Standard Cells: Their Construction, Maintenance, and Characteristics

Total Page:16

File Type:pdf, Size:1020Kb

Standard Cells: Their Construction, Maintenance, and Characteristics NBS MONOGRAPH 84 Standard Cells Their Construction, Maintenance, And Characteristics U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assur- ing maxinmm application of the physical and engineering sciences to the advancement of technology in industry and commerce. Us responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with tliose standards; determination of physical constants and properties of materials; development of methods for testing materials, meciianisms, and structures, and making such tests as may be neces- sary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation w ith Lnited States business groups and standards organizations for the development of international standards of practice: and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Me- chanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data. Institute for -Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials. Central Radio Propagation Laboratory. ** Ionosphere Research and Propagation. Tropo- sphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics. Institute for Applied Technology. Textiles and Apparel Technology Center. Building Re- search. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Mea- sures. Office of Engineering Standards. Office of Industrial Services. *NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado. **Located at Boulder, Colorado. UNITED STATES DEPARTMENT OF COMMERCE • Luther H. Hodges, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Standard Cells Their Construction, Maintenance, and Characteristics Walter J. Hamer National Bureau of Standards Monograph 84 Issued January 15, 1965 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 Price 35 cents Library of Congress Catalog Card Number: 64-60065 Foreword Accurate measurement of electromotive force is important in many areas of science and technology. Physical standards for such measurement are provided by standard cells, which are long-lived electrochemical systems of highly stable electromotive force. This publication gives the origin and derivation of the unit of electromotive force and outlines the procedures by which the National Bureau of Standards maintains and disseminates this unit by means of standard cells. Information is also given on the construction, maintenance, and characteristics of standard cells as well as a history of their development. Emphasis is placed on the precision and accuracy of electromotive force measurements; the stability of standard cells, especially those of the National Reference Group; and efforts made to construct standard cells of high quedity. A. V. ASTIN, Director Library of Congress Catalog Card Number: 64-60065 Foreword Accurate measurement of electromotive force is important in many areas of science and technology. Physical standards for such measurement are provided by standard cells, which are long-lived electrochemical systems of highly stable electromotive force. This publication gives the origin and derivation of the unit of electromotive force and outlines the procedures by which the National Bureau of Standards maintains and disseminates this unit by means of standard cells. Information is also given on the construction, maintenance, and characteristics of standard cells as well as a history of their development. Emphasis is placed on the precision and accuracy of electromotive force measurements; the stability of standard cells, especially those of the National Reference Group; and efforts made to construct standard cells of high quality. A. V. ASTIN, Director Contents Foreword iii 1. Introduction 1 2. The unit of electromotive force 1 2.1. Realization ] 2.2. History 4 2.3. Maintenance 5 2.4. Dissemination 8 2.5. International comparisons 10 3. Early standard cells 11 4. The Clark cell 13 5. The Weston (or cadmium sulfate) cell 15 5.1. General 15 5.2. Preparation and properties of materials 16 5.3. Containers for standard cells 19 5.4. Assembly and mounting of standard cells 20 5.5. Electromotive forces of newly made cells 21 6. Effect of variations in components on the electromotive force of stand- ard cells 22 6.1. Concentration of solution 22 6.2. Acidity of solution 22 6.3. Composition of amalgam 23 6.4. Crystal phases of cadmium sulfate 23 7. Characteristics of standard cells 23 7.1. Emf-temperature coefficient 23 7.2. Emf-temperature hysteresis 26 7.3. Temperature range 27 7.4. Emf-pressure coefficient 27 7.5. Internal resistance 28 7.6. Effect of current 28 7.7. Effect of light 30 7.8. Effect of shock 30 7.9. Effect of vibration 30 8. Life of standard cells 30 9. References 31 10. Appendix 1 33 11. Appendix 2 34 12. Appendix 3 35 13. Appendix 4 35 14. Appendix 5 36 15. Appendix 6 37 16. Appendix 7 37 iv Standard Cells Their Construction, Maintenance, and Characteristics Walter J. Hamer This Monograph contains information on the construction, maintenance, and characteristics of standard cells. The effects of temperature, pressure, electric current, light, shock, and vibration on standard ceUs are discussed. A history of the realization and maintenance of the unit of electromotive force is also included. A record of international comparisons of the unit of electromotive force is pre- sented as well as information on the constancy of the National Reference Group of Standard Cells. 1. Introduction Standard cells are physical representations of ferent design from those electrochemical systems the unit of electromotive force (emf), serve in the which are intended for such purpose. Owing to maintenance of the unit, and are used as standards their special use, standard cells are required to with which the emf of other cells and systems and meet certain performance criteria and, for precise IR drops are compared. Together with standards measurements, to have certain inherent charac- of resistance {R) they are also used in the measure- teristics. They must be reasonably reproducible, ment of current, /. When measurements of electric exhibit good permanency, possess low emf-tem- power, P, are made in terms of standards for emf perature coefficients, have a low or moderately (£") and resistance, the expression for power, low internal resistance, be relatively insensitive P = E^IR, shows the necessity of knowing E ac- to current drains of low magnitude, and, if pos- curately, since a small error in the standard for E sible, have an emf of convenient magnitude. Since would produce a percentage error twice a» great a standard cell is a physical representation of a unit in the value for the power, P. it is obvious why permanency is of prime importance Standard cells are electrochemical systems com- in a standard cell. The precision with which the posed of two dissimilar electrodes immersed in an emf of standard cells is measured, accordingly, electrolytic solution. They are not intended to exceeds that normally required for other types of supply electric current and, therefore, are of dif- galvanic cells. 2. The Unit of Electromotive Force 2.1. Realization The practical unit of emf, the volt, is not an arbi- it was possible to measure electrical quantities trary one but Uke the other electrical units is de- in terms of mechanical units. Weber pointed out rived from the basic mechanical units of length, the desirability of making the electrical units con- mass, and time using the principles of electromag- sistent with those used in other branches of science netism with the value of the magnetic constant and engineering. (the so-called permeability of free space) taken as The electrical units determined in the cgs electro- 47r/10^ in the rationalized mksa (meter-kilogram- magnetic (em) system are of inconvenient size for second-ampere) system of units. ^ It has been practical use. For example. Sir William Thomson customary, following the first use of the term by (Lord Kelvin) [10] in 1851 showed that the emf of 10^ Gauss [9],^ to refer to electrical units based on the a Daniell cell was about 1 X cgs em units. Even basic units of length, mass, and time as absolute so, a Committee of the British Association for the electrical units. ^ The transition from arbitrary to Advancement of Science in 1873 [6] recommended
Recommended publications
  • Sensor Connectors
    Sensor Connectors Thermocouple Connector - Two Pole Assembly Termination Code: 2 • Glass filled thermoplastic body provides high strength at temperatures up to 425°F 218°C) as well as low moisture absorption and good dielectric constant . • Heavy duty hollow pin construction prevents reverse mating of polarity.* • Body color coded to ISA and ANSI standards. 1” • Polarity indicated by symbols molded into body. • Contacts made of thermocouple materials which meet ISA and ANSI standards . • Jack spring loaded to insure firm grip to plug. • Accepts wire sizes to 14 awg. • Single screw cover cap for fast assembly. • Accepts crimp and tube adapter for product from .020 to .375. • Finger grips to permit ease of connection. 7/16” • Quick wiring hook up with large head screws and wire channel. Catalog Number Thermocouple Body Actual Alloy Plugs Jacks Type Color + In Connector - 1/2” LP-J L J-J Iron-Constantan® Black Iron Constantan® LP-K L J-K Chromel®-Alumel® Yellow Chromel® Alumel® 7/8” LP-E L J-E Chromel®-Constantan® Violet Chromel® Constantan® LP-T L J-T Copper-Constantan® Blue Copper Constantan® 1 3/8” LP-R/S L J-R/S Platinum/Rhodium- Green Copper #11 Alloy Platinum LP-CU L J-CU Uncompensated White Copper Copper Assembly Termination Code: 5 *Solid pin available on above construction. Add S to Part No. (i.e. LPS-J) Miniature Thermocouple Connector Assembly Termination Code: 3 • Thermoplastic body provides high strength at temperatures up to 425°F (218°C) as well as low moisture absorption and good dielectric constant . • Small, light weight and space saving.
    [Show full text]
  • On Manganese (IV) Oxide (Mno2) in a Leclanche Dry Cell
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Der Chemica Sinica, 2012, 3(1):182-191 ISSN: 0976-8505 CODEN (USA) CSHIA5 2+ Adsorption of zinc ion (Zn ) on manganese (IV) oxide (MnO 2) in a leclanche dry cell Adejoh Adu Zakariah* and Aloko Duncan Folorunsho Department of Chemical Engineering, University of Abuja, Nigeria _____________________________________________________________________________________________ ABSTRACT This work was carried out to study the adsorption of zinc nitrate (Zn(NO 3)2) on manganese (IV) oxide (MnO 2) in a leclanche dry cell. The aim of the study is to optimize the process for the adsorption of zinc ion on MnO 2 in a leclanche dry cell using a second order factorial method. Potentiometric titration method was the adsorption method used. Considering the temperature effect on electric surface charge, pH respond during titration, concentration effect on adsorption and surface charge and the nature of cation, results obtain show that adsorption is inversely proportional to temperature, in other words, as temperature of cation increases, the adsorption capacity on MnO 2 decreases at a given concentration. Also at a given temperature adsorption capacity increases as the concentration of the adsorbent increases. The highest adsorption capacity was observed at 0.1M for Zn 2+ at 28 oC . Key words : Adsorption, zinc nitrate (Zn(NO 3)2), manganese (IV) oxide, potentiometric, concentration, adsorbent. _____________________________________________________________________________________________ INTRODUCTION An electrochemical cell is a device designed to produce electrical energy as the primary output product with the cell itself undergoing a chemical transformation (reaction). Conversely, in cell some chemical reaction can be made to occur through ionic mechanism by passing electric energy into the cell (as a form of secondary input).
    [Show full text]
  • Strain Gage Technical Data
    STRAIN GAGE TECHNICAL DATA STRAIN GAGE MEASUREMENT The most universal measuring device for the electrical measurement of mechanical quantities is the strain gage. Several types of strain gages depend for their operation on the proportional variance of electrical resistance to strain: the piezoresistive or semi-conductor gage, the carbon resistive gage, the bonded metallic wire, and foil resistance gages. The bonded resistance strain gage is by far the most widely used in experimental stress analysis. This gage consists of a grid of very fine wire or foil bonded to a backing or carrier matrix. The electrical resistance of the grid varies linearly with strain. In use, the carrier matrix is bonded to the surface, force is applied, and the strain is found by measuring the change in resistance. The bonded resistance strain gage is low in cost, can be made with a short gage length, is only moderately affected by the bridge. This method assumes a wiring is located in a time-varying temperature changes, has small linear relationship between voltage magnetic field. out and strain, an initially balanced physical size and low mass, and Magnetic induction can be has fairly high sensitivity to strain. bridge, and a known VIN. In reality, the VOUT-strain relationship is controlled by using twisted lead In a strain gage application, the wires and forming minimum but carrier matrix and the adhesive nonlinear, but for strains up to a few thousand micro-strain, the error is equal loop areas in each side of must work together to transmit the the bridge. strain from the specimen to the grid.
    [Show full text]
  • Linear Thermal Expansion Coefficients of Metals and Alloys
    17 Material Expansion Coefficients Chapter 17 Material Expansion Coefficients Linear Thermal Expansion Coefficients of Metals and Alloys Linear Thermal Expansion Coefficients of Metals and Alloys Table 17-1 provides the linear thermal expansion coefficients of the most frequently used metals and allows. Table 17-1. Linear thermal expansison coefficients of metals and alloys Coefficient of Expansion Alloys ppm/°C ppm/°F ALUMINUM AND ALUMINUM ALLOYS Aluminum (99.996%) 23.6 13.1 Wrought Alloys EC 1060 and 1100 23.6 13.1 2011 and 2014 23.0 12.8 2024 22.8 12.7 2218 22.3 12.4 3003 23.2 12.9 4032 19.4 10.8 5005, 5050, and 5052 23.8 13.3 5056 24.1 13.4 5083 23.4 13.0 5086 23.9 13.3 5154 23.9 13.3 5357 23.7 13.2 5456 23.9 13.3 6061 and 6063 23.4 13.0 6101 and 6151 23.0 12.8 7075 23.2 12.9 7090 and 7178 23.4 13.0 17-2 User’s Manual Chapter 17 Material Expansion Coefficients Linear Thermal Expansion Coefficients of Metals and Alloys Table 17-1. Linear thermal expansison coefficients of metals and alloys (Cont.) Coefficient of Expansion Alloys ppm/°Cppm/°F ALUMINUM AND ALUMINUM ALLOYS (Continued) Casting Alloys A13 20.4 11.4 43 and 108 22.0 12.3 A108 21.5 12.0 A132 19.0 10.6 D132 20.5 11.4 F132 20.7 11.5 138 21.4 11.9 142 22.5 12.5 195 23.0 12.8 B195 22.0 12.3 214 24.0 13.4 220 25.0 13.9 319 21.5 12.0 355 22.0 12.3 356 21.5 12.0 360 21.0 11.7 750 23.1 12.9 40E 24.7 13.8 COPPER AND COPPER ALLOYS Wrought Coppers Pure Copper 16.5 9.2 Electrolytic Tough Pitch Copper (ETP) 16.8 9.4 Deoxidized Copper, High Residual Phosphorous (DHP) 17.7 9.9 Oxygen-Free Copper 17.7 9.9 Free-Machining Copper 0.5% Te or 1% Pb 17.7 9.9 User’s Manual 17-3 Chapter 17 Material Expansion Coefficients Linear Thermal Expansion Coefficients of Metals and Alloys Table 17-1.
    [Show full text]
  • Abstract Instrument to Measure the Heat Capacity
    ABSTRACT INSTRUMENT TO MEASURE THE HEAT CAPACITY OF SMALL SAMPLES A calorimeter is used to make measurements of the internal energy of a material in order to probe its thermodynamic properties, such as crystalline lattice stiffness, electronic effective mass, phase transitions, and entropy. Rare-earth metallic compounds are of interest in our lab because they are known to exhibit strongly correlated electron behavior, which gives rise to interesting phenomenon such as conventional and unconventional superconductivity, metal-insulator transitions, magnetism, and the magnetocaloric effect. The temperature dependence of specific heat is an important quantity to investigate of these materials. With limited space of our cryogenic system, we are unable to construct a calorimeter that is perfectly thermally isolated; therefore, the use of a thermal relaxation method for our heat capacity measurements will be used. A discussion on the construction of a calorimeter and implementation of the relaxation calorimetery method will be presented. Ulises Ivan Urbina August 2010 INSTRUMENT TO MEASURE THE HEAT CAPACITY OF SMALL SAMPLES by Ulises Ivan Urbina A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics in the College of Science and Mathematics California State University, Fresno August 2010 APPROVED For the Department of Physics: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's
    [Show full text]
  • Strain Gage Selection: Criteria, Procedures, Recommendations
    MICRO-MEASUREMENTS Strain Gages and Instruments Tech Note TN-505-6 Strain Gage Selection: Criteria, Procedures, Recommendations 1.0 Introduction It must be appreciated that the process of gage selection generally involves compromises. This is because parameter The initial step in preparing for any strain gage installation choices which tend to satisfy one of the constraints or is the selection of the appropriate gage for the task. It might requirements may work against satisfying others. For at first appear that gage selection is a simple exercise, of no example, in the case of a small-radius fillet, where the great consequence to the stress analyst; but quite the opposite space available for gage installation is very limited, and is true. Careful, rational selection of gage characteristics the strain gradient extremely high, one of the shortest and parameters can be very important in: optimizing available gages might be the obvious choice. At the the gage performance for specified environmental and same time, however, gages shorter than about 0.125 in operating conditions, obtaining accurate and reliable strain (3 mm) are generally characterized by lower maximum measurements, contributing to the ease of installation, and elongation, reduced fatigue life, less stable behavior, and minimizing the total cost of the gage installation. greater installation difficulty. Another situation which often The installation and operating characteristics of a strain influences gage selection, and leads to compromise, is the gage are affected by the following parameters, which are stock of gages at hand for day-to-day strain measurements. selectable in varying degrees: While compromises are almost always necessary, the stress analyst should be fully aware of the effects of such • strain-sensitive alloy compromises on meeting the requirements of the gage • backing material (carrier) installation.
    [Show full text]
  • Properties of Some Metals and Alloys
    Properties of Some Metals and Alloys COPPER AND COPPER ALLOYS • WHITE METALS AND ALLOYS • ALUMINUM AND ALLOYS • MAGNESIUM ALLOYS • TITANIUM ALLOYS • RESISTANCE HEATING ALLOYS • MAGNETIC ALLOYS • CON- TROLLED EXPANSION AND CON- STANT — MODULUS ALLOYS • NICKEL AND ALLOYS • MONEL* NICKEL- COPPER ALLOYS • INCOLOY* NICKEL- IRON-CHROMIUM ALLOYS • INCONEL* NICKEL-CHROMIUM-IRON ALLOYS • NIMONIC* NICKEL-CHROMIUM ALLOYS • HASTELLOY* ALLOYS • CHLORIMET* ALLOYS • ILLIUM* ALLOYS • HIGH TEMPERATURE-HIGH STRENGTH ALLOYS • IRON AND STEEL ALLOYS • CAST IRON ALLOYS • WROUGHT STAINLESS STEEL • CAST CORROSION AND HEAT RESISTANT ALLOYS* REFRACTORY METALS AND ALLOYS • PRECIOUS METALS Copyright 1982, The International Nickel Company, Inc. Properties of Some Metals INTRODUCTION The information assembled in this publication has and Alloys been obtained from various sources. The chemical compositions and the mechanical and physical proper- ties are typical for the metals and alloys listed. The sources that have been most helpful are the metal and alloy producers, ALLOY DIGEST, WOLDMAN’S ENGI- NEERING ALLOYS, International Nickel’s publications and UNIFIED NUMBERING SYSTEM for METALS and ALLOYS. These data are presented to facilitate general compari- son and are not intended for specification or design purposes. Variations from these typical values can be expected and will be dependent upon mill practice and material form and size. Strength is generally higher, and ductility correspondingly lower, in the smaller sizes of rods and bars and in cold-drawn wire; the converse is true for the larger sizes. In the case of carbon, alloy and hardenable stainless steels, mechanical proper- ties and hardnesses vary widely with the particular heat treatment used. REFERENCES Many of the alloys listed in this publication are marketed under well-known trademarks of their pro- ducers, and an effort has been made to associate such trademarks with the applicable materials listed herein.
    [Show full text]
  • (Zinc-Carbon) Batteries • Alkaline Manganese Dioxide Batteries
    CHAPTER 3 Batteries Expected Outcomes •What is a battery? •Performance of batteries •Types of batteries •Advantages & Disadvantages •Electric vehicles Batteries Contents • What is a battery? • Performance of batteries • Types of batteries • Advantages & Disadvantages • Electric vehicles What is a battery? • An electric battery is a device consisting of one or more electrochemical cells (battery cells) that convert stored chemical energy into electrical energy. • Each cell contains a positive terminal, or cathode, and a negative terminal, or anode. Electrolytes allow ions to move between the electrodes and terminals, which allows current to flow out of the battery to perform work. Types of battery cells Wet cell- A wet cell battery has a liquid electrolyte. e.g. , Grove cell, Bunsen cell etc. http://www.upsbatterycenter.com/blog/what-is-a-dry-cell-battery/ 12/19/2015 A dry cell uses a paste electrolyte, with only enough moisture to allow current to flow. e.g., Zinc–carbon battery or Leclanche cell. Principle of operation • A battery consists of some number of voltaic cells. Each cell consists of two half-cells connected in series by a conductive electrolyte containing cathode and anode. The electrode to which anions (negatively charged ions) migrate; the other half- cell includes electrolyte and the positive electrode to which cations (positively charged ions) migrate. • Cations are reduced (electrons are added) at the cathode during charging, while anions are oxidized (electrons are removed) at the anode during discharge. Major types of batteries • Primary batteries is a portable voltaic cell that is not rechargeable. When the supply of reactants is exhausted, energy cannot be readily restored to the battery.
    [Show full text]
  • 1.2 Low Temperature Properties of Materials
    1.2 Low Temperature Properties of Materials Materials properties affect the performance of cryogenic systems. Properties of materials vary considerably with temperature Thermal Properties: Heat Capacity (internal energy), Thermal Expansion Transport Properties: Thermal conductivity, Electrical conductivity Mechanical Properties: Strength, modulus or compressibility, ductility, toughness Superconductivity Many of the materials properties have been recorded and models exist to understand and characterize their behavior Physical models Property data bases (Cryocomp®) NIST: www.cryogenics.nist.gov/MPropsMAY/material%20properties.htm What are the cryogenic engineering problems that involve materials? USPAS Cryogenics Short Course Boston, MA 6/14 to 6/18/2010 1 Cooldown of a solid component Cryogenics involves cooling things to low temperature. Therefore one needs to understand the process. If the mass and type of the object and its material are known, then the m Ti = 300 K heat content at the designated temperatures can be calculated by integrating 1st Law. ~ 0 dQ Tds= = dE+ pdv The heat removed from the component is equal to its change of T = 80 K m f internal energy, ⎛ Ti ⎞ EΔ m = ⎜ CdT⎟ ⎜ ∫ ⎟ ⎝ T f ⎠ Liquid nitrogen @ 77 K USPAS Cryogenics Short Course Boston, MA 6/14 to 6/18/2010 2 Heat Capacity of Solids C(T) General characteristics: The heat capacity is defined as the change in the heat content with temperature. The heat capacity at constant volume is, 0 300 ∂E ∂s T(K) Cv = and at constant pressure,CTp = ∂T v ∂T p 3rd Law: C 0 as T 0 rms of the heat capacity are oThese two f related through the following thermodynamic relation, 2 ∂v ⎞ ∂p ⎞ Tvβ 2 1 ∂v ⎞ 1 ∂v ⎞ CCT− = − = κ= − ⎟ β= − ⎟ p v ⎟ ⎟ v ∂p ⎟ v ∂T ∂T ⎠p∂v ⎠ T κ ⎠T ⎠ p Isothermal Volume Note: C –C is small except for p v compressibility expansivity gases, where ~ R = 8.31 J/mole K.
    [Show full text]
  • Nickel and Its Alloys
    National Bureau of Standards Library, E-01 Admin. Bldg. IHW 9 1 50CO NBS MONOGRAPH 106 Nickel and Its Alloys U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics^—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce.
    [Show full text]
  • Strain Measurement
    Strain Measurement Prof. Yu Qiao Department of Structural Engineering, UCSD Strain Measurement • The design of load-carrying components for machines and structures requires information about the distribution of forces within the particular component. • Often we need to consider the deflection capacity. • This can be analyzed based on the measurement of physical displacements. 1 Strain Measurement • A simple example is the slender rod that is placed in uniaxial tension. • Forcer per unit area is called stress. • Design criterion is often based on the stress levels. • The stress can be calculated through the measured deflection. Stress and Strain • The experimental measurement of stress is always accompanied with the determination of strain. • The ratio of the change in length of the rod to the original length is the axial strain: a = L/L • For most engineering materials, strain is a small quantity, usually in units of 10-6 in/in or 10-6 m/m. 2 Resistance Strain Gauge • The measurement of the small displacements that occurs in a material or object under mechanical load determines the strain. • Strain can be measured by methods as simple as observing the change in the distance between two scribe marks, or as advanced as optical holograph. • In any case, the sensor would ; (1) have good spatial solution, i.e. the sensor should measure the strain at a “point”; (2) be unaffected by change in ambient conditions; and (3) have a high-frequency response for dynamic (time- based) strain measurement. • One of the most commonly used device is the bonded resistance strain gauge. Resistance Strain Gauge • There are metallic gauges.
    [Show full text]
  • United States Patent [191 ‘ [111 33,802,921 Urry ' ' [451 Apr
    United States Patent [191 ‘ [111 33,802,921 Urry ' ' [451 Apr. 9, 1974 [54] SEPARATOR FOR PRIMARY GALVANIC' 3,089,914 5/1963 Carmichael et al ............... 136/131 CELLS 3,494,801 2/1970 Urry ............................... .. 136/133 [75] Inventor: Lewis F. Urry, North Olmsted, Ohio 3,048,645 8/1962 Ruben....; ..................... .. 136/100 M [73] Assignee: Union Carbide Corporation, New Primary Examiner-Donald L. Walton York, NY. _ Attorney, Agent, or Firm-Robert C. Cummings [22] Filed: Mar. 28, 1972 [21] Appl. No.: 238,921 ‘[57]. ’ ' ABSTRACT A separator for primary galvanic cells particularly of [52] US. Cl. ........... ..136/100 M, 136/131, 136/145 the type in which the depolarizer-cathode mix has a [51] Int. Cl. .......................................... .. H01m 3/00 - :high moisture content comprises two plies of paper. [58] Field of Search ......... .. 136/100 R, 100 M, 107, One ply is. adjacent to and in contact with the depola rizer-cathode and is folded over that portion, thereof 136/123,125,128,130,131-,145,133 de?ning one boundary of a free space in the cell. A [56] References Cited second ply is in contact with the anode of the cell and UNITED STATES PATENTS extends into the free space. The anode contacting ply 1 is of paper more bibulous than the cathode contacting 1,640,488 8/1927 Deibel et al. ..................... .. 136/131 ply. 1,654,038 12/1927 Deibel .............. .. 136/131 615,292 12/1898 Maas ................................. .. 136/123 ‘7 Claims, 2 Drawing Figures 3,802,921 1 . 2 SEPARATOR FOR PRIMARY GALVANIC CELLS piercing rod. In this construction virtually all of thecell electrolyte is added by way of the wet mix, which is - This invention relates to primary galvanic cells, par therefore much wetter than that used to mold bobbins.
    [Show full text]