Thermocouples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sensor Connectors
Sensor Connectors Thermocouple Connector - Two Pole Assembly Termination Code: 2 • Glass filled thermoplastic body provides high strength at temperatures up to 425°F 218°C) as well as low moisture absorption and good dielectric constant . • Heavy duty hollow pin construction prevents reverse mating of polarity.* • Body color coded to ISA and ANSI standards. 1” • Polarity indicated by symbols molded into body. • Contacts made of thermocouple materials which meet ISA and ANSI standards . • Jack spring loaded to insure firm grip to plug. • Accepts wire sizes to 14 awg. • Single screw cover cap for fast assembly. • Accepts crimp and tube adapter for product from .020 to .375. • Finger grips to permit ease of connection. 7/16” • Quick wiring hook up with large head screws and wire channel. Catalog Number Thermocouple Body Actual Alloy Plugs Jacks Type Color + In Connector - 1/2” LP-J L J-J Iron-Constantan® Black Iron Constantan® LP-K L J-K Chromel®-Alumel® Yellow Chromel® Alumel® 7/8” LP-E L J-E Chromel®-Constantan® Violet Chromel® Constantan® LP-T L J-T Copper-Constantan® Blue Copper Constantan® 1 3/8” LP-R/S L J-R/S Platinum/Rhodium- Green Copper #11 Alloy Platinum LP-CU L J-CU Uncompensated White Copper Copper Assembly Termination Code: 5 *Solid pin available on above construction. Add S to Part No. (i.e. LPS-J) Miniature Thermocouple Connector Assembly Termination Code: 3 • Thermoplastic body provides high strength at temperatures up to 425°F (218°C) as well as low moisture absorption and good dielectric constant . • Small, light weight and space saving. -
The Spin Nernst Effect in Tungsten
The spin Nernst effect in Tungsten Peng Sheng1, Yuya Sakuraba1, Yong-Chang Lau1,2, Saburo Takahashi3, Seiji Mitani1 and Masamitsu Hayashi1,2* 1National Institute for Materials Science, Tsukuba 305-0047, Japan 2Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan 3Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan The spin Hall effect allows generation of spin current when charge current is passed along materials with large spin orbit coupling. It has been recently predicted that heat current in a non-magnetic metal can be converted into spin current via a process referred to as the spin Nernst effect. Here we report the observation of the spin Nernst effect in W. In W/CoFeB/MgO heterostructures, we find changes in the longitudinal and transverse voltages with magnetic field when temperature gradient is applied across the film. The field-dependence of the voltage resembles that of the spin Hall magnetoresistance. A comparison of the temperature gradient induced voltage and the spin Hall magnetoresistance allows direct estimation of the spin Nernst angle. We find the spin Nernst angle of W to be similar in magnitude but opposite in sign with its spin Hall angle. Interestingly, under an open circuit condition, such sign difference results in spin current generation larger than otherwise. These results highlight the distinct characteristics of the spin Nernst and spin Hall effects, providing pathways to explore materials with unique band structures that may generate large spin current with high efficiency. *Email: [email protected] 1 INTRODUCTION The giant spin Hall effect(1) (SHE) in heavy metals (HM) with large spin orbit coupling has attracted great interest owing to its potential use as a spin current source to manipulate magnetization of magnetic layers(2-4). -
Seebeck Coefficient in Organic Semiconductors
Seebeck coefficient in organic semiconductors A dissertation submitted for the degree of Doctor of Philosophy Deepak Venkateshvaran Fitzwilliam College & Optoelectronics Group, Cavendish Laboratory University of Cambridge February 2014 \The end of education is good character" SRI SATHYA SAI BABA To my parents, Bhanu and Venkatesh, for being there...always Acknowledgements I remain ever grateful to Prof. Henning Sirringhaus for having accepted me into his research group at the Cavendish Laboratory. Henning is an intelligent and composed individual who left me feeling positively enriched after each and every discussion. I received much encouragement and was given complete freedom. I honestly cannot envision a better intellectually stimulating atmosphere compared to the one he created for me. During the last three years, Henning has played a pivotal role in my growth, both personally and professionally and if I ever succeed at being an academic in future, I know just the sort of individual I would like to develop into. Few are aware that I came to Cambridge after having had a rather intense and difficult experience in Germany as a researcher. In my first meeting with Henning, I took off on an unsolicited monologue about why I was so unhappy with my time in Germany. To this he said, \Deepak, now that you are here with us, we will try our best to make the situation better for you". Henning lived up to this word in every possible way. Three years later, I feel reinvented. I feel a constant sense of happiness and contentment in my life together with a renewed sense of confidence in the pursuit of academia. -
Seebeck and Peltier Effects V
Seebeck and Peltier Effects Introduction Thermal energy is usually a byproduct of other forms of energy such as chemical energy, mechanical energy, and electrical energy. The process in which electrical energy is transformed into thermal energy is called Joule heating. This is what causes wires to heat up when current runs through them, and is the basis for electric stoves, toasters, etc. Electron diffusion e e T2 e e e e e e T2<T1 e e e e e e e e cold hot I - + V Figure 1: Electrons diffuse from the hot to cold side of the metal (Thompson EMF) or semiconductor leaving holes on the cold side. I. Seebeck Effect (1821) When two ends of a conductor are held at different temperatures electrons at the hot junction at higher thermal velocities diffuse to the cold junction. Seebeck discovered that making one end of a metal bar hotter or colder than the other produced an EMF between the two ends. He experimented with junctions (simple mechanical connections) made between different conducting materials. He found that if he created a temperature difference between two electrically connected junctions (e.g., heating one of the junctions and cooling the other) the wire connecting the two junctions would cause a compass needle to deflect. He thought that he had discovered a way to transform thermal energy into a magnetic field. Later it was shown that a the electron diffusion current produced the magnetic field in the circuit a changing emf V ( Lenz’s Law). The magnitude of the emf V produced between the two junctions depends on the material and on the temperature ΔT12 through the linear relationship defining the Seebeck coefficient S for the material. -
Practical Temperature Measurements
Reference Temperatures We cannot build a temperature divider as we can a Metal A voltage divider, nor can we add temperatures as we + would add lengths to measure distance. We must rely eAB upon temperatures established by physical phenomena – which are easily observed and consistent in nature. The Metal B International Practical Temperature Scale (IPTS) is based on such phenomena. Revised in 1968, it eAB = SEEBECK VOLTAGE establishes eleven reference temperatures. Figure 3 eAB = Seebeck Voltage Since we have only these fixed temperatures to use All dissimilar metalFigures exhibit t3his effect. The most as a reference, we must use instruments to interpolate common combinations of two metals are listed in between them. But accurately interpolating between Appendix B of this application note, along with their these temperatures can require some fairly exotic important characteristics. For small changes in transducers, many of which are too complicated or temperature the Seebeck voltage is linearly proportional expensive to use in a practical situation. We shall limit to temperature: our discussion to the four most common temperature transducers: thermocouples, resistance-temperature ∆eAB = α∆T detector’s (RTD’s), thermistors, and integrated Where α, the Seebeck coefficient, is the constant of circuit sensors. proportionality. Measuring Thermocouple Voltage - We can’t measure the Seebeck voltage directly because we must IPTS-68 REFERENCE TEMPERATURES first connect a voltmeter to the thermocouple, and the 0 EQUILIBRIUM POINT K C voltmeter leads themselves create a new Triple Point of Hydrogen 13.81 -259.34 thermoelectric circuit. Liquid/Vapor Phase of Hydrogen 17.042 -256.108 at 25/76 Std. -
Type T Thermocouple Copper-Constantan Temperature Vs Millivolt Table Degree C
Technical Information Data Bulletin Type T Thermocouple CopperConstantan T Extension Grade Temperature vs Millivolt Table Thermocouple Grade E + Copper Reference Junction 32°F + Copper M Temperature Range Maximum Thermocouple Grade Maximum Useful Temperature Range: Temperature Range P Thermocouple Grade: 328 to 662°F –454 to 752°F Consrantan 200 to 350°C –270 to 400°C Consrantan E Extension Grade: 76 to 212°F Accuracy: Standard: 1.0°C or 0.75% 60 to 100°C Special: 0.5°C or 0.4% R Recommended Applications: A Mild Oxidizing,Reducing Vacuum or Inert Environments. Good Where Moisture Is Present. Low Temperature Applications. T Temp0123456789 U 450 6.2544 6.2553 6.2562 6.2569 6.2575 440 6.2399 6.2417 6.2434 6.2451 6.2467 6.2482 6.2496 6.2509 6.2522 6.2533 R 430 6.2174 6.2199 6.2225 6.2249 6.2273 6.2296 6.2318 6.2339 6.2360 6.2380 420 6.1873 6.1907 6.1939 6.1971 6.2002 6.2033 6.2062 6.2091 6.2119 6.2147 E 410 6.1498 6.1539 6.1579 6.1619 6.1657 6.1695 6.1732 6.1769 6.1804 6.1839 400 6.1050 6.1098 6.1145 6.1192 6.1238 6.1283 6.1328 6.1372 6.1415 6.1457 390 6.0530 6.0585 6.0640 6.0693 6.0746 6.0799 6.0850 6.0901 6.0951 6.1001 & 380 5.9945 6.0006 6.0067 6.0127 6.0187 6.0245 6.0304 6.0361 6.0418 6.0475 370 5.9299 5.9366 5.9433 5.9499 5.9564 5.9629 5.9694 5.9757 5.9820 5.9883 360 5.8598 5.8671 5.8743 5.8814 5.8885 5.8955 5.9025 5.9094 5.9163 5.9231 P 350 5.7847 5.7924 5.8001 5.8077 5.8153 5.8228 5.8303 5.8378 5.8452 -
Development of Filler Metals and Procedures for Vacuum Brazing Of
Development of Filler Metals and Procedures for Vacuum Brazing of Aluminum Several brazing filler metal compositions have been developed which offer significant improvements over existing compositions. They braze in vacuum at temperatures lower than normal flow temperatures and have equal or better flowability BY W. J. WERNER, G. M. SLAUGHTER AND F. B. GURTNER Introduction ry cleanliness levels under production vantages. As a single entity, it was This report documents work per conditions. The maximum allowable immediately more desirable from a formed toward the development of lag between cleaning and brazing was cleaning, assembling and material found to be 12 hours. handling standpoint. Metallurgically, new brazing filler metals for vacuum- 2 fluxless brazing (1 X 10~6 torr) C. S. Beuyukian developed tech the 4045 brazing filler metal with its certain aluminum alloys of interest to niques for vacuum or inert gas fluxless lower silicon content allowed greater the Army. The base metals under brazing of aluminum cold plates for latitude in processing parameters than consideration were alloys 6061, 2219, use in Apollo command modules. In did alloy No. 718. 7075 and 2024. Brazing filler metal this work, brazing filler metal No. 718 Finally, the workers at Aeronca, and No. 23 brazing sheet were evalu Inc. completed a study on inert gas flow temperatures needed for these 3 alloys encompass the temperature ated. Alloy No. 718 is nominally 88% brazing of aluminum in early 1967. range 900 to 1200F. Specifically, the aluminum, 12% silicon; No. 23 braz Their work was concerned with de contract called for the development of ing sheet is comprised of 6951 base velopment of high strength brazed alloys with flow temperatures of 950, alloy clad on one side with 4045 aluminum honeycomb structures 1000, and 1050F. -
Maec.19 70 (University of London) London
COMPLEX & INCREMENTAL STRESS CREEP OF A HIGH STRENGTH ALUMINIUM ALLOY AT ELEVATED TEMPERATURES (ALLOY: HIDUMINIUM RR58 SPECIFICATION DTD 731) by SURINDAR BAHADUR MATHUR Thesis presented in the Department of Mechanical Engineering for the Award of the Doctor of Philosphy in Mechanical Engineering of the University of London. Mechanical Engineering Department Imperial College of Science and Technology mAec.19 70 (University of London) London. ABSTRACT A theory for creep rates under complex and incremental stresses is deduced from experimental data concerning complex creep at elevated temperatures for the test material HIDUMINIUM RR 58 - Specification DID 731. The most important results are for tubular specimens tested at 150°C and 250°C under incremental loads. The analysis of results relates to steady state creep only. Modified relationships in stress equivalence and strain equivalence are proposed to account for thermal softening, polygonization, recrystallization and the resulting exaggerated flow in the direction of the applied shear. (The original equations are based on the hypothesis of Von Mises). A further relationship is suggested between the immediate total energy of distortion and the subsequent creep work rate. Results of the static tests and the results of the tests for creep behaviour under complex loading are presented and compared with the results of static torsion and simple incremental torsion creep tests on the basis of the proposed equations. An appendix describes the complex creep testing machine, furnace, extensometers -
Thermoelectric Effect Peltier Seebeck and Thomson Uri Lachish, Guma Science
New: On Jupiter as an Exoplanet Blue Marble the Uniform Earth Image Particles in a box Thermoelectric Effect Peltier Seebeck and Thomson Uri Lachish, guma science Abstract: A simple model system is generated to derive explicit thermoelectric effect expressions for Peltier, Seebeck and, Thomson. The model applies an n-type semiconductor junction with two different charge-carrier concentration nL and nR. Peltier effect and Seebeck effect are calculated by applying a reversible closed Carnot cycle, and Thomson effect by the Boltzmann transport equation. Peltier's heat rate for the electric current I is: 푑푄⁄푑푡 = (훱퐴 − 훱퐵)퐼. Peltier's coefficients calculated by the model are: 훱퐴 = 푘푇푙푛(푛퐿) 훱퐵 = 푘푇푙푛(푛푅). Seebeck's EMF of two junctions at different temperatures TH and TC is: 푉 = −푆(푇퐻 − 푇퐶). Seebeck's coefficient calculated by the model is: 푆 = 푘 ln(푛퐿⁄푛푅). Thomson's heat rate for the current density J is: 푑푞⁄푑푡 = −퐾 퐽 훥푇. Thomson's coefficient calculated by the model is: 퐾 = (3⁄2)푘. Peltier effect and Seebeck effect are reversible thermodynamic processes. Thomson's (Kelvin's) second relation 퐾 = 푇 푑푆/푑푇 does not comply with the calculated coefficients. 1. Background The Peltier effect is the production or absorption of heat at a junction between two different conductors when electric charge flows through it [1]. The rate dQ/dt of heat produced or absorbed at a junction between conductors A and B is: 푑푄⁄푑푡 = (훱퐴 − 훱퐵)퐼, (1) where I is the electric current and A,B are Peltier's coefficients of the conductors. -
Strain Gage Technical Data
STRAIN GAGE TECHNICAL DATA STRAIN GAGE MEASUREMENT The most universal measuring device for the electrical measurement of mechanical quantities is the strain gage. Several types of strain gages depend for their operation on the proportional variance of electrical resistance to strain: the piezoresistive or semi-conductor gage, the carbon resistive gage, the bonded metallic wire, and foil resistance gages. The bonded resistance strain gage is by far the most widely used in experimental stress analysis. This gage consists of a grid of very fine wire or foil bonded to a backing or carrier matrix. The electrical resistance of the grid varies linearly with strain. In use, the carrier matrix is bonded to the surface, force is applied, and the strain is found by measuring the change in resistance. The bonded resistance strain gage is low in cost, can be made with a short gage length, is only moderately affected by the bridge. This method assumes a wiring is located in a time-varying temperature changes, has small linear relationship between voltage magnetic field. out and strain, an initially balanced physical size and low mass, and Magnetic induction can be has fairly high sensitivity to strain. bridge, and a known VIN. In reality, the VOUT-strain relationship is controlled by using twisted lead In a strain gage application, the wires and forming minimum but carrier matrix and the adhesive nonlinear, but for strains up to a few thousand micro-strain, the error is equal loop areas in each side of must work together to transmit the the bridge. strain from the specimen to the grid. -
Apollo Space Suit
APOLLO SPACE S UIT 1962–1974 Frederica, Delaware A HISTORIC MECHANICAL ENGINEERING LANDMARK SEPTEMBER 20, 2013 DelMarVa Subsection Histor y of the Apollo Space Suit This model would be used on Apollo 7 through Apollo 14 including the first lunar mission of Neil Armstrong and Buzz International Latex Corporation (ILC) was founded in Aldrin on Apollo 11. Further design improvements were made to Dover, Delaware in 1937 by Abram Nathanial Spanel. Mr. Spanel improve mobility for astronauts on Apollo 15 through 17 who was an inventor who became proficient at dipping latex material needed to sit in the lunar rovers and perform more advanced to form bathing caps and other commercial products. He became mobility exercises on the lunar surface. This suit was known as famous for ladies apparel made under the brand name of Playtex the model A7LB. A slightly modified ILC Apollo suit would also go that today is known worldwide. Throughout WWII, Spanel drove on to support the Skylab program and finally the American-Soyuz the development and manufacture of military rubberized products Test Program (ASTP) which concluded in 1975. During the entire to help our troops. In 1947, Spanel used the small group known time the Apollo suit was produced, manufacturing was performed as the Metals Division to develop military products including at both the ILC plant on Pear Street in Dover, Delaware, as well as several popular pressure helmets for the U.S. Air Force. the ILC facility in Frederica, Delaware. In 1975, the Dover facility Based upon the success of the pressure helmets, the Metals was closed and all operations were moved to the Frederica plant. -
Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2012 Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates Paul Marchwica University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Marchwica, Paul, "Microstructual and Thermal Analysis of Aluminum-Silicon and Magnesium-Aluminum Alloys Subjected to High Cooling Rates" (2012). Electronic Theses and Dissertations. 5572. https://scholar.uwindsor.ca/etd/5572 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Microstructual and Thermal Analysis of AlSi and MgAl Alloys Subjected to High Cooling Rates By Paul C. Marchwica A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive and Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2012 © 2012 P.