A Mechanised Proof of Gödel's Incompleteness Theorems Using
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
REFERENCE in ARITHMETIC §1. to Prove His Famous First
REFERENCE IN ARITHMETIC LAVINIA PICOLLO Abstract. Self-reference has played a prominent role in the development of metamath- ematics in the past century, starting with G¨odel'sfirst incompleteness theorem. Given the nature of this and other results in the area, the informal understanding of self-reference in arithmetic has sufficed so far. Recently, however, it has been argued that for other related issues in metamathematics and philosophical logic a precise notion of self-reference and, more generally, reference, is actually required. These notions have been so far elusive and are surrounded by an aura of scepticism that has kept most philosophers away. In this paper I suggest we shouldn't give up all hope. First, I introduce the reader to these issues. Second, I discuss the conditions a good notion of reference in arithmetic must satisfy. Accordingly, I then introduce adequate notions of reference for the language of first-order arithmetic, which I show to be fruitful for addressing the aforementioned issues in metamathematics. x1. To prove his famous first incompleteness result for arithmetic, G¨odel[5] developed a technique called \arithmetization" or “g¨odelization".It consists in codifying the expressions of the language of arithmetic with numbers, so that the language can `talk' about its own formulae. Then, he constructed a sentence in the language that he described as stating its own unprovability in a system satisfying certain conditions,1 and showed this sentence to be undecidable in the system. His method led to enormous progress in metamathematics and computer science, but also in philosophical logic and other areas of philosophy where formal methods became popular. -
The Logic of Provability
The Logic of Provability Notes by R.J. Buehler Based on The Logic of Provability by George Boolos September 16, 2014 ii Contents Preface v 1 GL and Modal Logic1 1.1 Introduction..........................................1 1.2 Natural Deduction......................................2 1.2.1 ...........................................2 1.2.2 3 ...........................................2 1.3 Definitions and Terms....................................3 1.4 Normality...........................................4 1.5 Refining The System.....................................6 2 Peano Arithmetic 9 2.1 Introduction..........................................9 2.2 Basic Model Theory..................................... 10 2.3 The Theorems of PA..................................... 10 2.3.1 P-Terms........................................ 10 2.3.2Σ,Π, and∆ Formulas................................ 11 2.3.3 G¨odelNumbering................................... 12 2.3.4 Bew(x)........................................ 12 2.4 On the Choice of PA..................................... 13 3 The Box as Bew(x) 15 3.1 Realizations and Translations................................ 15 3.2 The Generalized Diagonal Lemma............................. 16 3.3 L¨ob'sTheorem........................................ 17 3.4 K4LR............................................. 19 3.5 The Box as Provability.................................... 20 3.6 GLS.............................................. 21 4 Model Theory for GL 23 5 Completeness & Decidability of GL 25 6 Canonical Models 27 7 On -
Deep Inference
Deep Inference Alessio Guglielmi University of Bath [email protected] 1 Introduction Deep inference could succinctly be described as an extreme form of linear logic [12]. It is a methodology for designing proof formalisms that generalise Gentzen formalisms, i.e. the sequent calculus and natural deduction [11]. In a sense, deep inference is obtained by applying some of the main concepts behind linear logic to the formalisms, i.e., to the rules by which proof systems are designed. By do- ing so, we obtain a better proof theory than the traditional one due to Gentzen. In fact, in deep inference we can provide proof systems for more logics, in a more regular and modular way, with smaller proofs, less syntax, less bureau- cracy and we have a chance to make substantial progress towards a solution to the century-old problem of the identity of proofs. The first manuscript on deep inference appeared in 1999 and the first refereed papers in 2001 [6, 19]. So far, two formalisms have been designed and developed in deep inference: the calcu- lus of structures [15] and open deduction [17]. A third one, nested sequents [5], introduces deep inference features into a more traditional Gentzen formalism. Essentially, deep inference tries to understand proof composition and proof normalisation (in a very liberal sense including cut elimination [11]) in the most logic-agnostic way. Thanks to it we obtain a deeper understanding of the nature of normalisation. It seems that normalisation is a primitive, simple phenomenon that manifests itself in more or less complicated ways that depend more on the choice of representation for proofs rather than their true mathematical na- ture. -
Gödel's Incompleteness Theorem for Mathematicians
G¨odel'sIncompleteness Theorem for Mathematicians Burak Kaya METU [email protected] November 23, 2016 Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 1 / 21 Hilbert wanted to formalize all mathematics in an axiomatic system which is consistent, i.e. no contradiction can be obtained from the axioms. complete, i.e. every true statement can be proved from the axioms. decidable, i.e. given a mathematical statement, there should be a procedure for deciding its truth or falsity. In 1931, Kurt G¨odelproved his famous incompleteness theorems and showed that Hilbert's program cannot be achieved. In 1936, Alan Turing proved that Hilbert's Entscheindungsproblem cannot be solved, i.e. there is no general algorithm which will decide whether a given mathematical statement is provable (from a given set of axioms.) Hilbert's program In 1920's, David Hilbert proposed a research program in the foundations of mathematics to provide secure foundations to mathematics and to eliminate the paradoxes and inconsistencies discovered by then. Burak Kaya (METU) METU Math Club Student Seminars November 23, 2016 2 / 21 consistent, i.e. no contradiction can be obtained from the axioms. complete, i.e. every true statement can be proved from the axioms. decidable, i.e. given a mathematical statement, there should be a procedure for deciding its truth or falsity. In 1931, Kurt G¨odelproved his famous incompleteness theorems and showed that Hilbert's program cannot be achieved. In 1936, Alan Turing proved that Hilbert's Entscheindungsproblem cannot be solved, i.e. there is no general algorithm which will decide whether a given mathematical statement is provable (from a given set of axioms.) Hilbert's program In 1920's, David Hilbert proposed a research program in the foundations of mathematics to provide secure foundations to mathematics and to eliminate the paradoxes and inconsistencies discovered by then. -
Facilitating Meta-Theory Reasoning (Invited Paper)
Facilitating Meta-Theory Reasoning (Invited Paper) Giselle Reis Carnegie Mellon University in Qatar [email protected] Structural proof theory is praised for being a symbolic approach to reasoning and proofs, in which one can define schemas for reasoning steps and manipulate proofs as a mathematical structure. For this to be possible, proof systems must be designed as a set of rules such that proofs using those rules are correct by construction. Therefore, one must consider all ways these rules can interact and prove that they satisfy certain properties which makes them “well-behaved”. This is called the meta-theory of a proof system. Meta-theory proofs typically involve many cases on structures with lots of symbols. The majority of cases are usually quite similar, and when a proof fails, it might be because of a sub-case on a very specific configuration of rules. Developing these proofs by hand is tedious and error-prone, and their combinatorial nature suggests they could be automated. There are various approaches on how to automate, either partially or completely, meta-theory proofs. In this paper, I will present some techniques that I have been involved in for facilitating meta-theory reasoning. 1 Introduction Structural proof theory is a branch of logic that studies proofs as mathematical objects, understanding the kinds of operations and transformations that can be done with them. To do that, one must represent proofs using a regular and unambiguous structure, which is constructed from a fixed set of rules. This set of rules is called a proof calculus, and there are many different ones. -
Propositional Logic: Deductive Proof & Natural Deduction Part 1
Propositional Logic: Deductive Proof & Natural Deduction Part 1 CS402, Spring 2016 Shin Yoo Shin Yoo Propositional Logic: Deductive Proof & Natural Deduction Part 1 Deductive Proof In propositional logic, a valid formula is a tautology. So far, we could show the validity of a formula φ in the following ways: Through the truth table for φ Obtain φ as a substitution instance of a formula known to be valid. That is, q ! (p ! q) is valid, therefore r ^ s ! (p _ q ! r ^ s) is also valid. Obtain φ through interchange of equivalent formulas. That is, if φ ≡ and φ is a subformula of a valid formula χ, χ0 obtained by replacing all occurrences of φ in χ with is also valid. Shin Yoo Propositional Logic: Deductive Proof & Natural Deduction Part 1 Deductive Proof Goals of logic: (given U), is φ valid? Theorem 1 (2.38, Ben-Ari) U j= φ iff j= A1 ^ ::: ^ An ! φ when U = fA1;:::; Ang. However, there are problems in semantic approach. Set of axioms may be infinite: for example, Peano and ZFC (Zermelo-Fraenkel set theory) theories cannot be finitely axiomatised. Hilbert system, H, uses axiom schema, which in turn generates an infinite number of axioms. We cannot write truth tables for these. The truth table itself is not always there! Very few logical systems have decision procedures for validity. For example, predicate logic does not have any such decision procedure. Shin Yoo Propositional Logic: Deductive Proof & Natural Deduction Part 1 Semantic vs. Syntax j= φ vs. ` φ Truth Tools Semantics Syntax Validity Proof All Interpretations Finite Proof Trees Undecidable Manual Heuristics (except propositional logic) Shin Yoo Propositional Logic: Deductive Proof & Natural Deduction Part 1 Deductive Proof A deductive proof system relies on a set of proof rules (also inference rules), which are in themselves syntactic transformations following specific patterns. -
Notes on Incompleteness Theorems
The Incompleteness Theorems ● Here are some fundamental philosophical questions with mathematical answers: ○ (1) Is there a (recursive) algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is true? ○ (2) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of Peano or Robinson Arithmetic? ○ (3) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of pure (first-order) logic? ○ (4) Is there a complete (even if not recursive) recursively axiomatizable theory in the language of first-order arithmetic? ○ (5) Is there a recursively axiomatizable sub-theory of Peano Arithmetic that proves the consistency of Peano Arithmetic (even if it leaves other questions undecided)? ○ (6) Is there a formula of arithmetic that defines arithmetic truth in the standard model, N (even if it does not represent it)? ○ (7) Is the (non-recursively enumerable) set of truths in the language of first-order arithmetic categorical? If not, is it ω-categorical (i.e., categorical in models of cardinality ω)? ● Questions (1) -- (7) turn out to be linked. Their philosophical interest depends partly on the following philosophical thesis, of which we will make frequent, but inessential, use. ○ Church-Turing Thesis:A function is (intuitively) computable if/f it is recursive. ■ Church: “[T]he notion of an effectively calculable function of positive integers should be identified with that of recursive function (quoted in Epstein & Carnielli, 223).” ○ Note: Since a function is recursive if/f it is Turing computable, the Church-Turing Thesis also implies that a function is computable if/f it is Turing computable. -
Arxiv:2009.00315V2 [Math.LO] 15 Sep 2020 Tarski's Undefinability Theorem and Diagonal Lemma
Tarski’s Undefinability Theorem and Diagonal Lemma SAEED SALEHI Research Institute for Fundamental Sciences (RIFS), University of Tabriz, P.O.Box 51666–16471, Tabriz, IRAN. E-mail:[email protected] Abstract We prove the equivalence of the semantic version of Tarski’s theorem on the undefinability of truth with a semantic version of the Diagonal Lemma, and also show the equivalence of syntactic Tarski’s Undefinability Theorem with a weak syntactic diagonal lemma. We outline two seemingly diagonal-free proofs for these theorems from the literature, and show that syntactic Tarski’s theorem can deliver G¨odel-Rosser’s Incompleteness Theorem. Keywords: Diagonal Lemma, Diagonal-Free Proofs, G¨odels Incomplteness Theorem, Rossers Theorem, Self-Reference, Tarskis Undefinability Theorem. 2020 AMS MSC: 03F40, 03A05, 03F30, 03C40. 1 Introduction ONE OF THE CORNERSTONES of modern logic (and theory of incompleteness after G¨odel) is the Diagonal Lemma (aka Self-Reference, or Fixed-Point Lemma) due to G¨odel and Carnap (see [10] and the references therein). The lemma states that (when α 7→ pαq is a suitable G¨odel coding which assigns the closed term pαq to a syntactic expression or object α) for a given formula Ψ(x) with the only free variable x, there exists some sentence θ such that the equivalence Ψ(pθq) ↔ θ holds; “holding” could mean either being true in the standard model of natural numbers N or being provable in a suitable theory T (which is usually taken to be a consistent extension of Robinson’s arithmetic). When the equivalence Ψ(pθq) ↔ θ holds in N we call it the Semantic Diagonal Lemma (studied in Section 2); when T proves the equivalence, we call it the Syntactic Diagonal Lemma. -
Diagonalizing by Fixed-Points
Ahmad Karimi Tel: +98 (0)919 510 2790 Department of Mathematics Fax: +98 (0)21 8288 3493 Tarbiat Modares University E-mail:[email protected] P.O.Box 14115{134 Behbahan KA Univ. of Tech. Tehran, IRAN 61635{151 Behbahan, IRAN Saeed Salehi Tel: +98 (0)411 339 2905 Department of Mathematics Fax: +98 (0)411 334 2102 University of Tabriz E-mail:/[email protected]/ Σα∂ ir Σα`}{ P.O.Box 51666{17766 /[email protected]/ u Tabriz, IRAN Web: http://SaeedSalehi.ir/ Diagonalizing by Fixed{Points Abstract A universal schema for diagonalization was popularized by N. S. Yanofsky (2003) in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fit more theorems in the universal schema of diagonalization, such as Euclid's theorem on the infinitude of the primes and new proofs of G. Boolos (1997) for Cantor's theorem on the non-equinumerosity of a set with its powerset. Then, in Linear Temporal Logic, we show the non-existence of a fixed-point in this logic whose proof resembles the argument of Yablo's paradox. Thus, Yablo's paradox turns for the first time into a genuine mathematico-logical theorem in the framework of Linear Temporal Logic. Again the diagonal schema of the paper is used in this proof; and also it is shown that G. Priest's inclosure schema (1997) can fit in our universal diagonal/fixed-point schema. -
Agent-Based Blackboard Architecture for a Higher-Order Theorem Prover
Masterarbeit am Institut für Informatik der Freien Universität Berlin, Arbeitsgruppe Künstliche Intelligenz Agent-based Blackboard Architecture for a Higher-Order Theorem Prover Max Wisniewski [email protected] Betreuer: PD. Dr. Christoph Benzmüller Berlin, den 17. Oktober 2014 Abstract The automated theorem prover Leo was one of the first systems able to prove theorems in higher-order logic. Since the first version of Leo many other systems emerged and outperformed Leo and its successor Leo-II. The Leo-III project’s aim is to develop a new prover reclaiming the lead in the area of higher-order theorem proving. Current competitive theorem provers sequentially manipulate sets of formulas in a global loop to obtain a proof. Nowadays in almost every area in computer science, concurrent and parallel approaches are increas- ingly used. Although some research towards parallel theorem proving has been done and even some systems were implemented, most modern the- orem provers do not use any form of parallelism. In this thesis we present an architecture for Leo-III that use paral- lelism in its very core. To this end an agent-based blackboard architecture is employed. Agents denote independent programs which can act on their own. In comparison to classical theorem prover architectures, the global loop is broken down to a set of tasks that can be computed in paral- lel. The results produced by all agents will be stored in a blackboard, a globally shared datastructure, thus visible to all other agents. For a proof of concept example agents are given demonstrating an agent-based approach can be used to implemented a higher-order theorem prover. -
Kurt Gödel Metamathematical Results on Formally Undecidable Propositions: Completeness Vs
Kurt Gödel Metamathematical results on formally undecidable propositions: Completeness vs. Incompleteness Motto: The delight in seeing and comprehending is the most beautiful gift of nature. (A.Einstein) 1. Life and work1 Kurt Gödel was a solitary genius, whose work influenced all the subsequent developments in mathematics and logic. The striking fundamental results in the decade 1929-1939 that made Gödel famous are the completeness of the first-order predicate logic proof calculus, the incompleteness of axiomatic theories containing arithmetic, and the consistency of the axiom of choice and the continuum hypothesis with the other axioms of set theory. During the same decade Gödel made other contributions to logic, including work on intuitionism and computability, and later, under the influence of his friendship with Einstein, made a fundamental contribution to the theory of space-time. In this article I am going to summarize the most outstanding results on incompleteness and undecidability that changed the fundamental views of modern mathematics. Kurt Friedrich Gödel was born 28 April 1906, the second son of Rudolf and Marianne (Handschuh) Gödel, in Brno, Pekařská 5,2 in Moravia, at that time the Austrio-Hungarian province, now a part of the Czech Republic. This region had a mixed population that was predominantly Czech with a substantial German-speaking minority, to which Gödel’s parents belonged. Following the religion of his mother rather than his “old-catholic” father, the Gödels had Kurt baptized in the Lutheran church. In 1912, at the age of six, he was enrolled in the Evangelische Volksschule, a Lutheran school in Brno. Gödel’s ethnic patrimony is neither Czech nor Jewish, as is sometimes believed. -
DEFINABILITY and UNDEFINABILITY of TRUTH1 Review Paper
KRITiKA DEFINABILITY AND UNDEFINABILITY OF TRUTH1 review paper Tomislav KARAČIĆ Master of Logic Programme Institute for Logic, Language and Computation University of Amsterdam e-mail: [email protected] Abstract This thesis will focus on Tarski’s work, so the Section 2 starts with him, giving an overview of the elements of his theory of truth, leading to a presentation of his theorem in 2.3. In the rest of the paper, proposals for solving the problem of internalization of the concept of truth and the paradoxes arising from this problem with some of the proposed solution are considered. Section 3. will quickly introduce the Liar paradox and once more explicitly state Tarski’s solution, followed by the so called “revenge of the liar”; a liar-type sentence which cannot be avoided even by using Tarski’s solution to the original liar. After that, Section 4. will introduce Kripke’s Theory of Truth and his take on truth and solving the Liar paradox using paracomplete logic, while Section 5. will examine some further attempts in answering the aforementioned problems in the context of paraconsistent logic. Key words truth, Tarski's theorem, semantical paradoxes, liar, formal semantics 1 Ovaj rad pisan je kao završni rad na Odsjeku za filozofiju Hrvatskih studija u Zagrebu za potrebe ostvarivanja prvostupništva na studiju filozofije. 28 Tomislav KARAČIĆ 1. Tarski’s Theory of Truth 1.1. Importance of Tarski’s Work for Semantics During the early 20th century, among the philosophers who were driven in their work by the virtues promoted by the empiricist project, it was not uncommon to approach the concept of truth with a high dose of scepticism [13, p.