Recovery Strategy for Gravel Chub (Erimystax X-Punctatus) in Canada

Total Page:16

File Type:pdf, Size:1020Kb

Recovery Strategy for Gravel Chub (Erimystax X-Punctatus) in Canada Species at Risk Act Recovery Strategy Series Recovery Strategy for Gravel Chub (Erimystax x-punctatus) in Canada Gravel Chub February 2008 1 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003 and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets goals and objectives and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. Sections 37–46 of SARA (http://www.sararegistry.gc.ca/the_act/default_e.cfm) spell out both the required content and the process for developing recovery strategies published in this series. Depending on the status of the species and when it was assessed, a recovery strategy has to be developed within one to two years after the species is added to the List of Wildlife Species at Risk. Three to four years is allowed for those species that were automatically listed when SARA came into force. What’s next? In most cases, one or more action plans will be developed to define and guide implementation of the recovery strategy. Nevertheless, directions set in the recovery strategy are sufficient to begin involving communities, land users, and conservationists in recovery implementation. Cost-effective measures to prevent the reduction or loss of the species should not be postponed for lack of full scientific certainty. The series This series presents the recovery strategies prepared or adopted by the federal government under SARA. New documents will be added regularly as species get listed and as strategies are updated. To learn more To learn more about the Species at Risk Act and recovery initiatives, please consult the SARA Public Registry (http://www.sararegistry.gc.ca/) and the web site of the Recovery Secretariat (http://www.speciesatrisk.gc.ca/recovery/default_e.cfm). Recovery Strategy for Gravel Chub (Erimystax x-punctatus) in Canada February 2008 Recommended citation: Edwards, A.L., S.M. Reid and B. Cudmore. 2007. Recovery strategy for gravel chub (Erimystax x-punctatus) in Canada . Species at Risk Act Recovery Strategy Series, Fisheries and Oceans Canada, Ottawa. viii +19 pp. Additional copies: You can download additional copies from the SARA Public Registry (http://www.sararegistry.gc.ca/) Cover illustration: ©Joe Tomelleri Également disponible en français sous le titre « Programme de rétablissement du gravelier (Erimystax x-punctatus) au Canada» © Her Majesty the Queen in Right of Canada, represented by the Minister of Fisheries and Oceans, 2008. All rights reserved. ISBN 978-0-662-47241-4 Cat. no. En3-4/45-2007E-PDF Content (excluding the cover illustration) may be used without permission, with appropriate credit to the source. Recovery Strategy for the Gravel Chub February 2008 DECLARATION This recovery strategy for gravel chub has been prepared in cooperation with the jurisdictions described in the Preface. Fisheries and Oceans Canada has reviewed and accepts this document as its gravel chub recovery strategy as required by the Species at Risk Act. This recovery strategy also constitutes advice to other jurisdictions and organizations on the recovery goals, approaches and objectives that are recommended to protect and recover the species. Success in the recovery of this species depends on the commitment and cooperation of many different constituencies that will be involved in implementing the directions set out in this strategy and will not be achieved by Fisheries and Oceans Canada or any other jurisdiction alone. In the spirit of the National Accord for the Protection of Species at Risk, the Minister of Fisheries and Oceans invites all Canadians to join Fisheries and Oceans Canada in supporting and implementing this strategy for the benefit of the gravel chub and Canadian society as a whole. Fisheries and Oceans Canada will support implementation of this strategy to the extent possible, given available resources and its overall responsibility for species at risk conservation. Implementation of the strategy by other participating jurisdictions and organizations is subject to their respective policies, appropriations, priorities, and budgetary constraints. The goals, objectives and recovery approaches identified in the strategy are based on the best existing knowledge and are subject to modifications resulting from new findings and revised objectives. The Minister of Fisheries and Oceans will report on progress within five years. This strategy will be complemented by one or more action plans that will provide details on specific recovery measures to be taken to support conservation of these species. The Minister will take steps to ensure that, to the extent possible Canadians interested in, or affected, by these measures will be consulted. RESPONSIBLE JURISDICTIONS Under the Species at Risk Act, the responsible jurisdiction for gravel chub is Fisheries and Oceans Canada. Gravel chub used to occur in Ontario, and the government of Ontario cooperated in the production of this recovery strategy. AUTHORS This document was prepared by Amy Edwards, Scott Reid and Becky Cudmore. Gravel Chub Recovery Team: Becky Cudmore (Chair) – Fisheries and Oceans Canada (DFO) Science, Burlington ON Amy Edwards (Coordinator) – DFO Contractor, Dundas ON Scott Reid – Trent University (formerly Ontario Ministry of Natural Resources) i Recovery Strategy for the Gravel Chub February 2008 Joe Delaronde – DFO, Fish Habitat Management, London ON Erling Holm – Royal Ontario Museum, Toronto ON John Lyons – Wisconsin Department of Natural Resources, Madison WI John Schwindt – Upper Thames River Conservation Authority, London ON Jerry Smith – University of Michigan, Museum of Zoology, Ann Arbor MI Val Towsley – Lower Thames Valley Conservation Authority, Chatham ON STRATEGIC ENVIRONMENTAL ASSESSMENT STATEMENT A strategic environmental assessment (SEA) is conducted on all SARA recovery planning documents, in accordance with the Cabinet Directive on the Environmental Assessment of Policy, Plan and Program Proposals. The purpose of a SEA is to incorporate environmental considerations into the development of public policies, plans, and program proposals to support environmentally-sound decision making. Recovery planning is intended to benefit species at risk and biodiversity in general. However, it is recognized that strategies may also inadvertently lead to environmental effects beyond the intended benefits. The recovery planning process based on national guidelines directly incorporates consideration of all environmental effects, with a particular focus on possible impacts on non-target species or habitats. The results of the SEA are incorporated directly in the strategy itself, but are also summarized below. This recovery strategy will clearly benefit the environment by promoting the recovery of gravel chub. The potential for the strategy to inadvertently lead to adverse effects on other species was considered. The SEA concluded that this strategy will clearly benefit the environment and will not entail any significant adverse effects. RESIDENCE SARA defines residence as: “a dwelling-place, such as a den, nest or other similar area or place, that is occupied or habitually occupied by one or more individuals during all or part of their life cycles, including breeding, rearing, staging, wintering, feeding or hibernating” [SARA S2(1)]. Residence descriptions, or the rationale for why the residence concept does not apply to a given species, are posted on the SARA public registry: http://www.sararegistry.gc.ca/plans/residence_e.cfm PREFACE The gravel chub is a freshwater fish and was listed as Extirpated under SARA when the Act came into force in June 2003. The Species at Risk Act (SARA, Section 37) requires the competent minister to prepare recovery strategies for listed Extirpated, Endangered or ii Recovery Strategy for the Gravel Chub February 2008 Threatened species. Fisheries and Oceans Canada – Central and Arctic Region, led the development of this recovery strategy. The proposed strategy meets SARA requirements in terms of content and process (Sections 39-41). It was developed in cooperation or consultation with: o Ontario Ministry of Natural Resources o New York Department of Environmental Conservation iii Recovery Strategy for the Gravel Chub February 2008 EXECUTIVE SUMMARY The gravel chub (Erimystax x-punctatus) was last found in Canada in the Thames River drainage, Ontario, in 1958. The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) designated this species as Endangered in 1985, and re-assessed it as Extirpated in 1987. This status was re-examined based on an existing status report and confirmed in 2000. The recovery of the gravel chub has been determined to be technically and biologically feasible. The gravel chub is a slender, round-bodied minnow with an average length of 76 mm TL and a maximum length of approximately 100 mm TL. It is olive-green dorsally with silvery sides and a white belly. The scale margins on the back and sides of the gravel chub are randomly outlined in black resulting in distinct X-, Y- or W-shaped patterns. A small black spot is usually predominant on the base of the caudal fin.
Recommended publications
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax Harryi) Version 1.2
    Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax harryi) Version 1.2 Ozark chub (Photo credit: Dustin Lynch, Arkansas Natural Heritage Commission) August 2019 U.S. Fish and Wildlife Service - Arkansas Ecological Services Field Office This document was prepared by Alyssa Bangs (U. S. Fish and Wildlife Service (USFWS) – Arkansas Ecological Services Field Office), Bryan Simmons (USFWS—Missouri Ecological Services Field Office), and Brian Evans (USFWS –Southeast Regional Office). We greatly appreciate the assistance of Jeff Quinn (Arkansas Game and Fish Commission), Brian Wagner (Arkansas Game and Fish Commission), and Jacob Westhoff (Missouri Department of Conservation) who provided helpful information and review of the draft document. We also thank the peer reviewers, who provided helpful comments. Suggested reference: U.S. Fish and Wildlife Service. 2019. Species status assessment report for the Ozark chub (Erimystax harryi). Version 1.2. August 2019. Atlanta, GA. CONTENTS Chapter 1: Executive Summary 1 1.1 Background 1 1.2 Analytical Framework 1 CHAPTER 2 – Species Information 4 2.1 Taxonomy and Genetics 4 2.2 Species Description 5 2.3 Range 6 Historical Range and Distribution 6 Current Range and Distribution 8 2.4 Life History Habitat 9 Growth and Longevity 9 Reproduction 9 Feeding 10 CHAPTER 3 –Factors Influencing Viability and Current Condition Analysis 12 3.1 Factors Influencing Viability 12 Sedimentation 12 Water Temperature and Flow 14 Impoundments 15 Water Chemistry 16 Habitat Fragmentation 17 3.2 Model 17 Analytical
    [Show full text]
  • Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa
    Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa By Jun Cheng A thesis submitted in conformity with the requirements for the degree of Masters of Science Ecology and Evolutionary Biology University of Toronto © Copyright Jun Cheng 2013 Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa Jun Cheng Masters of Science Ecology and Evolutionary Biology University of Toronto 2013 Abstract Area of Occupancy (AO) is a frequently used indicator to assess and inform designation of conservation status to wildlife species by the International Union for Conservation of Nature (IUCN). The applicability of the current grid-based AO measurement on freshwater organisms has been questioned due to the restricted dimensionality of freshwater habitats. I investigated the extent to which AO influenced conservation status for freshwater taxa at a national level in Canada. I then used distribution data of 20 imperiled freshwater fish species of southwestern Ontario to (1) demonstrate biases produced by grid-based AO and (2) develop a biologically relevant AO index. My results showed grid-based AOs were sensitive to spatial scale, grid cell positioning, and number of records, and were subject to inconsistent decision making. Use of the biologically relevant AO changed conservation status for four freshwater fish species and may have important implications on the subsequent conservation practices. ii Acknowledgments I would like to thank many people who have supported and helped me with the production of this Master’s thesis. First is to my supervisor, Dr. Donald Jackson, who was the person that inspired me to study aquatic ecology and conservation biology in the first place, despite my background in environmental toxicology.
    [Show full text]
  • Kansas Stream Fishes
    A POCKET GUIDE TO Kansas Stream Fishes ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ By Jessica Mounts Illustrations © Joseph Tomelleri Sponsored by Chickadee Checkoff, Westar Energy Green Team, Kansas Department of Wildlife, Parks and Tourism, Kansas Alliance for Wetlands & Streams, and Kansas Chapter of the American Fisheries Society Published by the Friends of the Great Plains Nature Center Table of Contents • Introduction • 2 • Fish Anatomy • 3 • Species Accounts: Sturgeons (Family Acipenseridae) • 4 ■ Shovelnose Sturgeon • 5 ■ Pallid Sturgeon • 6 Minnows (Family Cyprinidae) • 7 ■ Southern Redbelly Dace • 8 ■ Western Blacknose Dace • 9 ©Ryan Waters ■ Bluntface Shiner • 10 ■ Red Shiner • 10 ■ Spotfin Shiner • 11 ■ Central Stoneroller • 12 ■ Creek Chub • 12 ■ Peppered Chub / Shoal Chub • 13 Plains Minnow ■ Silver Chub • 14 ■ Hornyhead Chub / Redspot Chub • 15 ■ Gravel Chub • 16 ■ Brassy Minnow • 17 ■ Plains Minnow / Western Silvery Minnow • 18 ■ Cardinal Shiner • 19 ■ Common Shiner • 20 ■ Bigmouth Shiner • 21 ■ • 21 Redfin Shiner Cover Photo: Photo by Ryan ■ Carmine Shiner • 22 Waters. KDWPT Stream ■ Golden Shiner • 22 Survey and Assessment ■ Program collected these Topeka Shiner • 23 male Orangespotted Sunfish ■ Bluntnose Minnow • 24 from Buckner Creek in Hodgeman County, Kansas. ■ Bigeye Shiner • 25 The fish were catalogued ■ Emerald Shiner • 26 and returned to the stream ■ Sand Shiner • 26 after the photograph. ■ Bullhead Minnow • 27 ■ Fathead Minnow • 27 ■ Slim Minnow • 28 ■ Suckermouth Minnow • 28 Suckers (Family Catostomidae) • 29 ■ River Carpsucker •
    [Show full text]
  • COPEIA February 1
    2000, No. 1COPEIA February 1 Copeia, 2000(1), pp. 1±10 Phylogenetic Relationships in the North American Cyprinid Genus Cyprinella (Actinopterygii: Cyprinidae) Based on Sequences of the Mitochondrial ND2 and ND4L Genes RICHARD E. BROUGHTON AND JOHN R. GOLD Shiners of the cyprinid genus Cyprinella are abundant and broadly distributed in eastern and central North America. Thirty species are currently placed in the genus: these include six species restricted to Mexico and three barbeled forms formerly placed in different cyprinid genera (primarily Hybopsis). We conducted a molecular phylogenetic analysis of all species of Cyprinella found in the United States, using complete nucleotide sequences of the mitochondrial, protein-coding genes ND2 and ND4L. Maximum-parsimony analysis recovered a single most-parsimonious tree for Cyprinella. Among historically recognized, nonbarbeled Cyprinella, the mitochondrial (mt) DNA tree indicated that basal lineages in Cyprinella are comprised largely of species with linear breeding tubercles and that are endemic to Atlantic and/or Gulf slope drainages, whereas derived lineages are comprised of species broadly distrib- uted in the Mississippi basin and the American Southwest. The Alabama Shiner, C. callistia, was basal in the mtDNA tree, although a monophyletic Cyprinella that in- cluded C. callistia was not supported in more than 50% of bootstrap replicates. There was strong bootstrap support (89%) for a clade that included all species of nonbarbeled Cyprinella (except C. callistia) and two barbeled species, C. labrosa and C. zanema. The third barbeled species, C. monacha, fell outside of Cyprinella sister to a species of Hybopsis. Within Cyprinella were a series of well-supported species groups, although in some cases bootstrap support for relationships among groups was below 50%.
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan Annarbor, Michigan
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANNARBOR, MICHIGAN PRELIMINARY ANALYSIS OF THE AMERICAN CYPRINID FISHES, SEVEN NEW, REFERRED TO THE GENUS HYBOPSIS, SUBGENUS ERIlWYSTAX* BY CARLL. HUBBSAND WALTERR. CROWE FORmany years we have studied the eastern North American cyprinid fishes that were recently referred to the genus Erimystax Jordan. Earlier, this assortment of species had been included in the genus Hybopsis. In the present swing of the pendulum these species are again placed in Hybopsis, though they may be retained in Erimystax as a subgenus. For several reasons the re-expanded genus Hybopsis rests on an un- steady basis, but it is not our purpose to attempt a generic evaluation. The differential diagnoses to follow are presented in analytical form. The rubrics in the key that pertain to each form may be visualized in the outline of classification that heads the analysis. Thus, for Hybopsis insignis eristigma it will be at once apparent that the diagnosis com- prises items Ib, 3b, 4b, 5b, 7b, and 9b. In addition, the diagnosis of each form may be taken to include the following features of Erimystax, common to all: A single small barbel is developed in the ternlinal or nearly terminal position (over or behind the end of the gape). The scales lack basal radii. The hooked pharyngeal teeth are uniserial, and number four on each side. The nuptial tubercles are minute or even obsolete on the top of the head (never enlarged as in Nocomis). The species are all small (none longer than 100 mm. to caudal) and delicate.
    [Show full text]
  • Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86
    2009. Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86 THE "LOST" JORDAN AND HAY FISH COLLECTION AT BUTLER UNIVERSITY Carter R. Gilbert: Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA ABSTRACT. A large fish collection, preserved in ethanol and assembled by Drs. David S. Jordan and Oliver P. Hay between 1875 and 1892, had been stored for over a century in the biology building at Butler University. The collection was of historical importance since it contained some of the earliest fish material ever recorded from the states of South Carolina, Georgia, Mississippi and Kansas, and also included types of many new species collected during the course of this work. In addition to material collected by Jordan and Hay, the collection also included specimens received by Butler University during the early 1880s from the Smithsonian Institution, in exchange for material (including many types) sent to that institution. Many ichthyologists had assumed that Jordan, upon his departure from Butler in 1879. had taken the collection. essentially intact, to Indiana University, where soon thereafter (in July 1883) it was destroyed by fire. The present study confirms that most of the collection was probably transferred to Indiana, but that significant parts of it remained at Butler. The most important results of this study are: a) analysis of the size and content of the existing Butler fish collection; b) discovery of four specimens of Micropterus coosae in the Saluda River collection, since the species had long been thought to have been introduced into that river; and c) the conclusion that none of Jordan's 1878 southeastern collections apparently remain and were probably taken intact to Indiana University, where they were lost in the 1883 fire.
    [Show full text]
  • Threatened and Endangered Species List
    Effective April 15, 2009 - List is subject to revision For a complete list of Tennessee's Rare and Endangered Species, visit the Natural Areas website at http://tennessee.gov/environment/na/ Aquatic and Semi-aquatic Plants and Aquatic Animals with Protected Status State Federal Type Class Order Scientific Name Common Name Status Status Habit Amphibian Amphibia Anura Gyrinophilus gulolineatus Berry Cave Salamander T Amphibian Amphibia Anura Gyrinophilus palleucus Tennessee Cave Salamander T Crustacean Malacostraca Decapoda Cambarus bouchardi Big South Fork Crayfish E Crustacean Malacostraca Decapoda Cambarus cymatilis A Crayfish E Crustacean Malacostraca Decapoda Cambarus deweesae Valley Flame Crayfish E Crustacean Malacostraca Decapoda Cambarus extraneus Chickamauga Crayfish T Crustacean Malacostraca Decapoda Cambarus obeyensis Obey Crayfish T Crustacean Malacostraca Decapoda Cambarus pristinus A Crayfish E Crustacean Malacostraca Decapoda Cambarus williami "Brawley's Fork Crayfish" E Crustacean Malacostraca Decapoda Fallicambarus hortoni Hatchie Burrowing Crayfish E Crustacean Malocostraca Decapoda Orconectes incomptus Tennessee Cave Crayfish E Crustacean Malocostraca Decapoda Orconectes shoupi Nashville Crayfish E LE Crustacean Malocostraca Decapoda Orconectes wrighti A Crayfish E Fern and Fern Ally Filicopsida Polypodiales Dryopteris carthusiana Spinulose Shield Fern T Bogs Fern and Fern Ally Filicopsida Polypodiales Dryopteris cristata Crested Shield-Fern T FACW, OBL, Bogs Fern and Fern Ally Filicopsida Polypodiales Trichomanes boschianum
    [Show full text]
  • A Check-List of the Fishes of Iowa, with Keys for Identification
    A CHECK-LIST OF THE FISHES OF IOWA, WITH KEYS FOR IDENTIFICATION By Reeve M. Bailey TABLE OF CONTENTS Page Introduction ................................................................................................................... 187 Acknowledgments ........................................................................................................ 188 Species Removed from the Iowa Faunal List ........................................................ 188 Check-list of Iowa Fishes ............................................................................................ 189 Additional Fishes which May Occur in Iowa ........................................................ 195 Keys for the Identification of Iowa Fishes ............................................................ 196 Key to Families of Iowa Fishes .................................................................... 198 Key to Petromyzontidae (lampreys) .......................................................... 206 Key to Acipenseridae (sturgeons) .............................................................. 207 Key to Lepisosteidae (gars) .......................................................................... 207 Key to Salmonidae (trouts) .......................................................................... 208 Key to Clupeidae (herrings) .......................................................................... 209 Key to Hiodontidae (mooneyes) .................................................................... 209 Key to Esocidae (pikes) .................................................................................
    [Show full text]
  • Kyfishid[1].Pdf
    Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people.
    [Show full text]
  • Thesis-1967D-R418d.Pdf (6.356Mb)
    DESCRIPTIONS AND ANAllSES OF 'l'HE CEPHAUC LATERAL-LINE SYSTEMS OF 'l'BE CYPRINID GDmS HYBOPSIS ·~ , HARLEY f!AYNE ~O Bachelor of Science Oklah~ Stat• Univer~it7 Stillli!B.ter, Oklahoma 1961 !'aster or Science Oklahoma State University _Stillwater, Oklahoma l.963 Submitted to the faculty of the GradWtte College of th~ Oklahoma State tfniver~ity in partial tul:f'illmm.t of th~ requir~nts for ths degrc,e of DOCTOR OF PHILOSOPHY Juq; 1967 DESCRIPTIONS AND ANALYSES OF THE CEPHALIC LATERAL-LINE SYSTEMS OF THE CYPRJNID GENUS HYBOPSIS Thesis Approved: ~.o.m~ n nDean iJ&Ve,of the Graduate --- College 11 OKLAHOMA STATE UNIVERSITY LIBRARY ·1 . ~ ·1 JAN 16 191W } PRE.FACE Use of the cephalic lateral-line system as an ind.ex to habitats knowno and ecological requirements of fishes ha.111. long been. This lateral-line study o:t.Bzbopsis was aonduate~ to; (1) correlate lateral- .. line structure with species ecologies; (2) predict probable ecologies of little-known species 0£ Bybopsis;, (3) investigate the neuromast- bone :relationships in Hzbopsis; and (4) erect tentative phylogenies for some subgenera of ljtybopsiso I am indebted ta Dr. Rudolph J. Mill.er, 'filY' major advisor, tor his asaietanoe and encouragement during the courae or this •tu:iy and his critical examination of this manuscript. Dre. George Ao Moli>re, L. Herbert Bruneau, Br.van Po Gla11, am Roy w. Jones aerved on ?113' advisory committee and also evaluated the manuscript. Sincere thanks i1 pereon­ aJ4r extemad to Dr. George A. Moore 11 because it waa his initial in­ fluence years ago which aroused~ interests in fish morphology .
    [Show full text]
  • ACTION: Original DATE: 12/28/2011 8:06 AM
    ACTION: Original DATE: 12/28/2011 8:06 AM 3745-1-01 Purpose and applicability. [Comment: For dates of non-regulatory government publications, publications of recognized organizations and associations, federal rules and federal statutory provisions referenced in this rule, see rule 3745-1-03 of the Administrative Code.] (A) Purpose and objective. It is the purpose of this chapter to: (1) Establish minimum water quality requirements for all surface waters of the state, thereby protecting public health and welfare; (2) Enable the present and planned uses of Ohio's water for public water supplies, industrial and agricultural needs, propagation of fish, aquatic life and wildlife, and recreational purposes; (3) Enhance, improve and maintain water quality as provided under the laws of the state of Ohio, section 6111.041 of the Revised Code, the federal Clean Water Act, 33 U.S.C. sections 1251 to 1387, and rules adopted thereunder; and (4) Further the overall objective of the Clean Water Act "to restore and maintain the chemical, physical, and biological integrity of the Nation's waters." (B) Goals. Consistent with national goals set forth in the Clean Water Act, all surface waters in Ohio shall provide for the protection and propagation of fish, shellfish, and wildlife and provide for recreation in and on the water unless the director determines the goal is not attainable for a specific water body. If the director determines that a water body cannot reasonably attain these goals using the available tests and criteria allowed under the Clean Water Act, then one of the following steps shall be taken: (1) The director shall evaluate the water body's designated uses and, where uses are not attainable, propose to change the designated uses to the best designations that can be attained; or (2) The director shall grant temporary variances from compliance with one or more water quality criteria applicable by this chapter pursuant to rule 3745-33-07 of the Administrative Code.
    [Show full text]