The Wing Is the Principal Structural Unit of the Airplane. It Has Several Functions Beyond That of Providing Lift. for a Wing To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
767, Awl, D622t001-9-01
767-200/300/300F/400ER AIRWORTHINESS LIMITATIONS 767-200/300/300F/400ER AIRWORTHINESS LIMITATIONS (AWLs) D622T001-9-01 JUNE 2019 This document has EAR data with an Export Control Classification Number (ECCN) of 9E991. Export of this technology is controlled under the United States Export Administration Regulations (EAR) (15 CFR 730-774). An export license may be required before it is used for development, production or use by foreign persons from specific countries. The controller of this data has the individual responsibility to abide by all export laws. Boeing claims copyright in each page of this document on to the extent that the page contains copyrightable subject matter. Boeing also claims copyright in this document as a compilation and/or collective work. This document includes proprietary information owned by the Boeing Company and/or one or more third parties. Treatment of the document and the information it contains is governed by contract with Boeing. For more information, contact the Boeing Company, P.O. Box 3707, Seattle WA 98124. Boeing, the Boeing signature, the Boeing symbol, 707, 717, 727, 737, 747, 757, 767, 777, 787, BBJ, DC-8, DC-9, DC-10, MD-10, MD-11, MD-80, MD-88, MD-90, and the red-white-blue Boeing livery are all trademarks owned by The Boeing Company; no trademark license is granted in connection with this document unless provided in writing by Boeing. COMPILED AND PUBLISHED BY: MAINTENANCE PROGRAMS ENGINEERING BOEING COMMERCIAL AIRPLANE GROUP SEATTLE, WASHINGTON D622T001-9-01 JUN 2019 BOEING PROPRIETARY - Copyright -
Mcdonnell Douglas (Boeing) MD-83
Right MLG failure on landing, Douglas (Boeing) MD-83, EC-FXI Micro-summary: The right main landing gear of this Douglas (Boeing) MD-83 failed immediately on landing. Event Date: 2001-05-10 at 1232 UTC Investigative Body: Aircraft Accident Investigation Board (AAIB), United Kingdom Investigative Body's Web Site: http://www.aaib.dft.gov/uk/ Note: Reprinted by kind permission of the AAIB. Cautions: 1. Accident reports can be and sometimes are revised. Be sure to consult the investigative agency for the latest version before basing anything significant on content (e.g., thesis, research, etc). 2. Readers are advised that each report is a glimpse of events at specific points in time. While broad themes permeate the causal events leading up to crashes, and we can learn from those, the specific regulatory and technological environments can and do change. Your company's flight operations manual is the final authority as to the safe operation of your aircraft! 3. Reports may or may not represent reality. Many many non-scientific factors go into an investigation, including the magnitude of the event, the experience of the investigator, the political climate, relationship with the regulatory authority, technological and recovery capabilities, etc. It is recommended that the reader review all reports analytically. Even a "bad" report can be a very useful launching point for learning. 4. Contact us before reproducing or redistributing a report from this anthology. Individual countries have very differing views on copyright! We can advise you on the steps to follow. Aircraft Accident Reports on DVD, Copyright © 2006 by Flight Simulation Systems, LLC All rights reserved. -
Unit-1 Notes Faculty Name
SCHOOL OF AERONAUTICS (NEEMRANA) UNIT-1 NOTES FACULTY NAME: D.SUKUMAR CLASS: B.Tech AERONAUTICAL SUBJECT CODE: 7AN6.3 SEMESTER: VII SUBJECT NAME: MAINTENANCE OF AIRFRAME AND SYSTEMS DESIGN AIRFRAME CONSTRUCTION: Various types of structures in airframe construction, tubular, braced monocoque, semimoncoque, etc. longerons, stringers, formers, bulkhead, spars and ribs, honeycomb construction. Introduction: An aircraft is a device that is used for, or is intended to be used for, flight in the air. Major categories of aircraft are airplane, rotorcraft, glider, and lighter-than-air vehicles. Each of these may be divided further by major distinguishing features of the aircraft, such as airships and balloons. Both are lighter-than-air aircraft but have differentiating features and are operated differently. The concentration of this handbook is on the airframe of aircraft; specifically, the fuselage, booms, nacelles, cowlings, fairings, airfoil surfaces, and landing gear. Also included are the various accessories and controls that accompany these structures. Note that the rotors of a helicopter are considered part of the airframe since they are actually rotating wings. By contrast, propellers and rotating airfoils of an engine on an airplane are not considered part of the airframe. The most common aircraft is the fixed-wing aircraft. As the name implies, the wings on this type of flying machine are attached to the fuselage and are not intended to move independently in a fashion that results in the creation of lift. One, two, or three sets of wings have all been successfully utilized. Rotary-wing aircraft such as helicopters are also widespread. This handbook discusses features and maintenance aspects common to both fixed wing and rotary-wing categories of aircraft. -
THE BIRTH of the ATLANTIC AIRLINER Part Iva The
THE BIRTH OF THE ATLANTIC AIRLINER (1920-1940) by Rit Staalman Part IVa The Ultimate Propeller Airliner SUMMING UP: 1. Required for an Atlantic Airliner: Low Own Weight (airframe + engines), High Load Capacity, Low Drag. 2. Suitable building material: Dur-Aluminum (favourable weight/strength + durability); suitable construction method: Semi-monocoque, i.e. skin takes part of load. 3. Design:: make wings as small as possible = high wing loads (see earlier). 4. Small wings decrease weight, also lower drag. They require airplane to fly at high speed. (For the Atlantic this is good, because the plane often has to battle high head winds.) High air speed implies that good aerodynamic form is needed. It also implies that high power is needed, especially at take- off with full load. 5. Powerful,/light-weight engines become available in the 1930’s (see appendix). 6.The various flight regimes (take-off, climbing, cruising with different weights) require propellers with adjustable blade angles. These also appear on the market in the same period. So at the beginning of World War II all elements are available for the construction of practical Atlantic airliners. 1930: AMERICA GOES MONO AND METAL 1 1. Boeing Founded by millionaire William Edward Boeing (1881-1956) in 1916 in Seattle, the first aircraft produced by Boeing Aircraft Co.were two biplanes on floats. In 1929 Boeing became part of United Aircraft and Transport until 1934, when the U.S. government ruled that the combination of aircraft factories and airlines was against the anti-trust laws. Claire Egtvedt was chief engineer from the start. -
Aeronautics National Advisory for Committee
AERONAUTICS SEVENTEENTH ANNUAL REPORT OF THE NATIONALADVISORY COMMITTEE FOR AERONAUTICS 1931 INCLUDING TECHNICAL REPORTS ~OS. 365 to 400 lJNI.~ STATES GOVERNMENTPRIN~G OFFIOE WASHINGTON: 1S82 Forde bytheSuperintendentof Documents,Waehlugton.D.C.---------- . Pricewxl(-sw2kram) LETTER OF SUBMITTAL .— To the Congress of the United Stutes: In compliance with the provisions of the act of March 3, 1915, establishing the National Advieory Committee for Aeronautics, I submit herewith the seventeenth annual report of the committee for the fiscal year ended June 30, 1931. It is noted from the committee’s report that the progress in aerodynamic development has been gratifying and that with recent notable additions to equipment the committee now has excellent facilities for the conduct of fuH-scale research on airphmes, propellers, and seaphme floats and hulls. Attention is invited to Part TTof the report presenting a summary of progress in the technical development of aircraft. With the steady improvement in the performance of aircraft, the relative importance of aviation increases as an agency of transportation and of natiomd defense. I cmcur in the committee’s opinion that the continuous prosecution of scientific research will provide the best assurance of further progress in the develop- ment of aircraft for aUpurposes. HERBERTHOOVER. THE TVHITEHOUSE, December 11, 1931. 111 LETTER OF TRANSMITTAL NATIONALADVISORYCOMMITTEEFOEAEROIiAKiTICS, Ta~hin@on, D. C., Nocember 17, 1931. hf E. PRESIDENT: In comphnce with the provisions of the act of Congress approved March 3, 1915 (U. S. C., title 50, sec. 163), I have the honor to transmit herewith the Seventeenth Annual Report of the National Advisory Committee for Aeronautics for the ikal year ended June 30, 1931. -
Tilt Rotor Research Aircraft Familiarization Document
'. NASA TECHNICAL NASA TMX-62.407 MEMORANDUM -PTING Y. a c NASA/ARMY TILT ROTOR RESEARCH AIRCRAFT FAMILIARIZATION DOCUMENT Prepared by .Tilt Rotor Project Office .. .. -\ Coordinated by Martin Maid .. Ames Research Center ._ I rJ - ,.. -1 and , 1-1 c. U.S. Amy Air Mobility R&D Laboratory %\\-'?. \ Moffett Field, Calif. 94035 .-, 7 / --_ ---*_ c-, : January 1975 NASMARMY XV-15 TILT ROTOR RESEARCH AIRCRAFT FAMl LIARIZATION DOCUMENT Prepared by: Tilt Rotor Research Aircraft Project Office Staff Coordinated by: Martin D. Maisel Tilt Rotor Research Aircraft Project Office Approved by : - Dean C. Borgman Deputy Manager, Technical Tilt Rotor Research Aircraft Project Office David D. Few Manager Tilt Rotor Research Aircraft Project Office 1. Report No. 2. Ganmnmt hionNo. 3. Recipient's Catalog No. TM X-62,407 4. Titlr md Subtitlo 5. Rqwn D~te NASA/ARMY XV-15 TILT ROTOR RESEARCH AIRCRAFT FAMILIARIZATION DOCUMENT 7. Author(s) 8. PerformingOrgnizrtion Report No. Prepared by Tilt Rotor Project Office Staff, A-5870 coordinated by Martin Maisel 10. Work Unit No. 9. paforming ororriatia, "and MdNI 744-01-01 NASA Ames Research Center and 11. Canmct or Grant No. U.S. Army Air Mobility R&D Laboratory Moffett Field, Calif. 94035 13. Typ of RIpon and hid &ard 12. -nuring N.m md Addnr Technical Memorandum National Aeronautics and Space Administration 1;. Sponsoring Agmcy Code Washington, D.C. 20546 16. Abmrcr , The design features and general characteristics of the NASA/Army XV-15 Tilt Rotor Research Aircraft are described. This aircraft was conceived as a proof-of-concept vehicle and a V/STOL research tool for integrated wind tunnel, flight-simulation, and flight-test investigations. -
Issue No. 4, Oct-Dec
Focal Product Support: Commitment, Cooperation, Communication A SERVICE PUBLICATION OF The Lockheed Aeronautical Systems Company LOCKHEED AERONAUTICAL Product Support organization is determined to provide SYSTEMS COMPANY the highest level of service to each of our customers and every one of our airplanes. This level of support Editor is focused toward our personal commitment to our Charles I. Gale customers, quick and open lines of communication to provide information and receive feedback from our Art Director customers, and full cooperation with our customers Cathy E. Howard to develop a team approach to support. Vol. 20, No. 4, October-December 1993 The support arena has undergone vast change in John Gaffney recent years and LASC Product Support has had to CONTENTS evolve to keep pace and meet our customers’ needs. This evolution has resulted in the customer becoming 2 Focal Point more and more prominent in the market place, competition intensifying, and change John L. Gaffney, Director itself becoming constant. LASC Product Support Product Support has made changes and continues to make changes to respond 3 Ramp Hook Retainer to market conditions. Our customers indicated they wanted: Mislocation Playing mix and match with the A “one-stop shop” for all support services. We have become that “one- hook retainers makes cargo ramp stop shop.” Any element of support needed by a customer can be rigging an exercise in frustration. obtained from a single source within LASC Product Support. 10 Making a Ramp Hook Retainer Competitive prices. We are finalizing teaming arrangements which will Identification Tool allow us to offer customers a full spectrum of parts-new, used, and This locally manufactured shop aid overhauled-at competitive prices, all under the auspices of the original can correctly identify the retainers equipment manufacturer. -
I Principles of Dynamics
Reg.No: SNS College of Technology, Coimbatore-35. (Autonomous) B.E/B.Tech- Internal Assessment -II Academic Year 2019-2020 (ODD) B Eighth Semester Aeronautical Engineering 16AEOE1 - Basic Aeronautical Engineering Time: 11/2 Hours Maximum Marks: 50 Answer All Questions PART - A (5x 1 = 5Marks) 1. In NACA Four digit airfoil the last two digits indicates a) Maximum camber b) Maximum thickness c) Maximum lift co-efficient d) Position of Maximum Camber 2. If Mach number = 1, then the flow is called a) Sonic b) Subsonic c) Transonic d) Supersonic 3. In a Monocoque structure, the load is resisted by a) Stringer b) Skin c) Longerons d) Cowling 4. Young’s Modulus of Aluminum a) 50 GPa b) 70 GPa c) 100 GPa d) 200 GPa 5. Which one of the following material has strength to weight ratio very high a) Aluminum b) Steel c) Magnesium d) Composite 6. Define Drag and their types. A force acting on aero plan, which is parallel to the direction of relative wind a opposite to thrust direction under level flight. TYPES: Profile Drag, Skin Friction Drag, Interference drag, Form Drag 7. Explain Symmetric and unsymmetrical airfoils. • Symmetric : Upper and lower surfaces are mirror image, A mean 1 camber line is coincident with chord line. A symmetric airfoil will also have a just camber of Zero. • Unsymmetrical: An asymmetric airfoil for which the mean camber line will be above the chord line. 8. Define camber in an airfoil. Camber line: curved line from the leading edge to the trailing edge, which is equivalent between the upper surface and the lower surfaces of the airfoil. -
Large Capacity Oblique All-Wing Transport Aircraft
f Large Capacity Oblique All-Wing Transport Aircraft Thomas L. Galloway James A. Phillips Robert A. Kennelly, Jr. NASA Ames Research Center Moffett Field, CA Mr. Mark H. Waters Thermosciences Institute, ELORET Corp. Palo Alto, CA Transportation Beyond 2000: Engineering Design for the Future September 26-28, 1995 461 INTRODUCTION Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450 - 800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carded within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing transport (OAW). Initial studies of the OAW were conducted by Van der Velden first at U.C. Berkeley(l) in 1989 and then at Stanford in collaboration with Kroo(2) in 1990. A final document summarizing this work is given in the thesis by Van der Velden(3). Many issues regarding the design were identified in these studies, among them the need for the OAW to be an unstable aircraft. -
ATINER's Conference Paper Series IND2013-0819
ATINER CONFERENCE PAPER SERIES No: IND2013-0819 Athens Institute for Education and Research ATINER ATINER's Conference Paper Series IND2013-0819 Optimally Adaptive Oleo Strut Damping for Aircraft and UAV Using MR Fluid Ajinkya A. Gharapurkar Graduate Research Assistant Dept. of Mechanical and Industrial Engineering, Concordia University Canada Chandra B. Asthana Affiliate Associate Professor Dept. of Mechanical and Industrial Engineering, Concordia University Canada Rama B. Bhat Professor Dept. of Mechanical and Industrial Engineering, Concordia University, Canada 1 ATINER CONFERENCE PAPER SERIES No: IND2013-0819 Athens Institute for Education and Research 8 Valaoritou Street, Kolonaki, 10671 Athens, Greece Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: [email protected] URL: www.atiner.gr URL Conference Papers Series: www.atiner.gr/papers.htm Printed in Athens, Greece by the Athens Institute for Education and Research. All rights reserved. Reproduction is allowed for non-commercial purposes if the source is fully acknowledged. ISSN 2241-2891 23/1/2014 2 ATINER CONFERENCE PAPER SERIES No: IND2013-0819 An Introduction to ATINER's Conference Paper Series ATINER started to publish this conference papers series in 2012. It includes only the papers submitted for publication after they were presented at one of the conferences organized by our Institute every year. The papers published in the series have not been refereed and are published as they were submitted by the author. The series serves two purposes. First, we want to disseminate the information as fast as possible. Second, by doing so, the authors can receive comments useful to revise their papers before they are considered for publication in one of ATINER's books, following our standard procedures of a blind review. -
Top Flite Models Inc
Product Support (Do Not Remove From Department) INTRODUCTION TOP FLITE MODELS, INC. is proud to introduce the new Elder 40. This design is a direct result of popular demand after the great little Elder 20 was introduc- ed. Modelers loved the design, still do, but wanted something "larger" and "while you're at it, give it ailerons." So, here it is and does it ever fly nice'. The Elder 40 was designed and sized expressly for .40 engines and this includes the popular .40- .45 and .49 engines. The design turns in great performance with the four-stroke power plants and there is plenty of power margin left over for the aerobatic- minded pilot. However, the real "kick" of this design, like its smaller brother, is the the design with 4-cycle engines is an absolute delight. realistic, slow-speed flights that allow you to actually Give it a try in your Elder 40. Note that the motor mount see the airplane instead of just a blur. we have provided in the kit may not fit some 4-cycle The design lends itself to all kinds of detailing, if you're engines and it may be necessary to visit your local retail so inclined. For the beginner, nothing fancy is needed; hobby shop to get the right one for your engine. go out and fly it. The Elder 40 makes a remarkably good training aircraft with gentle and totally honest flying IMPORTANT NOTE: characteristics. A big bonus here is that your trainer is TOP FLITE MODELS, INC. would certainly recommend just not going to look like everyone else's high-wing, the Elder 40 as a first R/C powered aircraft. -
T-45C Aircraft
VIRTUAL NATOPS FLIGHT MANUAL NAVY MODEL T-45C AIRCRAFT for Microsoft Flight Simulator by IndiaFoxtEcho Visual Simulations Version 1.00 – March 2021 NOTICE – Although this manual and the simulated aircraft closerly resemble their real-world counterparts in many aspects, neither should be used as source of real-world information about the aircraft. This package is not endorsed or supported by The Boeing Company or by the United States Navy. CHANGE LOG VERSION 1.10 22-Mar-2021 - Redone external engine sounds - Replaced internal engine sound main loop sample - Fixed bug preventing setting the CRS on TACAN (Nav2) - Created "Lite" versions of all aircrafts, with simplified XML code and geometry - Implemented VR mouse collision model - Fixed environmental occlusion geometry - Fixed missing details in rear cockpit harnessing - Fixed bug causing cockpit sounds from other T-45 to play in multiplayer - Fixed formation light switch INOP - Fixed bug causing the HUD throttle indicator not to work - Fixed external lights not working after Sim Update 3 - Changed animation of retractable footstep so that automatically retracts when the canopy closes - Changed HUD ILS logic so that ILS steering bar will only show if ILS is selected on the HSI-MFD - Added TAWS Below Glideslope warning - Added TAWS Check Gear warning - Added TAWS Power Power warning INITIAL RELEASE 8-Mar-2021 WELCOME The T-45 Goshawk is a fully carrier-capable version of the British Aerospace Hawk Mk.60. It was developed as a jet flight trainer for the United States Navy and United States Marine Corps. The Hawk had not originally been designed to perform carrier operations; numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.