• Hermann Weyll, 1927. Comments on Hilbert's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1504.04798V1 [Math.LO] 19 Apr 2015 of Principia Squarely in an Empiricist Framework
HEINRICH BEHMANN'S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC PAOLO MANCOSU AND RICHARD ZACH Abstract. Heinrich Behmann (1891{1970) obtained his Habilitation under David Hilbert in G¨ottingenin 1921 with a thesis on the decision problem. In his thesis, he solved|independently of L¨owenheim and Skolem's earlier work|the decision prob- lem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in G¨ottingen. In a talk given in 1921, he outlined this solution, but also presented important programmatic remarks on the significance of the decision problem and of decision procedures more generally. The text of this talk as well as a partial English translation are included. x1. Behmann's Career. Heinrich Behmann was born January 10, 1891, in Bremen. In 1909 he enrolled at the University of T¨ubingen. There he studied mathematics and physics for two semesters and then moved to Leipzig, where he continued his studies for three semesters. In 1911 he moved to G¨ottingen,at that time the most important center of mathematical activity in Germany. He volunteered for military duty in World War I, was severely wounded in 1915, and returned to G¨ottingenin 1916. In 1918, he obtained his doctorate with a thesis titled The Antin- omy of Transfinite Numbers and its Resolution by the Theory of Russell and Whitehead [Die Antinomie der transfiniten Zahl und ihre Aufl¨osung durch die Theorie von Russell und Whitehead] under the supervision of David Hilbert [Behmann 1918]. -
Henkin's Method and the Completeness Theorem
Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T . -
Curtis Frank Review
Curtis Franks, The Autonomy of Mathematical Knowledge: Hilbert’s program revisited. Cambridge University Press, 2009 Reviewed by Solomon Feferman According to Curtis Franks’ preface, this book bundles his historical, philosophical and logical research to center around what he thinks are “the most important and most overlooked aspects of Hilbert’s program … a glaring oversight of one truly unique aspect of Hilbert’s thought,” namely that “questions about mathematics that arise in philosophical reflection⎯questions about how and why its methods work⎯might best be addressed mathematically… Hilbert’s program was primarily an effort to demonstrate that.” The standard “well-rehearsed” story for these oversights is said to be that Hilbert’s philosophical vision was dashed by Gödel’s incompleteness theorems. But Franks argues to the contrary that Gödel’s remarkable early contributions to metamathematics instead drew “significant attention to the then fledgling discipline,” a field that has since proved to be exceptionally productive scientifically (even through the work of such logicians as Tarski, who mocked Hilbert’s program). One may well ask how the author’s effort to put this positive face on the patent failure of Hilbert’s program can possibly succeed in showing that mathematical knowledge is autonomous, that mathematics has only to look to itself for its proper foundations. Let us see. The first two chapters of Franks’ elegantly written book (whose text, unfortunately, is marred by numerous typos) are devoted to the development of Hilbert’s “new science” within his overall conception of mathematics and his philosophical naturalism.1 In particular, much of Ch. 2 draws on the Hamburg lectures [Hilbert 1922] in which Hilbert threw down the gauntlet against his primary opponents, the foundationalist skeptics Kronecker, Brouwer and Weyl, and laid out the plans and means 1 Franks takes Hilbert’s famous 1899 work on the foundations of geometry as a point of departure. -
Kurt Gödel Metamathematical Results on Formally Undecidable Propositions: Completeness Vs
Kurt Gödel Metamathematical results on formally undecidable propositions: Completeness vs. Incompleteness Motto: The delight in seeing and comprehending is the most beautiful gift of nature. (A.Einstein) 1. Life and work1 Kurt Gödel was a solitary genius, whose work influenced all the subsequent developments in mathematics and logic. The striking fundamental results in the decade 1929-1939 that made Gödel famous are the completeness of the first-order predicate logic proof calculus, the incompleteness of axiomatic theories containing arithmetic, and the consistency of the axiom of choice and the continuum hypothesis with the other axioms of set theory. During the same decade Gödel made other contributions to logic, including work on intuitionism and computability, and later, under the influence of his friendship with Einstein, made a fundamental contribution to the theory of space-time. In this article I am going to summarize the most outstanding results on incompleteness and undecidability that changed the fundamental views of modern mathematics. Kurt Friedrich Gödel was born 28 April 1906, the second son of Rudolf and Marianne (Handschuh) Gödel, in Brno, Pekařská 5,2 in Moravia, at that time the Austrio-Hungarian province, now a part of the Czech Republic. This region had a mixed population that was predominantly Czech with a substantial German-speaking minority, to which Gödel’s parents belonged. Following the religion of his mother rather than his “old-catholic” father, the Gödels had Kurt baptized in the Lutheran church. In 1912, at the age of six, he was enrolled in the Evangelische Volksschule, a Lutheran school in Brno. Gödel’s ethnic patrimony is neither Czech nor Jewish, as is sometimes believed. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 -
Hilbert's Program Then And
Hilbert’s Program Then and Now Richard Zach Abstract Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic sys- tems. Although G¨odel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial suc- cesses, and generated important advances in logical theory and meta- theory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical un- derpinnings and consequences, and its subsequent development and influ- ences since the 1930s. Keywords: Hilbert’s program, philosophy of mathematics, formal- ism, finitism, proof theory, meta-mathematics, foundations of mathemat- ics, consistency proofs, axiomatic method, instrumentalism. 1 Introduction Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of G¨ottingen and elsewhere in the 1920s and 1930s. Briefly, Hilbert’s proposal called for a new foundation of mathematics based on two pillars: the axiomatic method, and finitary proof theory. Hilbert thought that by formalizing mathematics in axiomatic systems, and subsequently proving by finitary methods that these systems are consistent (i.e., do not prove contradictions), he could provide a philosophically satisfactory grounding of classical, infinitary mathematics (analysis and set theory). -
Ackermann Function 1 Ackermann Function
Ackermann function 1 Ackermann function In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication[1] of his function (which had three nonnegative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version, the two-argument Ackermann–Péter function, is defined as follows for nonnegative integers m and n: Its value grows rapidly, even for small inputs. For example A(4,2) is an integer of 19,729 decimal digits.[2] History In the late 1920s, the mathematicians Gabriel Sudan and Wilhelm Ackermann, students of David Hilbert, were studying the foundations of computation. Both Sudan and Ackermann are credited[3] with discovering total computable functions (termed simply "recursive" in some references) that are not primitive recursive. Sudan published the lesser-known Sudan function, then shortly afterwards and independently, in 1928, Ackermann published his function . Ackermann's three-argument function, , is defined such that for p = 0, 1, 2, it reproduces the basic operations of addition, multiplication, and exponentiation as and for p > 2 it extends these basic operations in a way -
Henkin's Method and the Completeness Theorem
Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let A be a first-order alphabet and L be the first-order logic in the alphabet A. For a sentence ' in the alphabet A, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about the theory can be derived from the axioms of T . -
On Godel's Way In: the Influence of Rudolf Carnap
On Godel's Way In: The Influence of Rudolf Carnap The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Goldfarb, Warren. 2005. On Godel's way in: The influence of Rudolf Carnap. Bulletin of Symbolic Logic 11, no. 2: 185-193. Published Version http://dx.doi.org/10.2178/bsl/1120231629 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3153305 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA On Godel's Way in: The Influence of Rudolf Carnap Author(s): Warren Goldfarb Source: The Bulletin of Symbolic Logic, Vol. 11, No. 2 (Jun., 2005), pp. 185-193 Published by: Association for Symbolic Logic Stable URL: http://www.jstor.org/stable/1556748 Accessed: 24/06/2009 18:20 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asl. -
The Decision Problem and the Development of Metalogic
Historical Background Behmann’s Solution for the Monadic Class Decision Problems after Behmann Historical Discussion The Decision Problem and the Development of Metalogic Richard Zach University of Calgary, Canada Department of Philosophy and Calgary Institute for the Humanities www.ucalgary.ca/∼rzach/ ASL Annual Meeting March 12, 2007 1/38 Richard Zach Decision Problem and Development of Metalogic Historical Background Behmann’s Solution for the Monadic Class Decision Problems after Behmann Historical Discussion Outline 1 Historical Background 2 Behmann’s Solution for the Monadic Class 3 Decision Problems after Behmann 4 Historical Discussion 2/38 Richard Zach Decision Problem and Development of Metalogic Historical Background Introduction Behmann’s Solution for the Monadic Class Dramatis personae Decision Problems after Behmann Early Work on Decidability Historical Discussion The Decision Problem Introduction Decision Problem: find a procedure which decides after finitely many steps if a given formula is valid or not One of the fundamental problems for the development of modern logic in the 1920s and 1930s Intimately tied up with Hilbert’s philosophical project development of model theory development of notion of decision procedure/computation 3/38 Richard Zach Decision Problem and Development of Metalogic Historical Background Introduction Behmann’s Solution for the Monadic Class Dramatis personae Decision Problems after Behmann Early Work on Decidability Historical Discussion The Decision Problem David Hilbert, 1862–1943 Studied mathematics -
History of Valuation Theory Part I
History of Valuation Theory Part I Peter Roquette (Heidelberg)∗ 23.7.2003 Abstract The theory of valuations was started in 1912 by the Hungarian mathe- matician Josef K¨ursch´akwho formulated the valuation axioms as we are used today. The main motivation was to provide a solid foundation for the theory of p-adic fields as defined by Kurt Hensel. In the following decades we can observe a quick development of valuation theory, triggered mainly by the discovery that much of algebraic number theory could be better understood by using valuation theoretic notions and methods. An out- standing figure in this development was Helmut Hasse. Independent of the application to number theory, there were essential contributions to valuation theory given by Alexander Ostrowski, published 1934. About the same time Wolfgang Krull gave a more general, universal definition of valuation which turned out to be applicable also in many other mathe- matical disciplines such as algebraic geometry or functional analysis, thus opening a new era of valuation theory. In the present article which is planned as the first part of more to come, we report on the development of valuation theory until the ideas of Krull about general valuations of arbitrary rank took roots. That is, we cover the pre-Krull era. As our sources we use not only the published articles but also the information contained in letters and other material from that time, mostly but not exclusively from the legacy of Hasse at the University library at G¨ottingen. ∗This copy contains some minor corrections of the published version. -
On the History of Artin's L-Functions and Conductors Seven Letters from Artin to Hasse in the Year 1930
On the history of Artin’s L-functions and conductors Seven letters from Artin to Hasse in the year 1930 Peter Roquette∗ July 23, 2003 Abstract In the year 1923 Emil Artin introduced his new L-functions belonging to Galois characters. But his theory was still incomplete in two respects. First, the theory depended on the validity of the General Reciprocity Law which Artin was unable at that time to prove in full generality. Secondly, in the explicit definition of L-functions the ramified primes could not be taken into account; hence that definition was of provisional character only whereas the final definition could be given in a rather indirect way only. In later years Artin filled both of these gaps: In 1927 he proved the General Reciprocity Law, and in 1930 he gave a complete definition of his L-functions, including the ramified and the infinite primes; at the same time he introduced his theory of conductors for Galois characters. This development is well documented in the correspondence between Artin and Hasse of those years. In the present paper we discuss seven letters from Artin to Hasse, written in the year 1930, where he expounds his ideas about the final definition of the L-functions and about his con- ductors. We also discuss some letters from Emmy Noether to Hasse of the same time which are directly inspired by Artin’s. ∗This copy contains some minor corrections of the published version. 1 Contents 1 Introduction 2 2 Letter of 23 Aug 1930 4 2.1 The galley proofs . 4 2.2 Artin’s L-series and his Reciprocity Law .