Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax Harryi) Version 1.2

Total Page:16

File Type:pdf, Size:1020Kb

Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax Harryi) Version 1.2 Species Status Assessment (SSA) Report for the Ozark Chub (Erimystax harryi) Version 1.2 Ozark chub (Photo credit: Dustin Lynch, Arkansas Natural Heritage Commission) August 2019 U.S. Fish and Wildlife Service - Arkansas Ecological Services Field Office This document was prepared by Alyssa Bangs (U. S. Fish and Wildlife Service (USFWS) – Arkansas Ecological Services Field Office), Bryan Simmons (USFWS—Missouri Ecological Services Field Office), and Brian Evans (USFWS –Southeast Regional Office). We greatly appreciate the assistance of Jeff Quinn (Arkansas Game and Fish Commission), Brian Wagner (Arkansas Game and Fish Commission), and Jacob Westhoff (Missouri Department of Conservation) who provided helpful information and review of the draft document. We also thank the peer reviewers, who provided helpful comments. Suggested reference: U.S. Fish and Wildlife Service. 2019. Species status assessment report for the Ozark chub (Erimystax harryi). Version 1.2. August 2019. Atlanta, GA. CONTENTS Chapter 1: Executive Summary 1 1.1 Background 1 1.2 Analytical Framework 1 CHAPTER 2 – Species Information 4 2.1 Taxonomy and Genetics 4 2.2 Species Description 5 2.3 Range 6 Historical Range and Distribution 6 Current Range and Distribution 8 2.4 Life History Habitat 9 Growth and Longevity 9 Reproduction 9 Feeding 10 CHAPTER 3 –Factors Influencing Viability and Current Condition Analysis 12 3.1 Factors Influencing Viability 12 Sedimentation 12 Water Temperature and Flow 14 Impoundments 15 Water Chemistry 16 Habitat Fragmentation 17 3.2 Model 17 Analytical Units 18 Watershed Parameters 18 Population Parameters 20 3.3 Current Condition—3Rs 21 Resiliency 21 Representation 21 Redundancy 22 CHAPTER 4 – Future Condition Analysis/Species Viability 27 4.1 Parameters 27 Urban Cover 27 Riparian Forest Cover 28 Water Quality 28 Abundance 28 4.2 Scenarios 32 Scenario 1 (positive habitat change) 32 Scenario 2 (increased urbanization) 32 Scenario 3 (increased urbanization, other parameters slightly decreased) 32 Scenario 4 (increased urbanization, other parameters decreased) 32 4.3 Summary 33 REFERENCES 34 Appendix A. Ozark Chub Ecological Management Units and Watersheds 41 Upper White River Ecological Management Unit 42 Middle White River Ecological Management Unit 44 Middle Black River Ecological Management Unit 45 St Francis River Ecological Management Unit 47 Little Red River Ecological Management Unit 48 Chapter 1: Executive Summary 1.1 Background This report summarizes the results of a species status assessment (SSA) conducted for the Ozark chub (Erimystax harryi), which includes relevant information about the species’ life history characteristics, how those characteristics are affected by stressors, and conservation measures to address those stressors. The U.S. Fish and Wildlife Service (Service) was petitioned to list 404 aquatic, riparian, and wetland species, including the Ozark chub, as endangered or threatened under the Endangered Species Act of 1973, as amended (Act) on April 20, 2010, by the Center for Biological Diversity (Center for Biological Diversity 2010, p. 417-418). In September of 2011, the Service found the petition presented substantial scientific or commercial information indicating that listing 374 species, including Ozark chub, may be warranted. Thus, we conducted a SSA to compile the best scientific and commercial data available regarding the species biology and factors influencing species viability. 1.2 Analytical Framework The SSA framework (USFWS 2016) is intended to be an in-depth review of the species’ biology and threats, an evaluation of its biological status, and an assessment of the resources and conditions needed to maintain long-term viability. The intent is for the SSA report to be easily updated as new information becomes available and to support all functions of the Endangered Species Program from candidate assessment to listing to consultations and recovery. As such, the SSA report will be a living document used to inform decisions under the ESA. The Ozark chub SSA is intended to provide the biological support for the decision on whether to propose listing the species as threatened or endangered and, if so, to determine whether it is prudent to designate critical habitat areas essential to its conservation. This report is not a decisional document by the Service; rather, it provides a review of available information strictly related to the biological status of Ozark chub. A listing decision will be made by the Service after reviewing this document and all relevant laws, regulations, and policies. The results of a proposed decision will be announced in the Federal Register with appropriate opportunities for public input. Using the SSA framework (Figure 1), we consider what the species needs to maintain viability (the species’ ability to sustain populations in the wild over time) by characterizing the status of the species in terms of its redundancy, representation, and resiliency (USFWS 2016, entire; Wolf et al. 2015, entire). For the purpose of this assessment, we generally define viability as the ability of the species to sustain populations in natural stream ecosystems within a biologically meaningful timeframe. Resiliency, redundancy, and representation are defined as follows: ● Resiliency is assessed at the population level and reflects a species’ ability to withstand stochastic events (arising from random factors). Demographic measures that reflect population health, such as fecundity, survival, and population size, are the metrics used to evaluate resiliency. Resilient populations are better able to withstand disturbances such as random fluctuations in birth rates (demographic stochasticity), variations in rainfall (environmental stochasticity), and the effects of anthropogenic activities. ● Representation is assessed at the species’ level and characterizes the ability of a species to adapt to changing environmental conditions. Metrics such as a species’ adaptive potential and genetic and ecological variability can be used to assess representation. Representation is directly correlated to a species’ ability to adapt to changes (natural or human-caused) in its environment. In the absence of species-specific genetic and ecological diversity information, we evaluate representation based on the extent and variability of habitat characteristics within the geographical range. ● Redundancy is also assessed at the species level and reflects a species’ ability to withstand catastrophic events (such as a rare destructive natural event or episode involving many populations) by having a sufficient number of populations. Redundancy is about spreading the risk of such an event across multiple, resilient populations. As such, redundancy can be measured by the number and distribution of resilient populations across the range of the species. The decision whether to list a species is based not on a prediction of the most likely future for the species, but rather on an assessment of the species’ risk of extinction. Therefore, to inform this assessment of extinction risk, we describe the species’ current biological status and assess how this status may change in the future under a range of scenarios to account for the uncertainty of the species’ future. We evaluate the current biological status of Ozark chub by assessing the primary factors negatively and positively affecting the species to describe its current condition in terms of resiliency, redundancy, and representation (together, the 3Rs). We then evaluate the future biological status of Ozark chub by describing a range of plausible future scenarios representing a range of conditions for the primary factors affecting the species and forecasting the most likely future condition for each scenario in terms of the 3Rs. As a matter of practicality, the full range of potential future scenarios and range of potential future conditions for each potential scenario are too large to individually describe and analyze. These scenarios do not include all possible futures, but rather include specific plausible scenarios that represent examples from the continuous spectrum of possible futures. Consequently, the results of this SSA do not describe the overall risk to the species. Recognizing these limitations, the results of this SSA nevertheless provide a framework for considering the overall risk to the species in listing decisions. This report includes: a description of Ozark chub resource needs at both individual and population levels (Chapter 1); a characterization of the historical and current distribution of populations across the species’ range (Chapter 2); an assessment of factors that contributed to the current and future status of the species and degree to which various factors influenced viability (Chapter 3); and a synopsis of factors characterized in earlier chapters as a means of examining future biological status of the species (Chapter 4). This document is a compilation of the best available scientific information (and associated uncertainties regarding that information) used to assess Ozark chub viability. CHAPTER 2 – Species Information 2.1 Taxonomy and Genetics Ozark chub (Erimystax harryi) belongs to the Cyprinidae family of fishes. It is currently recognized as a valid taxon by the American Fisheries Society (Page et al. 2013, p. 70) and is listed as such in the Integrated Taxonomic Information System (ITIS) database (http://www.itis.gov). The currently accepted classification is (ITIS 2018): Phylum: Chordata Class: Teleostei Order: Cypriniformes Family:
Recommended publications
  • North Carolina Wildlife Resources Commission Gordon Myers, Executive Director
    North Carolina Wildlife Resources Commission Gordon Myers, Executive Director March 1, 2016 Honorable Jimmy Dixon Honorable Chuck McGrady N.C. House of Representatives N.C. House of Representatives 300 N. Salisbury Street, Room 416B 300 N. Salisbury Street, Room 304 Raleigh, NC 27603-5925 Raleigh, NC 27603-5925 Senator Trudy Wade N.C. Senate 300 N. Salisbury Street, Room 521 Raleigh, NC 27603-5925 Dear Honorables: I am submitting this report to the Environmental Review Committee in fulfillment of the requirements of Section 4.33 of Session Law 2015-286 (H765). As directed, this report includes a review of methods and criteria used by the NC Wildlife Resources Commission on the State protected animal list as defined in G.S. 113-331 and compares them to federal and state agencies in the region. This report also reviews North Carolina policies specific to introduced species along with determining recommendations for improvements to these policies among state and federally listed species as well as nonlisted animals. If you have questions or need additional information, please contact me by phone at (919) 707-0151 or via email at [email protected]. Sincerely, Gordon Myers Executive Director North Carolina Wildlife Resources Commission Report on Study Conducted Pursuant to S.L. 2015-286 To the Environmental Review Commission March 1, 2016 Section 4.33 of Session Law 2015-286 (H765) directed the N.C. Wildlife Resources Commission (WRC) to “review the methods and criteria by which it adds, removes, or changes the status of animals on the state protected animal list as defined in G.S.
    [Show full text]
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa
    Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa By Jun Cheng A thesis submitted in conformity with the requirements for the degree of Masters of Science Ecology and Evolutionary Biology University of Toronto © Copyright Jun Cheng 2013 Spatial Criteria Used in IUCN Assessment Overestimate Area of Occupancy for Freshwater Taxa Jun Cheng Masters of Science Ecology and Evolutionary Biology University of Toronto 2013 Abstract Area of Occupancy (AO) is a frequently used indicator to assess and inform designation of conservation status to wildlife species by the International Union for Conservation of Nature (IUCN). The applicability of the current grid-based AO measurement on freshwater organisms has been questioned due to the restricted dimensionality of freshwater habitats. I investigated the extent to which AO influenced conservation status for freshwater taxa at a national level in Canada. I then used distribution data of 20 imperiled freshwater fish species of southwestern Ontario to (1) demonstrate biases produced by grid-based AO and (2) develop a biologically relevant AO index. My results showed grid-based AOs were sensitive to spatial scale, grid cell positioning, and number of records, and were subject to inconsistent decision making. Use of the biologically relevant AO changed conservation status for four freshwater fish species and may have important implications on the subsequent conservation practices. ii Acknowledgments I would like to thank many people who have supported and helped me with the production of this Master’s thesis. First is to my supervisor, Dr. Donald Jackson, who was the person that inspired me to study aquatic ecology and conservation biology in the first place, despite my background in environmental toxicology.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist WATER INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 0908 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2009 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 8 IBI sample collection ............................................. 8 Habitat measures............................................... 10 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 15 IBI metrics and scoring criteria..................................... 19 Designation of guilds....................................... 20 Results and discussion................................................ 22 Sampling sites and collection results . 22 Selection and scoring of Southern Plains IBI metrics . 41 1. Number of native species ................................
    [Show full text]
  • Kansas Stream Fishes
    A POCKET GUIDE TO Kansas Stream Fishes ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ By Jessica Mounts Illustrations © Joseph Tomelleri Sponsored by Chickadee Checkoff, Westar Energy Green Team, Kansas Department of Wildlife, Parks and Tourism, Kansas Alliance for Wetlands & Streams, and Kansas Chapter of the American Fisheries Society Published by the Friends of the Great Plains Nature Center Table of Contents • Introduction • 2 • Fish Anatomy • 3 • Species Accounts: Sturgeons (Family Acipenseridae) • 4 ■ Shovelnose Sturgeon • 5 ■ Pallid Sturgeon • 6 Minnows (Family Cyprinidae) • 7 ■ Southern Redbelly Dace • 8 ■ Western Blacknose Dace • 9 ©Ryan Waters ■ Bluntface Shiner • 10 ■ Red Shiner • 10 ■ Spotfin Shiner • 11 ■ Central Stoneroller • 12 ■ Creek Chub • 12 ■ Peppered Chub / Shoal Chub • 13 Plains Minnow ■ Silver Chub • 14 ■ Hornyhead Chub / Redspot Chub • 15 ■ Gravel Chub • 16 ■ Brassy Minnow • 17 ■ Plains Minnow / Western Silvery Minnow • 18 ■ Cardinal Shiner • 19 ■ Common Shiner • 20 ■ Bigmouth Shiner • 21 ■ • 21 Redfin Shiner Cover Photo: Photo by Ryan ■ Carmine Shiner • 22 Waters. KDWPT Stream ■ Golden Shiner • 22 Survey and Assessment ■ Program collected these Topeka Shiner • 23 male Orangespotted Sunfish ■ Bluntnose Minnow • 24 from Buckner Creek in Hodgeman County, Kansas. ■ Bigeye Shiner • 25 The fish were catalogued ■ Emerald Shiner • 26 and returned to the stream ■ Sand Shiner • 26 after the photograph. ■ Bullhead Minnow • 27 ■ Fathead Minnow • 27 ■ Slim Minnow • 28 ■ Suckermouth Minnow • 28 Suckers (Family Catostomidae) • 29 ■ River Carpsucker •
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • COPEIA February 1
    2000, No. 1COPEIA February 1 Copeia, 2000(1), pp. 1±10 Phylogenetic Relationships in the North American Cyprinid Genus Cyprinella (Actinopterygii: Cyprinidae) Based on Sequences of the Mitochondrial ND2 and ND4L Genes RICHARD E. BROUGHTON AND JOHN R. GOLD Shiners of the cyprinid genus Cyprinella are abundant and broadly distributed in eastern and central North America. Thirty species are currently placed in the genus: these include six species restricted to Mexico and three barbeled forms formerly placed in different cyprinid genera (primarily Hybopsis). We conducted a molecular phylogenetic analysis of all species of Cyprinella found in the United States, using complete nucleotide sequences of the mitochondrial, protein-coding genes ND2 and ND4L. Maximum-parsimony analysis recovered a single most-parsimonious tree for Cyprinella. Among historically recognized, nonbarbeled Cyprinella, the mitochondrial (mt) DNA tree indicated that basal lineages in Cyprinella are comprised largely of species with linear breeding tubercles and that are endemic to Atlantic and/or Gulf slope drainages, whereas derived lineages are comprised of species broadly distrib- uted in the Mississippi basin and the American Southwest. The Alabama Shiner, C. callistia, was basal in the mtDNA tree, although a monophyletic Cyprinella that in- cluded C. callistia was not supported in more than 50% of bootstrap replicates. There was strong bootstrap support (89%) for a clade that included all species of nonbarbeled Cyprinella (except C. callistia) and two barbeled species, C. labrosa and C. zanema. The third barbeled species, C. monacha, fell outside of Cyprinella sister to a species of Hybopsis. Within Cyprinella were a series of well-supported species groups, although in some cases bootstrap support for relationships among groups was below 50%.
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan Annarbor, Michigan
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANNARBOR, MICHIGAN PRELIMINARY ANALYSIS OF THE AMERICAN CYPRINID FISHES, SEVEN NEW, REFERRED TO THE GENUS HYBOPSIS, SUBGENUS ERIlWYSTAX* BY CARLL. HUBBSAND WALTERR. CROWE FORmany years we have studied the eastern North American cyprinid fishes that were recently referred to the genus Erimystax Jordan. Earlier, this assortment of species had been included in the genus Hybopsis. In the present swing of the pendulum these species are again placed in Hybopsis, though they may be retained in Erimystax as a subgenus. For several reasons the re-expanded genus Hybopsis rests on an un- steady basis, but it is not our purpose to attempt a generic evaluation. The differential diagnoses to follow are presented in analytical form. The rubrics in the key that pertain to each form may be visualized in the outline of classification that heads the analysis. Thus, for Hybopsis insignis eristigma it will be at once apparent that the diagnosis com- prises items Ib, 3b, 4b, 5b, 7b, and 9b. In addition, the diagnosis of each form may be taken to include the following features of Erimystax, common to all: A single small barbel is developed in the ternlinal or nearly terminal position (over or behind the end of the gape). The scales lack basal radii. The hooked pharyngeal teeth are uniserial, and number four on each side. The nuptial tubercles are minute or even obsolete on the top of the head (never enlarged as in Nocomis). The species are all small (none longer than 100 mm. to caudal) and delicate.
    [Show full text]
  • Reproductive Timing of the Largescale Stoneroller, Campostoma Oligolepis, in the Flint River, Alabama
    REPRODUCTIVE TIMING OF THE LARGESCALE STONEROLLER, CAMPOSTOMA OLIGOLEPIS, IN THE FLINT RIVER, ALABAMA by DANA M. TIMMS A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in The Department of Biological Sciences to The School of Graduate Studies of The University of Alabama in Huntsville HUNTSVILLE, ALABAMA 2017 ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Bruce Stallsmith for all his guidance on this project and greater dedication to raising awareness to Alabama’s river ecosystems. I am grateful to my other committee members, Dr. Gordon MacGregor and Dr. Debra Moriarity also from UAH. Thanks to everyone who braved the weather and elements on collecting trips: Tiffany Bell, Austin Riley, Chelsie Smith, and Joshua Mann. I would like to thank Megan McEown, Corinne Peacher, and Bonnie Ferguson for dedicating long hours in the lab. Special thanks to Matthew Moore who assisted in collections, lab work, and data processing. Most of all, I would like to thank my husband, Patrick, for his love and encouragement in all my endeavors. v TABLE OF CONTENTS Page • List of Figures viii • List of Tables x • CHAPTER ONE: Introduction 1 o Context 1 o Campostoma oligolepis Taxonomy 3 o History of Campostoma oligolepis 4 ▪ Campostoma oligolepis in the South 6 ▪ Campostoma Hybridization 8 ▪ Campostoma Ranges and Species Differentiation 9 ▪ Life History 12 ▪ Reproduction 12 o Purpose and Hypothesis 15 • CHAPTER TWO: Methodology 17 o Laboratory Analysis 19 o Reproductive Data 21 o Ovary and Oocyte Staging 22 o Statistical Analysis 22 • CHAPTER THREE: Results 27 o Reproductive Data 29 ▪ Ovary and Oocyte Development 32 ▪ Testicular Development 39 vi • CHAPTER FOUR: Discussion 40 o Study Limitations 40 o Lateral Line Scale Count 41 o Reproductive Cues and Environmental Influences 42 o Multiple-spawners 42 o Asymmetry of Ovaries 42 o Bourgeois Males 43 o Campostoma variability 44 o Conclusion 45 • WORKS CITED 46 vii LIST OF FIGURES Page • 1.1 Campostoma oligolepis, Largescale Stoneroller, specimens from the Flint River, Alabama.
    [Show full text]
  • Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86
    2009. Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86 THE "LOST" JORDAN AND HAY FISH COLLECTION AT BUTLER UNIVERSITY Carter R. Gilbert: Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA ABSTRACT. A large fish collection, preserved in ethanol and assembled by Drs. David S. Jordan and Oliver P. Hay between 1875 and 1892, had been stored for over a century in the biology building at Butler University. The collection was of historical importance since it contained some of the earliest fish material ever recorded from the states of South Carolina, Georgia, Mississippi and Kansas, and also included types of many new species collected during the course of this work. In addition to material collected by Jordan and Hay, the collection also included specimens received by Butler University during the early 1880s from the Smithsonian Institution, in exchange for material (including many types) sent to that institution. Many ichthyologists had assumed that Jordan, upon his departure from Butler in 1879. had taken the collection. essentially intact, to Indiana University, where soon thereafter (in July 1883) it was destroyed by fire. The present study confirms that most of the collection was probably transferred to Indiana, but that significant parts of it remained at Butler. The most important results of this study are: a) analysis of the size and content of the existing Butler fish collection; b) discovery of four specimens of Micropterus coosae in the Saluda River collection, since the species had long been thought to have been introduced into that river; and c) the conclusion that none of Jordan's 1878 southeastern collections apparently remain and were probably taken intact to Indiana University, where they were lost in the 1883 fire.
    [Show full text]