Pub Date Abstract
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit-1 Notes Faculty Name
SCHOOL OF AERONAUTICS (NEEMRANA) UNIT-1 NOTES FACULTY NAME: D.SUKUMAR CLASS: B.Tech AERONAUTICAL SUBJECT CODE: 7AN6.3 SEMESTER: VII SUBJECT NAME: MAINTENANCE OF AIRFRAME AND SYSTEMS DESIGN AIRFRAME CONSTRUCTION: Various types of structures in airframe construction, tubular, braced monocoque, semimoncoque, etc. longerons, stringers, formers, bulkhead, spars and ribs, honeycomb construction. Introduction: An aircraft is a device that is used for, or is intended to be used for, flight in the air. Major categories of aircraft are airplane, rotorcraft, glider, and lighter-than-air vehicles. Each of these may be divided further by major distinguishing features of the aircraft, such as airships and balloons. Both are lighter-than-air aircraft but have differentiating features and are operated differently. The concentration of this handbook is on the airframe of aircraft; specifically, the fuselage, booms, nacelles, cowlings, fairings, airfoil surfaces, and landing gear. Also included are the various accessories and controls that accompany these structures. Note that the rotors of a helicopter are considered part of the airframe since they are actually rotating wings. By contrast, propellers and rotating airfoils of an engine on an airplane are not considered part of the airframe. The most common aircraft is the fixed-wing aircraft. As the name implies, the wings on this type of flying machine are attached to the fuselage and are not intended to move independently in a fashion that results in the creation of lift. One, two, or three sets of wings have all been successfully utilized. Rotary-wing aircraft such as helicopters are also widespread. This handbook discusses features and maintenance aspects common to both fixed wing and rotary-wing categories of aircraft. -
List of Exhibits at IWM Duxford
List of exhibits at IWM Duxford Aircraft Airco/de Havilland DH9 (AS; IWM) de Havilland DH 82A Tiger Moth (Ex; Spectrum Leisure Airspeed Ambassador 2 (EX; DAS) Ltd/Classic Wings) Airspeed AS40 Oxford Mk 1 (AS; IWM) de Havilland DH 82A Tiger Moth (AS; IWM) Avro 683 Lancaster Mk X (AS; IWM) de Havilland DH 100 Vampire TII (BoB; IWM) Avro 698 Vulcan B2 (AS; IWM) Douglas Dakota C-47A (AAM; IWM) Avro Anson Mk 1 (AS; IWM) English Electric Canberra B2 (AS; IWM) Avro Canada CF-100 Mk 4B (AS; IWM) English Electric Lightning Mk I (AS; IWM) Avro Shackleton Mk 3 (EX; IWM) Fairchild A-10A Thunderbolt II ‘Warthog’ (AAM; USAF) Avro York C1 (AS; DAS) Fairchild Bolingbroke IVT (Bristol Blenheim) (A&S; Propshop BAC 167 Strikemaster Mk 80A (CiA; IWM) Ltd/ARC) BAC TSR-2 (AS; IWM) Fairey Firefly Mk I (FA; ARC) BAe Harrier GR3 (AS; IWM) Fairey Gannet ECM6 (AS4) (A&S; IWM) Beech D17S Staggerwing (FA; Patina Ltd/TFC) Fairey Swordfish Mk III (AS; IWM) Bell UH-1H (AAM; IWM) FMA IA-58A Pucará (Pucara) (CiA; IWM) Boeing B-17G Fortress (CiA; IWM) Focke Achgelis Fa-330 (A&S; IWM) Boeing B-17G Fortress Sally B (FA) (Ex; B-17 Preservation General Dynamics F-111E (AAM; USAF Museum) Ltd)* General Dynamics F-111F (cockpit capsule) (AAM; IWM) Boeing B-29A Superfortress (AAM; United States Navy) Gloster Javelin FAW9 (BoB; IWM) Boeing B-52D Stratofortress (AAM; IWM) Gloster Meteor F8 (BoB; IWM) BoeingStearman PT-17 Kaydet (AAM; IWM) Grumman F6F-5 Hellcat (FA; Patina Ltd/TFC) Branson/Lindstrand Balloon Capsule (Virgin Atlantic Flyer Grumman F8F-2P Bearcat (FA; Patina Ltd/TFC) -
THE BIRTH of the ATLANTIC AIRLINER Part Iva The
THE BIRTH OF THE ATLANTIC AIRLINER (1920-1940) by Rit Staalman Part IVa The Ultimate Propeller Airliner SUMMING UP: 1. Required for an Atlantic Airliner: Low Own Weight (airframe + engines), High Load Capacity, Low Drag. 2. Suitable building material: Dur-Aluminum (favourable weight/strength + durability); suitable construction method: Semi-monocoque, i.e. skin takes part of load. 3. Design:: make wings as small as possible = high wing loads (see earlier). 4. Small wings decrease weight, also lower drag. They require airplane to fly at high speed. (For the Atlantic this is good, because the plane often has to battle high head winds.) High air speed implies that good aerodynamic form is needed. It also implies that high power is needed, especially at take- off with full load. 5. Powerful,/light-weight engines become available in the 1930’s (see appendix). 6.The various flight regimes (take-off, climbing, cruising with different weights) require propellers with adjustable blade angles. These also appear on the market in the same period. So at the beginning of World War II all elements are available for the construction of practical Atlantic airliners. 1930: AMERICA GOES MONO AND METAL 1 1. Boeing Founded by millionaire William Edward Boeing (1881-1956) in 1916 in Seattle, the first aircraft produced by Boeing Aircraft Co.were two biplanes on floats. In 1929 Boeing became part of United Aircraft and Transport until 1934, when the U.S. government ruled that the combination of aircraft factories and airlines was against the anti-trust laws. Claire Egtvedt was chief engineer from the start. -
Aeronautics National Advisory for Committee
AERONAUTICS SEVENTEENTH ANNUAL REPORT OF THE NATIONALADVISORY COMMITTEE FOR AERONAUTICS 1931 INCLUDING TECHNICAL REPORTS ~OS. 365 to 400 lJNI.~ STATES GOVERNMENTPRIN~G OFFIOE WASHINGTON: 1S82 Forde bytheSuperintendentof Documents,Waehlugton.D.C.---------- . Pricewxl(-sw2kram) LETTER OF SUBMITTAL .— To the Congress of the United Stutes: In compliance with the provisions of the act of March 3, 1915, establishing the National Advieory Committee for Aeronautics, I submit herewith the seventeenth annual report of the committee for the fiscal year ended June 30, 1931. It is noted from the committee’s report that the progress in aerodynamic development has been gratifying and that with recent notable additions to equipment the committee now has excellent facilities for the conduct of fuH-scale research on airphmes, propellers, and seaphme floats and hulls. Attention is invited to Part TTof the report presenting a summary of progress in the technical development of aircraft. With the steady improvement in the performance of aircraft, the relative importance of aviation increases as an agency of transportation and of natiomd defense. I cmcur in the committee’s opinion that the continuous prosecution of scientific research will provide the best assurance of further progress in the develop- ment of aircraft for aUpurposes. HERBERTHOOVER. THE TVHITEHOUSE, December 11, 1931. 111 LETTER OF TRANSMITTAL NATIONALADVISORYCOMMITTEEFOEAEROIiAKiTICS, Ta~hin@on, D. C., Nocember 17, 1931. hf E. PRESIDENT: In comphnce with the provisions of the act of Congress approved March 3, 1915 (U. S. C., title 50, sec. 163), I have the honor to transmit herewith the Seventeenth Annual Report of the National Advisory Committee for Aeronautics for the ikal year ended June 30, 1931. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Connie Returns! Caribou Flight to Broome and Back
Connie Returns! After an absence of over five months that left some people wondering if she had been retired to make way for a Boeing 707, Connie made a spectacular return to her home at Illawarra Regional Airport on Saturday 26 August. Her return generated almost as much excitement as her original February 1996 arrival in Sydney from the USA! During her absence Connie was professionally repainted and we are extremely grateful to Douglas Aerospace of Wagga Wagga for what has been a huge contribution to the preservation of this icon of the airline industry. The new coat of paint has Connie looking almost like she had just rolled off the production line and corrects some details of the colour scheme to better represent the significance of this aircraft type to Australian aviation. The return flight from Wagga Wagga took less than fifty minutes. Perhaps the shiny new paint scheme contributed by reducing the aircraft’s drag! Caribou Flight to Broome and Back In July, our Douglas C-47B Dakota, VH-EAF, embarked on a ‘round Australia tour. Unfortunately, a mechanical issue over the Nullarbor necessitated a landing at Forrest, Western Australia, an isolated airstrip in a town with a population of only 18. A recovery mission for the Dakota was mounted with one of our de Havilland DHC-4 Caribous. Having dropped off spares and engineers to enable the Dakota’s engineering issues to be addressed; the Caribou continued the originally planned ‘round Australia tour. Unfortunately the Caribou also experienced mechanical issues and was forced to return to Broome, Western Australia. -
I Principles of Dynamics
Reg.No: SNS College of Technology, Coimbatore-35. (Autonomous) B.E/B.Tech- Internal Assessment -II Academic Year 2019-2020 (ODD) B Eighth Semester Aeronautical Engineering 16AEOE1 - Basic Aeronautical Engineering Time: 11/2 Hours Maximum Marks: 50 Answer All Questions PART - A (5x 1 = 5Marks) 1. In NACA Four digit airfoil the last two digits indicates a) Maximum camber b) Maximum thickness c) Maximum lift co-efficient d) Position of Maximum Camber 2. If Mach number = 1, then the flow is called a) Sonic b) Subsonic c) Transonic d) Supersonic 3. In a Monocoque structure, the load is resisted by a) Stringer b) Skin c) Longerons d) Cowling 4. Young’s Modulus of Aluminum a) 50 GPa b) 70 GPa c) 100 GPa d) 200 GPa 5. Which one of the following material has strength to weight ratio very high a) Aluminum b) Steel c) Magnesium d) Composite 6. Define Drag and their types. A force acting on aero plan, which is parallel to the direction of relative wind a opposite to thrust direction under level flight. TYPES: Profile Drag, Skin Friction Drag, Interference drag, Form Drag 7. Explain Symmetric and unsymmetrical airfoils. • Symmetric : Upper and lower surfaces are mirror image, A mean 1 camber line is coincident with chord line. A symmetric airfoil will also have a just camber of Zero. • Unsymmetrical: An asymmetric airfoil for which the mean camber line will be above the chord line. 8. Define camber in an airfoil. Camber line: curved line from the leading edge to the trailing edge, which is equivalent between the upper surface and the lower surfaces of the airfoil. -
Air-Britain (Trading) Ltd Unit 1A, Munday Works 58-66 Morley Road Tonbridge TN9 1RA +44 (0)1732 363815 [email protected]
SUMMER 2018 SALES DEPARTMENT Air-Britain (Trading) Ltd Unit 1A, Munday Works 58-66 Morley Road Tonbridge TN9 1RA www.air-britain.co.uk +44 (0)1732 363815 [email protected] NEW BOOKS PAGES 2 & 3 This booklist shows the latest books & CDs available from Air-Britain. Full details of additional Air-Britain books and more detailed descriptions are shown online AUSTER – the Company and the Aircraft Tom Wenham, Rod Simpson & Malcolm Fillmore NEW Auster Aircraft has a long and distinguished history, starting with its formation as British Taylorcraft in 1938 and end - ing with its absorption into Beagle Aircraft in 1960.The Auster was not, strictly, a new design since it had its origins in the American Taylorcraft two seater. However, World War II gave it a welcome momentum which led to more than 1,600 artillery spotter Austers being built for the British and other air forces. The Rearsby factory was at maximum production during the war - but, as with all other aircraft manufacturing plants, it found a sudden collapse in military orders when peace came. However, there were returning flyers keen to keep their skills alive and the Autocrat and its successors were successful, not only in the UK but also across the world. Using the same basic airframe, the Auster constantly changed its shape and the 180hp Husky of 1960 was a very different animal from the original 55hp Taylorcraft Model C. Austers were sold all over the world and were used for many tasks including crop spraying, aerial advertising and joyriding. The company also developed new models including the very successful AOP.9, and the less successful Agricola, Atlantic and Avis. -
Accesso Autonomo Ai Servizi Spaziali
Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag. -
Canada Aviation and Space Museum
CANADA AVIATION AND SPACE MUSEUM BOEING MODEL 720B PRATT & WHITNEY CANADA FLYING EXPERIMENTAL TEST BED REGISTRATION C-FETB Introduction The practical era of jet-age passenger transport aircraft officially dawned when the British de Havilland Company D.H.106 Comet made its premiere flight to great acclaim from the Hatfield, Hertfordshire aerodrome in England on 27 July 1949. Catering to British and mid to long-range routes to European, Middle Eastern and overseas destinations, the Comet series of airliners carried their passengers aloft in luxurious opulence for more than twenty years. Military and test derivatives followed suit and these continued flying for many decades, including two Comets for the Royal Canadian Air Force (RCAF). Just 14 days later, across the vast Atlantic Ocean, in the small town of Malton, Ontario, Canada, a new aviation company called Avro Canada successfully accomplished the same task with much less fanfare and accolades. Avro sent its small, medium-range, turbo-jet transport, called the C-102 Jetliner, aloft for its first flight, inaugurating the dreamed potential for such a unique travel experience for the public on the North American continent. United States Air Force personnel found the aircraft favourable when they tried it out on flights at Wright Field, Ohio in March 1951. However, this Canadian dream didn’t last for long. The modestly successful Comet-series didn’t shine as brightly as its popular name when a series of tragic, fatal accidents to production civil aircraft nearly snuffed out its very existence. Following design rectification’s, the Royal Air Force continued to employ Comets in versatile roles, such as modifying the design into the Nimrod. -
Apollo Space Suit
APOLLO SPACE S UIT 1962–1974 Frederica, Delaware A HISTORIC MECHANICAL ENGINEERING LANDMARK SEPTEMBER 20, 2013 DelMarVa Subsection Histor y of the Apollo Space Suit This model would be used on Apollo 7 through Apollo 14 including the first lunar mission of Neil Armstrong and Buzz International Latex Corporation (ILC) was founded in Aldrin on Apollo 11. Further design improvements were made to Dover, Delaware in 1937 by Abram Nathanial Spanel. Mr. Spanel improve mobility for astronauts on Apollo 15 through 17 who was an inventor who became proficient at dipping latex material needed to sit in the lunar rovers and perform more advanced to form bathing caps and other commercial products. He became mobility exercises on the lunar surface. This suit was known as famous for ladies apparel made under the brand name of Playtex the model A7LB. A slightly modified ILC Apollo suit would also go that today is known worldwide. Throughout WWII, Spanel drove on to support the Skylab program and finally the American-Soyuz the development and manufacture of military rubberized products Test Program (ASTP) which concluded in 1975. During the entire to help our troops. In 1947, Spanel used the small group known time the Apollo suit was produced, manufacturing was performed as the Metals Division to develop military products including at both the ILC plant on Pear Street in Dover, Delaware, as well as several popular pressure helmets for the U.S. Air Force. the ILC facility in Frederica, Delaware. In 1975, the Dover facility Based upon the success of the pressure helmets, the Metals was closed and all operations were moved to the Frederica plant. -
O N Viscous, Inviscid and Centrifugal Instability M
On viscous, inviscid and centrifugal instability mechanisms in compressible boundary layers, including non-linear vortex/wave interaction and the effects of large Mach number on transition. Submitted to the University of London as a thesis for the degree of Doctor of Philosophy. Nicholas Derick Blackaby, University College. March 1991. 1 ProQuest Number: 10609861 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609861 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 A b stract The stability and transition of a compressible boundary layer, on a flat or curved surface, is considered using rational asymptotic theories based on the large size of the Reynolds numbers of concern. The Mach number is also treated as a large parameter with regard to hypersonic flow. The resulting equations are simpler than, but consistent with, the full Navier Stokes equations, but numer ical computations are still required. This approach also has the advantage that particular possible mechanisms for instability and/or transition can be studied, in isolation or in combination, allowing understanding of the underlying physics responsible for the breakdown of a laminar boundary layer.