L¨ob'sTheorem........................................ 17 3.4 K4LR............................................. 19 3.5 The Box as Provability.................................... 20 3.6 GLS.............................................. 21 4 Model Theory for GL 23 5 Completeness & Decidability of GL 25 6 Canonical Models 27 7 On -
Arxiv:1504.04798V1 [Math.LO] 19 Apr 2015 of Principia Squarely in an Empiricist Framework
HEINRICH BEHMANN'S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC PAOLO MANCOSU AND RICHARD ZACH Abstract. Heinrich Behmann (1891{1970) obtained his Habilitation under David Hilbert in G¨ottingenin 1921 with a thesis on the decision problem. In his thesis, he solved|independently of L¨owenheim and Skolem's earlier work|the decision prob- lem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in G¨ottingen. In a talk given in 1921, he outlined this solution, but also presented important programmatic remarks on the significance of the decision problem and of decision procedures more generally. The text of this talk as well as a partial English translation are included. x1. Behmann's Career. Heinrich Behmann was born January 10, 1891, in Bremen. In 1909 he enrolled at the University of T¨ubingen. There he studied mathematics and physics for two semesters and then moved to Leipzig, where he continued his studies for three semesters. In 1911 he moved to G¨ottingen,at that time the most important center of mathematical activity in Germany. He volunteered for military duty in World War I, was severely wounded in 1915, and returned to G¨ottingenin 1916. In 1918, he obtained his doctorate with a thesis titled The Antin- omy of Transfinite Numbers and its Resolution by the Theory of Russell and Whitehead [Die Antinomie der transfiniten Zahl und ihre Aufl¨osung durch die Theorie von Russell und Whitehead] under the supervision of David Hilbert [Behmann 1918]. -
Henkin's Method and the Completeness Theorem
Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T . -
Gödel's Incompleteness Theorem for Mathematicians
G¨odel'sIncompleteness Theorem for Mathematicians Burak Kaya METU [email protected] November 23, 2016 Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 1 / 21 Hilbert wanted to formalize all mathematics in an axiomatic system which is consistent, i.e. no contradiction can be obtained from the axioms. complete, i.e. every true statement can be proved from the axioms. decidable, i.e. given a mathematical statement, there should be a procedure for deciding its truth or falsity. In 1931, Kurt G¨odelproved his famous incompleteness theorems and showed that Hilbert's program cannot be achieved. In 1936, Alan Turing proved that Hilbert's Entscheindungsproblem cannot be solved, i.e. there is no general algorithm which will decide whether a given mathematical statement is provable (from a given set of axioms.) Hilbert's program In 1920's, David Hilbert proposed a research program in the foundations of mathematics to provide secure foundations to mathematics and to eliminate the paradoxes and inconsistencies discovered by then. Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 2 / 21 consistent, i.e. no contradiction can be obtained from the axioms. complete, i.e. every true statement can be proved from the axioms. decidable, i.e. given a mathematical statement, there should be a procedure for deciding its truth or falsity. In 1931, Kurt G¨odelproved his famous incompleteness theorems and showed that Hilbert's program cannot be achieved. In 1936, Alan Turing proved that Hilbert's Entscheindungsproblem cannot be solved, i.e. there is no general algorithm which will decide whether a given mathematical statement is provable (from a given set of axioms.) Hilbert's program In 1920's, David Hilbert proposed a research program in the foundations of mathematics to provide secure foundations to mathematics and to eliminate the paradoxes and inconsistencies discovered by then. -
Notes on Incompleteness Theorems
The Incompleteness Theorems ● Here are some fundamental philosophical questions with mathematical answers: ○ (1) Is there a (recursive) algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is true? ○ (2) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of Peano or Robinson Arithmetic? ○ (3) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of pure (first-order) logic? ○ (4) Is there a complete (even if not recursive) recursively axiomatizable theory in the language of first-order arithmetic? ○ (5) Is there a recursively axiomatizable sub-theory of Peano Arithmetic that proves the consistency of Peano Arithmetic (even if it leaves other questions undecided)? ○ (6) Is there a formula of arithmetic that defines arithmetic truth in the standard model, N (even if it does not represent it)? ○ (7) Is the (non-recursively enumerable) set of truths in the language of first-order arithmetic categorical? If not, is it ω-categorical (i.e., categorical in models of cardinality ω)? ● Questions (1) -- (7) turn out to be linked. Their philosophical interest depends partly on the following philosophical thesis, of which we will make frequent, but inessential, use. ○ Church-Turing Thesis:A function is (intuitively) computable if/f it is recursive. ■ Church: “[T]he notion of an effectively calculable function of positive integers should be identified with that of recursive function (quoted in Epstein & Carnielli, 223).” ○ Note: Since a function is recursive if/f it is Turing computable, the Church-Turing Thesis also implies that a function is computable if/f it is Turing computable. -
Arxiv:2009.00315V2 [Math.LO] 15 Sep 2020 Tarski's Undefinability Theorem and Diagonal Lemma
Tarski’s Undefinability Theorem and Diagonal Lemma SAEED SALEHI Research Institute for Fundamental Sciences (RIFS), University of Tabriz, P.O.Box 51666–16471, Tabriz, IRAN. E-mail:[email protected] Abstract We prove the equivalence of the semantic version of Tarski’s theorem on the undefinability of truth with a semantic version of the Diagonal Lemma, and also show the equivalence of syntactic Tarski’s Undefinability Theorem with a weak syntactic diagonal lemma. We outline two seemingly diagonal-free proofs for these theorems from the literature, and show that syntactic Tarski’s theorem can deliver G¨odel-Rosser’s Incompleteness Theorem. Keywords: Diagonal Lemma, Diagonal-Free Proofs, G¨odels Incomplteness Theorem, Rossers Theorem, Self-Reference, Tarskis Undefinability Theorem. 2020 AMS MSC: 03F40, 03A05, 03F30, 03C40. 1 Introduction ONE OF THE CORNERSTONES of modern logic (and theory of incompleteness after G¨odel) is the Diagonal Lemma (aka Self-Reference, or Fixed-Point Lemma) due to G¨odel and Carnap (see [10] and the references therein). The lemma states that (when α 7→ pαq is a suitable G¨odel coding which assigns the closed term pαq to a syntactic expression or object α) for a given formula Ψ(x) with the only free variable x, there exists some sentence θ such that the equivalence Ψ(pθq) ↔ θ holds; “holding” could mean either being true in the standard model of natural numbers N or being provable in a suitable theory T (which is usually taken to be a consistent extension of Robinson’s arithmetic). When the equivalence Ψ(pθq) ↔ θ holds in N we call it the Semantic Diagonal Lemma (studied in Section 2); when T proves the equivalence, we call it the Syntactic Diagonal Lemma. -
• Hermann Weyll, 1927. Comments on Hilbert's
Hermann Weyll, 1927. Comments on Hilbert's second lecture on the • foundations of mathematics. Response to Hilbert's 1927 lecture. Weyll defends Poincar´ewho had a problem (circularity in the justification) with the with the metamathematical use of mathematical induction. Most important point: in constructive mathematics, the rule of generalization and of induction blend. Paul Bernays, 1927. Appendix to Hilbert's lecture \The foundations • of mathematics". This paper by Bernays presents a proof of Ackermann (second version) of the consistency of a certain system. The proof idea comes from Hilbert but is here formally worked out in a more general setting. The setting is not so general that it comprises all of analysis. Luitzen Egbertus Jan Brouwer, 1927a. Intuitionistic reflections on • formalism. This text is the first paragraph of a longer paper by Brouwer. He comes back to an earlier statement of his that dialogue between logicism (?) and intuitionism is excluded. In this paper his list four point on which formalism and intuitionism could enter a dialogue. The relevant (subjective!) points concern the relation between finite metamathematics and some parts of intuitionism. Wilhelm Ackermann, 1928. On HIlbert's constructoin of the real num- • bers/ I cannot really match the title with the content of the introduction. Probably Hilbert uses primitive recursive functions in constructing his real numbers. Ackermann presents a study of a generalized version of the recursion schema by allowing functions of lower type to occur in the re- cursing definitions. A function is introduced which is shown to be larger than every primitive recursive function. This function can be represented by a type-1 recursion simultaious on two variables. -
Diagonalizing by Fixed-Points
Ahmad Karimi Tel: +98 (0)919 510 2790 Department of Mathematics Fax: +98 (0)21 8288 3493 Tarbiat Modares University E-mail:[email protected] P.O.Box 14115{134 Behbahan KA Univ. of Tech. Tehran, IRAN 61635{151 Behbahan, IRAN Saeed Salehi Tel: +98 (0)411 339 2905 Department of Mathematics Fax: +98 (0)411 334 2102 University of Tabriz E-mail:/[email protected]/ Σα∂ ir Σα`}{ P.O.Box 51666{17766 /[email protected]/ u Tabriz, IRAN Web: http://SaeedSalehi.ir/ Diagonalizing by Fixed{Points Abstract A universal schema for diagonalization was popularized by N. S. Yanofsky (2003) in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fit more theorems in the universal schema of diagonalization, such as Euclid's theorem on the infinitude of the primes and new proofs of G. Boolos (1997) for Cantor's theorem on the non-equinumerosity of a set with its powerset. Then, in Linear Temporal Logic, we show the non-existence of a fixed-point in this logic whose proof resembles the argument of Yablo's paradox. Thus, Yablo's paradox turns for the first time into a genuine mathematico-logical theorem in the framework of Linear Temporal Logic. Again the diagonal schema of the paper is used in this proof; and also it is shown that G. Priest's inclosure schema (1997) can fit in our universal diagonal/fixed-point schema. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 -
DEFINABILITY and UNDEFINABILITY of TRUTH1 Review Paper
KRITiKA DEFINABILITY AND UNDEFINABILITY OF TRUTH1 review paper Tomislav KARAČIĆ Master of Logic Programme Institute for Logic, Language and Computation University of Amsterdam e-mail: [email protected] Abstract This thesis will focus on Tarski’s work, so the Section 2 starts with him, giving an overview of the elements of his theory of truth, leading to a presentation of his theorem in 2.3. In the rest of the paper, proposals for solving the problem of internalization of the concept of truth and the paradoxes arising from this problem with some of the proposed solution are considered. Section 3. will quickly introduce the Liar paradox and once more explicitly state Tarski’s solution, followed by the so called “revenge of the liar”; a liar-type sentence which cannot be avoided even by using Tarski’s solution to the original liar. After that, Section 4. will introduce Kripke’s Theory of Truth and his take on truth and solving the Liar paradox using paracomplete logic, while Section 5. will examine some further attempts in answering the aforementioned problems in the context of paraconsistent logic. Key words truth, Tarski's theorem, semantical paradoxes, liar, formal semantics 1 Ovaj rad pisan je kao završni rad na Odsjeku za filozofiju Hrvatskih studija u Zagrebu za potrebe ostvarivanja prvostupništva na studiju filozofije. 28 Tomislav KARAČIĆ 1. Tarski’s Theory of Truth 1.1. Importance of Tarski’s Work for Semantics During the early 20th century, among the philosophers who were driven in their work by the virtues promoted by the empiricist project, it was not uncommon to approach the concept of truth with a high dose of scepticism [13, p. -
Hilbert's Program Then And
Hilbert’s Program Then and Now Richard Zach Abstract Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic sys- tems. Although G¨odel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial suc- cesses, and generated important advances in logical theory and meta- theory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical un- derpinnings and consequences, and its subsequent development and influ- ences since the 1930s. Keywords: Hilbert’s program, philosophy of mathematics, formal- ism, finitism, proof theory, meta-mathematics, foundations of mathemat- ics, consistency proofs, axiomatic method, instrumentalism. 1 Introduction Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of G¨ottingen and elsewhere in the 1920s and 1930s. Briefly, Hilbert’s proposal called for a new foundation of mathematics based on two pillars: the axiomatic method, and finitary proof theory. Hilbert thought that by formalizing mathematics in axiomatic systems, and subsequently proving by finitary methods that these systems are consistent (i.e., do not prove contradictions), he could provide a philosophically satisfactory grounding of classical, infinitary mathematics (analysis and set theory).