On Godel's Way In: the Influence of Rudolf Carnap

Total Page:16

File Type:pdf, Size:1020Kb

On Godel's Way In: the Influence of Rudolf Carnap On Godel's Way In: The Influence of Rudolf Carnap The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Goldfarb, Warren. 2005. On Godel's way in: The influence of Rudolf Carnap. Bulletin of Symbolic Logic 11, no. 2: 185-193. Published Version http://dx.doi.org/10.2178/bsl/1120231629 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3153305 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA On Godel's Way in: The Influence of Rudolf Carnap Author(s): Warren Goldfarb Source: The Bulletin of Symbolic Logic, Vol. 11, No. 2 (Jun., 2005), pp. 185-193 Published by: Association for Symbolic Logic Stable URL: http://www.jstor.org/stable/1556748 Accessed: 24/06/2009 18:20 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asl. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Bulletin of Symbolic Logic. http://www.jstor.org THE BULLETINOF SYMBOLICLOGIC Volume 11, Number 2, June 2005 ON GODEL'SWAY IN: THE INFLUENCEOF RUDOLF CARNAP WARREN GOLDFARB The philosopherRudolf Carnap (1891-1970), although not himself an originatorof mathematicaladvances in logic, was muchinvolved in the de- velopmentof the subject.He was the most importantand deepestphiloso- pher of the ViennaCircle of logical positivists,or, to use the label Carnap laterpreferred, logical empiricists.It was Carnapwho gavethe most fully developedand sophisticatedform to the linguisticdoctrine of logical and mathematicaltruth: the view that the truthsof mathematicsand logic do not describesome Platonisticrealm, but ratherare artifactsof the way we establisha languagein whichto speakof the factual,empirical world, fall- outs of the representationalcapacity of language.(This view has its roots in Wittgenstein'sTractatus, but Wittgenstein's remarks on mathematicsbeyond first-orderlogic are notoriouslysparse and cryptic.) Carnapwas also the thinkerwho, afterRussell, most emphasizedthe importanceof modernlogic, and the distinctiveadvances it enablesin the foundationsof mathematics, to contemporaryphilosophy. It was throughCarnap's urgings, abetted by Hans Hahn, once Carnaparrived in Viennaas Privatdozentin philosophy in 1926, that the ViennaCircle began to take logic seriouslyand that posi- tivist philosophybegan to grapplewith the questionof how an accountof mathematicscompatible with empiricismcan be given (see Goldfarb1996). A particularfacet of Carnap'sinfluence is not widelyappreciated: it was Carnapwho introducedKurt Godel to logic, in the serioussense. Although Godel seemsto haveattended a courseof Schlick'son philosophyof mathe- maticsin 1925-26,his secondyear at the University,he did not at that time pursuelogic further,nor did the seminarleave much of a traceon him. In the earlysummer of 1928,however, Carnap gave two lecturesto the Circlewhich Godel attended,or so I surmise.At theseoccasions, Carnap presented mate- rial from his manuscript treatise, Untersuchungenzur allgemeinenAxiomatik, that is, "Investigationsinto generalaxiomatics", which dealt with questions of consistency,completeness and categoricity.Carnap later circulatedthis materialto variouspeople including Godel. Received February 2, 2005; accepted February 9, 2005. I am grateful to Steven Awodey, John Baldwin, Solomon Feferman, Akihiro Kanamori, and Stephen Simpson for helpful suggestions, and to Enzo De Pellegrin for research and editorial assistance. ? 2005, Association for Symbolic Logic 1079-8986/05/1102-0006/$1.90 185 186 WARREN GOLDFARB Godel's serious interest in logic dates from that time. Subsequently he began the systematic reading in logic that brought him to the frontiers of what was then known, as his libraryrequest-slips show (Dawson 1997, p. 53). So, for example, in a letter to his fellow student Herbert Feigl, later a distinguished philosopher of science in America, he reports on what he did with his 1928 summer vacation: I myself was in Briinn the whole time and among other things read a part of Principia mathematica,about which, however, I was less enthusiastic [begeistert]than I had expected from its reputation. (letter to Feigl, 24 September 1928; Godel2003, p. 403) That he was put onto Principiais no doubt also Carnap'sinfluence; Carnap's concern with details of Principia far outstripped what would have been com- mon among mathematiciansby that time. It is, of course, a simplifiedversion of the system of Principiathat appears in Godel's 1931 incompletenesspaper. Hilbert and Ackermann's Grundziigeder theoretischenLogik, published in 1928, was another of the first books Godel looked at in logic. He found his dissertation problem in it: the question of the completeness of first-order logic is explicitly formulated for the first time in the book, on p. 68. In 1975, the sociologist Burke Grandjean sent a questionnaire to Godel, in which he asked, "When did you become interested in the problem... of the complete- ness of logic and mathematics?" and "Are there any influences you would single out as especially important in this regard?" Godel's answers were: "1928"; and "Hilbert Ackermann: Introduction to math Logic, Carnap: Lectures of math Logic" (Godel 2003, p. 447). Now, Carnap's logical work did not influence Godel in any mathematical or technical way: there is in Carnap's material no mathematical idea that could be exploited for serious results. What G6del learned from Carnap concerned the concepts that needed to be investigated. The peculiarities of the way Carnap framed those concepts motivated Godel concerning both the problems he set himself to investigate and the correct formulation of the concepts. Carnap'sfocus in the Untersuchungenwas on properties of axiom systems such as consistency and completeness.' The subtitle of the first volume of the manuscript, and the title of Carnap'slectures, was Metalogik. But in fact Carnap's work was not at all metalogical, in our sense. For Carnap worked in a Russellian tradition, that is, with a conception of logic that can be called "universalist"(the term stems from vanHeijenoort 1967). All notions were to be defined withinthe logical system. Consider the conjunction F of axioms of a system (Carnap's treatment is limited to finitely axiomatized theories). F contains various nonlogical vocabulary; let us call F(R) what we obtain from F by replacing these with variables (of the appropriate types). Then 'Carnap never published this manuscript;it appeared only recently as Carnap2000. In my account of this work in the next few paragraphs, I draw heavily on Awodeyand Carus2001. ON GODEL'SWAY IN: THE INFLUENCEOF RUDOLFCARNAP 187 the assertionthat the axioms have a model (are satisfiable)is expressedin the systemby (3R)F (R). The assertionthat an assertionG followsfrom the axiomsis expressedas (VR)(F(R) D G(R)), that is, in the terminologyof Russell1903, F(R) formallyimplies G(R). The assertionthat the axioms are inconsistentis then the assertionthat a contradictionfollows from them: (3G)(V2R)(F(R)D G(R).-G(R)). The quantification"(3G)" is to be construedhere not as overformulas, but ratherover propositional functions (i.e., properties)of a higherorder. Note how simpleit is to show,once the conceptsare definedin this way, thatif the axiomsare consistent then theyhave a model. For assumethey do not havea model: that is, (VR)^F(R). Then (VR)(F(R) D H) for any H, and in particular,for some H of the form G(R).G (R). Hencethe axioms are inconsistent. So herewe havea trivialproof of a claimthat verballysounds exactly like a completenesstheorem: an axiom system has a model if it is consistent. Of course, it is not really such a theorem;in particularthe definitionof consequencethat is used to framethat of consistencydoes not accordwith whatis ordinarilymeant by a deductiveconsequence of the axiom system. The opening of Godel's doctoral dissertation,completed in July 1929, reactsto this pseudo-completenesstheorem. He startsby being insistently expliciton whatnotion of consequenceis at issue in the dissertation.In the second sentence,he frameshis theoremthus: everyvalid formulaof first- orderlogic "canbe derivedfrom the axiomsby meansof a finitesequence of formalinferences." Two sentenceslater, after reformulating the theoremas aboutconsistent axiom systems,
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Unfolding of Systems of Inductive Definitions
    UNFOLDINGOFSYSTEMSOFINDUCTIVE DEFINITIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE OF GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHEDEGREEOF DOCTOROFPHILOSOPHY Ulrik Torben Buchholtz December 2013 © 2013 by Ulrik Torben Buchholtz. All Rights Reserved This work is licensed under the Creative Commons Attribution 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. This dissertation is online at: http://purl.stanford.edu/kg627pm6592 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Solomon Feferman, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Grigori Mints, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Thomas Strahm Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education An original signed hard copy of the signature page is on file in University Archives. iii iv ABSTRACT This thesis is a contribution to Solomon Feferman’s Unfolding Program which aims to provide a general method of capturing the operations on individuals and predicates (and the principles governing them) that are implicit in a formal axiomatic system based on open-ended schemata.
    [Show full text]
  • Mathematical Induction - a Miscellany of Theory, History and Technique
    Mathematical Induction - a miscellany of theory, history and technique Theory and applications for advanced secondary students Part 4 Peter Haggstrom This work is subject to Copyright. It is a chapter in a larger work. You can however copy this chapter for educational purposes under the Statutory License of the Copyright Act 1968 - Part VB For more information [email protected] Copyright 2009 [email protected] The building blocks of Gödelʼs Theorem The foundations of Gödel’s Theorem (ie his undecidability theorem) are to be found in about 50 papers contained in a book by Jean van Heijenoort:, “From Frege to Gödel: A Source Book in Mathematical Logic, 1879 - 1931”. Every serious logic student has read this book. Van Heijenoort is worth mentioning even if only for his colourful past which is described by Benjamin H Yandell in his book “The Honors Class: Hilbert’s Problems and Their Solvers”, A K Peters, 2002, page 66. I quote in full: “ I assumed van Heijenoort was merely a logician as I gratefully pored over his book and was astounded when I learned that as a young man, in the 1930s, he had followed Leon Trotsky from Turkey to France to Norway to Mexico, as his body guard and secretary. Anita Feferman’s ”From Trotsky to Gödel”: The Life of Jean van Heijenoort” tells van Heijenoort’s remarkable story. Trotsky and his camp were pursued by Stalinist agents; van Heijenoort always packed a gun. Van Heijenoort had an affair with an artist Frida Kahlo. He epitomized cool and was attractive to women, and this continued even after he became a logician, He had grown tired of the rigors of life with Trotsky and traveled to New York in 1939 on a somewhat vague mission.
    [Show full text]
  • Arxiv:1504.04798V1 [Math.LO] 19 Apr 2015 of Principia Squarely in an Empiricist Framework
    HEINRICH BEHMANN'S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC PAOLO MANCOSU AND RICHARD ZACH Abstract. Heinrich Behmann (1891{1970) obtained his Habilitation under David Hilbert in G¨ottingenin 1921 with a thesis on the decision problem. In his thesis, he solved|independently of L¨owenheim and Skolem's earlier work|the decision prob- lem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in G¨ottingen. In a talk given in 1921, he outlined this solution, but also presented important programmatic remarks on the significance of the decision problem and of decision procedures more generally. The text of this talk as well as a partial English translation are included. x1. Behmann's Career. Heinrich Behmann was born January 10, 1891, in Bremen. In 1909 he enrolled at the University of T¨ubingen. There he studied mathematics and physics for two semesters and then moved to Leipzig, where he continued his studies for three semesters. In 1911 he moved to G¨ottingen,at that time the most important center of mathematical activity in Germany. He volunteered for military duty in World War I, was severely wounded in 1915, and returned to G¨ottingenin 1916. In 1918, he obtained his doctorate with a thesis titled The Antin- omy of Transfinite Numbers and its Resolution by the Theory of Russell and Whitehead [Die Antinomie der transfiniten Zahl und ihre Aufl¨osung durch die Theorie von Russell und Whitehead] under the supervision of David Hilbert [Behmann 1918].
    [Show full text]
  • Notices of the American Mathematical Society
    June 18 and 19)- Page 341 Vl 0 ~ Mathematical Society Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet­ ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE
    [Show full text]
  • Henkin's Method and the Completeness Theorem
    Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T .
    [Show full text]
  • Proof Theory Synthese Library
    PROOF THEORY SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Boston University Editors: DIRK VAN DALEN, University of Utrecht, The Netherlands DONALD DAVIDSON, University of California, Berkeley THEO A.F. KUIPERS, University of Groningen, The Netherlands PATRICK SUPPES, Stanford University, California JAN WOLENSKI, iagiellonian University, Krakow, Poland VOLUME 292 PROOF THEORY History and Philosophical Significance Edited by VINCENT F. HENDRICKS University of Copenhagen. Denmark STIG ANDUR PEDERSEN and KLAUS FROVIN J0RGENSEN University of Roskilde, Denmark SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5553-8 ISBN 978-94-017-2796-9 (eBook) DOI 10.1007/978-94-017-2796-9 Printed on acid-free paper All Rights Reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. CONTENTS Preface ................................................................. ix Contributing Authors ................................................. , xi HENDRICKS, PEDERSEN AND J0RGENSEN / Introduction .......... 1 PART 1. REVIEW OF PROOF THEORY SOLOMON FEFERMAN / Highlights in Proof Theory ................ , 11 1. Review of Hilbert's Program and Finitary Proof Theory ......... , 11 2. Results of Finitary Proof Theory via Gentzen's L-Calculi ......... 14 3. Shifting Paradigms .............................................. 21 4. Countably Infinitary Methods (Getting the Most Out of Logic) ..
    [Show full text]
  • How Peircean Was the “'Fregean' Revolution” in Logic?
    HOW PEIRCEAN WAS THE “‘FREGEAN’ REVOLUTION” IN LOGIC? Irving H. Anellis Peirce Edition, Institute for American Thought Indiana University – Purdue University at Indianapolis Indianapolis, IN, USA [email protected] Abstract. The historiography of logic conceives of a Fregean revolution in which modern mathematical logic (also called symbolic logic) has replaced Aristotelian logic. The preeminent expositors of this conception are Jean van Heijenoort (1912–1986) and Don- ald Angus Gillies. The innovations and characteristics that comprise mathematical logic and distinguish it from Aristotelian logic, according to this conception, created ex nihlo by Gottlob Frege (1848–1925) in his Begriffsschrift of 1879, and with Bertrand Rus- sell (1872–1970) as its chief This position likewise understands the algebraic logic of Augustus De Morgan (1806–1871), George Boole (1815–1864), Charles Sanders Peirce (1838–1914), and Ernst Schröder (1841–1902) as belonging to the Aristotelian tradi- tion. The “Booleans” are understood, from this vantage point, to merely have rewritten Aristotelian syllogistic in algebraic guise. The most detailed listing and elaboration of Frege’s innovations, and the characteristics that distinguish mathematical logic from Aristotelian logic, were set forth by van Heijenoort. I consider each of the elements of van Heijenoort’s list and note the extent to which Peirce had also developed each of these aspects of logic. I also consider the extent to which Peirce and Frege were aware of, and may have influenced, one another’s logical writings. AMS (MOS) 2010 subject classifications: Primary: 03-03, 03A05, 03C05, 03C10, 03G27, 01A55; secondary: 03B05, 03B10, 03E30, 08A20; Key words and phrases: Peirce, abstract algebraic logic; propositional logic; first-order logic; quantifier elimina- tion, equational classes, relational systems §0.
    [Show full text]
  • • Hermann Weyll, 1927. Comments on Hilbert's
    Hermann Weyll, 1927. Comments on Hilbert's second lecture on the • foundations of mathematics. Response to Hilbert's 1927 lecture. Weyll defends Poincar´ewho had a problem (circularity in the justification) with the with the metamathematical use of mathematical induction. Most important point: in constructive mathematics, the rule of generalization and of induction blend. Paul Bernays, 1927. Appendix to Hilbert's lecture \The foundations • of mathematics". This paper by Bernays presents a proof of Ackermann (second version) of the consistency of a certain system. The proof idea comes from Hilbert but is here formally worked out in a more general setting. The setting is not so general that it comprises all of analysis. Luitzen Egbertus Jan Brouwer, 1927a. Intuitionistic reflections on • formalism. This text is the first paragraph of a longer paper by Brouwer. He comes back to an earlier statement of his that dialogue between logicism (?) and intuitionism is excluded. In this paper his list four point on which formalism and intuitionism could enter a dialogue. The relevant (subjective!) points concern the relation between finite metamathematics and some parts of intuitionism. Wilhelm Ackermann, 1928. On HIlbert's constructoin of the real num- • bers/ I cannot really match the title with the content of the introduction. Probably Hilbert uses primitive recursive functions in constructing his real numbers. Ackermann presents a study of a generalized version of the recursion schema by allowing functions of lower type to occur in the re- cursing definitions. A function is introduced which is shown to be larger than every primitive recursive function. This function can be represented by a type-1 recursion simultaious on two variables.
    [Show full text]
  • Georg Kreisel Correspondence with Jean Van Heijenoort
    http://oac.cdlib.org/findaid/ark:/13030/c84q7wxh No online items Guide to the Georg Kreisel Correspondence with Jean van Heijenoort Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California October 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Guide to the Georg Kreisel SC0233 1 Correspondence with Jean van Heijenoort Overview Call Number: SC0233 Creator: Kreisel, Georg, 1923- Title: Georg Kreisel correspondence with Jean van Heijenoort Dates: 1949-1981 Physical Description: 6 Linear feet Summary: Correspondence, notes, memoranda, articles and other materials by Professor Georg Kreisel, sent to his colleague, Professor J. van Heijenoort of Harvard University. Includes some correspondence with other colleagues. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Gift of J. van Heijenoort, 1981. Information about Access This collection is open for research. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]
  • Bio-Bibliographical Sketch of Jean Van Heijenoort
    Lubitz’ TrotskyanaNet Jean Van Heijenoort Bio-Bibliographical Sketch Contents: Basic biographical data Biographical sketch Selective bibliography Sidelines, notes on archives Basic biographical data Name: Jean Van Heijenoort Other names (by-names, pseud. etc.): Alex Barbon ; Jacques Carton ; García Cestero ; Jarvis Gerland ; J.v.H. ; Vladimir Ivlev ; John ; Marcel Letourneur ; Daniel Logan ; Marc Loris ; K.M. ; M. Marcel ; Karl Mayer ; Karl Meyer ; Jean Rebel ; V. ; Van ; Jean Louis Maxime Van Heijenoort ; John Van Heijenoort ; Jean Vannier ; Ann Vincent ; J. Walter Wind ; Windy Date and place of birth: July 23, 1912, Creil (France) Date and place of death: March 29, 1986, México, D.F. (México) Nationality: French ; USA Occupations, careers: Professor of philosophy, mathematician, logician, archivist, writer, editor, translator, secretary, political activist Time of activity in Trotskyist movement: 1931 - 1948 Biographical sketch Jean Van Heijenoort was undoubtedly one of the most distinguished and devoted persons who shared the Trotskyist movement: first a secretary and bodyguard to Trotsky, then a secretary of the Fourth International and eventually one of the most eminent scholars in the field of modern mathematics and history of logic. His remark- able and quite extraordinary itinerary has been described and appraised by various renowned historians and scholars such as Pierre Broué or Irving H. Anellis, and a rich book-length biography about him from Anita B. Feferman's pen has been available since 19931. Jean (Louis Maxime) Van Heijenoort was born in Creil (Département Oise, France) on July 23, 1912 as son of a working-class family: his father was Jean Théodore Didier van Heijenoort (b. 1885), a Dutchman who had immigrated to France, and his mother was Charlotte Hélène Balagny (b.
    [Show full text]