Fishes May Compete for Food Resources; Exotic Mussels May Impact Soft Substrate and Vegetation Growth

Total Page:16

File Type:pdf, Size:1020Kb

Fishes May Compete for Food Resources; Exotic Mussels May Impact Soft Substrate and Vegetation Growth 2 0 1 5 – 2 0 2 5 Species of Greatest Conservation Need Species Accounts Appendix 1.4E-Fish Fish Species of Greatest Conservation Need Maps: Physiographic Provinces and HUC Watersheds Species Accounts (Click species name below or bookmark to navigate to species account) FISH Ohio Lamprey Tonguetied Minnow Tadpole Madtom Northern Brook Lamprey Cutlip Minnow Margined Madtom Mountain Brook Lamprey Bigmouth Shiner Brindled Madtom Least Brook Lamprey Redfin Shiner Northern Madtom Shortnose Sturgeon Allegheny Pearl Dace Cisco Lake Sturgeon Hornyhead Chub Brook Trout Atlantic Sturgeon Comely Shiner Central Mudminnow Paddlefish Bridle Shiner Eastern Mudminnow Spotted Gar River Shiner Burbot Bowfin Ghost Shiner Allegheny Burbot American Eel Ironcolor Shiner Brook Stickleback Blueback Herring Blackchin Shiner Threespine Stickleback Hickory Shad Swallowtail Shiner Checkered Sculpin Alewife Longnose Sucker Banded Sunfish American Shad Bigmouth Buffalo Warmouth Northern Redbelly Dace Spotted Sucker Longear Sunfish Southern Redbelly Dace White Catfish Eastern Sand Darter Redside Dace Black Bullhead Iowa Darter Streamline Chub Blue Catfish Spotted Darter Gravel Chub Mountain Madtom Tessellated Darter FISH, CONTINUED Tippecanoe Darter Chesapeake Logperch Shield Darter Variegate Darter Longhead Darter The following Physiographic Province and HUC Watershed maps are presented here for reference with conservation actions identified in the species accounts. Species account authors identified appropriate Physiographic Provinces or HUC Watershed (Level 4, 6, 8, 10, or statewide) for specific conservation actions to address identified threats. HUC watersheds used in this document were developed from the Watershed Boundary Dataset, a joint project of the U.S. Dept. of Agriculture-Natural Resources Conservation Service, the U.S. Geological Survey, and the Environmental Protection Agency. 836| Appendix 1.4 Fish Physiographic Provinces Central Lowlands Appalachian Plateaus New England Ridge and Valley Piedmont Atlantic Coastal Plain Appalachian Plateaus Central Lowlands Piedmont Atlantic Coastal Plain New England Ridge and Valley 837| Appendix 1.4 Fish Lake Erie Pennsylvania HUC4 and HUC6 Watersheds Eastern Lake Erie Southwestern Upper Susquehanna Lake Ontario Southern Lake Erie Allegheny West Branch Susquehanna Upper Delaware Upper Ohio- Beaver Susquehanna Upper Ohio Allegheny Delaware-Mid Atlantic Coastal Lower Susquehanna Lower Delaware Monongahela Upper Chesapeake Monongahela Potomac HUC 4 Watershed State Border HUC 6 Watershed County Boundary Potomac Kilometers 0 25 50 100 150 200 Upper Chesapeake 838| Appendix 1.4 Fish Lake Erie Pennsylvania HUC6 and HUC8 Watersheds Upper Chautauqua- Chemung Upper Delaware Conneaut Conewango Upper Susquehanna Genesee Ashtabula- Upper Allegheny Tioga Owego- Chagrin Wappasening Middle Allegheny-Tionesta Upper French Pine Susquehanna- Tunkhannock Lackawaxen Sinnemahoning Middle West Branch Lower West Clarion Susquehanna Branch Shenango Susquehanna Middle Delaware- Mahoning Upper Susquehanna- Mongaup- Lackawanna Brodhead Middle Allegheny- Connoquenessing Redbank Upper West Bald Eagle Lehigh Branch Susquehanna Beaver Lower Susquehanna-Penns Middle Lower Delaware- Allegheny Musconetcong Upper Juniata Upper Ohio Kiskiminetas Lower Juniata Schuylkill Upper Ohio- Conemaugh Crosswicks- Wheeling Neshaminy Lower Susquehanna-Swatara Lower Delaware Lower Raystown Monongahela Lower Susquehanna Brandywine- Gunpowder- Christina Upper Chester- Youghiogheny North Patapsco Monongahela Conococheague- Sassafras Branch Cacapon- Opequon Monocacy Cheat Potomac Town State Border County HUC 6 Kilometers HUC 8 0 50 100 150 200 839| Appendix 1.4 Fish Pennsylvania HUC8 & CayutaHUC10 Creek Watersheds, NE Middle Susquehanna River Choconut Creek- Lower Pipe Creek- Susquehanna West Branch Susquehanna Cryder Creek River Delaware River Lower East Branch River Delaware River -Genesee River Troups Creek Wappasening Creek- Lower Middle Chemung Susquehanna River River Chemung Lower Susquehanna River Oswayo Headwaters Cowanesque River River Creek Genesee River Wysox Creek Upper Susquehanna River Upper Crooked Creek Mill Creek Wyalusing Creek Delaware River Sugar Creek Middle Delaware River Headwaters East Branch Tunkhannock Creek Upper Pine Creek Allegheny River Marsh Creek Wyalusing Creek Lackawaxen River Dyberry West Branch Creek West Branch Tioga River Towanda Creek Meshoppen East Branch Mongaup River Pine Creek Creek Tunkhannock Creek First Fork Lower Delaware River Sinnemahoning Babb Creek Schrader Creek Creek Lower Susquehanna River Halfway South Branch Lackawaxen River Tunkhannock Brook- Delaware Kettle Creek Little Creek Loyalsock Creek Mehoopany Creek Middle Creek River Lower Pine Creek Lycoming Creek Young West Little Pine Creek Upper Loyalsock Creek Womans Branch Creek Lower Loyalsock Creek Wallenpaupack Bowman Creek Shahola Creek Creek Upper West Larrys Lackawanna River Branch Creek Susquehanna Wallenpaupack Muncy Creek Fishing Creek Upper Creek River Huntington Susquehanna River Creek Lower West Delaware River Bush Kill Raymondskill Creek- Branch Susquehanna Upper Lehigh River River West Branch Little Muncy CreekLittle Broadhead Creek Susquehanna River Middle White Deer Fishing Creek West Chillisquaque Susquehanna River Beech Creek Hole Creek Branch Flat Brook-Delaware River Creek Tobyhanna Creek Susquehanna River Fishing Creek Pocono Nescopeck Creek Creek Bald Eagle Creek Buffalo Creek Lower Middle Lehigh River Pohopoco Creek Pine Creek Susquehanna River Catawissa Creek Upper Delaware Roaring Creek Aquashicola Creek River Bushkill Creek- Penns Creek Little Delaware River Spring Creek Shamokin Creek Schuylkill River Middle Creek HUC 8 Mahantango Creek Lower Lehigh River Spruce Creek Honey Creek Mahanoy Creek Upper Schuylkill River HUC 10 Jordan Creek Kilometers Maiden Creek State Border 0 25 50 75 100 840| Appendix 1.4 Fish Pennsylvania HUC8 and HUC10 Watersheds, SE Broadhead Creek Beech Creek Fishing Creek Chillisquaque Creek Nescopeck Creek Pocono Creek Fishing Creek Flat Brook-Delaware River Bald Eagle Creek Buffalo Creek Lower Susquehanna River Pohopoco Creek Catawissa Creek Pine Creek Upper Middle Lehigh River Roaring Creek Delaware Aquashicola Creek River Penns Creek Spring Creek Shamokin Creek Middle Creek Bushkill Creek-Delaware River Lower Lehigh River Honey Creek Mahanoy Creek Little Schuylkill West Branch River HUC 8 Mahantango Creek Upper Schuylkill River Jordan Creek Cocolamus Mahantango Creek HUC 10 Middle Juniata River Deep Creek Creek State Border Wiconisco Creek Maiden Creek Kishacoquillas Creek Upper Swatara Creek Little Lehigh Creek Standing Stone Creek Lower Juniata River Lower Delaware River Tohickon Creek- Susquehanna River Delaware River Little Swatara Creek Buffalo Creek Upper Juniata River Tulpehocken Creek Manatawny Creek Tuscarora Creek Lower Swatara Creek Perkiomen Creek Sherman Creek Upper Susquehanna River Neshaminy Middle Schuylkill River Quittapahilla Creek Creek Lower Cocalico Creek Neshaminy Creek Lower Conodoguinet Creek Blacklog Assiscunk Creek Middle French Creek Wissahickon Pennypack Creek- Creek- Chickies Creek Conodoguinet Creek Rancocas Creek Delaware River Creek Conestoga River Yellow Breeches Creek Lower Lower Schuylkill River Upper Conewago East Branch Conodoguinet Creek Little Conestoga Creek Creek Brandywine Little Bermudian Creek Creek Darby Creek- Conewago Mantua Creek Cooper River- West Branch Creek Pequea Creek Delaware River Rocky Spring Brandywine Raccoon Creek- Branch- Creek Delaware River Back Creek Upper Conewago Creek East Branch Brandywine Codorus Creek Octoraro Creek Creek Conococheague Creek Susquehanna River Marsh Creek South Branch Rock South Branch Codorus Creek Conewago West Branch Creek Octoraro White Clay Creek Creek Muddy Creek Conococheague Creek Creek Antietam Creek Elk River Toms Creek North East Upper River- Deer Creek Upper Little Tonoloway Creek-Potomac River Gunpowder Christina River Falls Chesapeake Upper Monocacy River Middle Gunpowder Falls Bay Kilometers 0 20 40 60 80 841| Appendix 1.4 Fish HUC 8 HUC 10 Pennsylvania HUC8 and HUC10 Watersheds, NW State Border Pelee Island Lake Erie West Branch French Creek Sixmile Creek-Frontal Lake Erie Cryder Creek-Genesee River Troups Creek LeBoeuf Crooked Creek- Creek Elk Creek Little Frontal Wheeler Lower Conewango Creek Oswayo Creek Brokenstraw Lake Erie Creek Tunungwant Creek Creek Cowanesque River South Branch Headwaters French Creek Lower Allegheny River Genesee River Ashtabula River Conneaut Creek Brokenstraw Creek Cessewago Creek Upper Pine Creek Headwaters Allegheny River Muddy Creek Kinzua Creek Potato Creek West Branch Tionesta Creek West Branch Oil Creek Pine Creek French Creek Pine Creek Upper Pymatuning Allegheny Reservoir- River Sinnemahoning Shenango Conneaut South Branch Tionesta Creek West Branch Portage River Outlet Clarion River First Fork East Branch Creek Sinnemahoning Sugar Creek Clarion River Creek Kettle Creek Tionesta Creek Spring Creek Driftwood Branch Pymatuning Young Little Sinnemahoning Creek Creek Lower Womans Shenango Creek River Allegheny River Elk Creek Sandy Creek Upper Clarion River Upper West Big Run- East Bennett Branch Branch Shenango Sandy Creek Sinnemahoning Creek Susquehanna River Deer Creek Sinnemahoning River Little Toby Creek Creek Middle Clarion River North Fork Redbank Creek Lower West Branch Yankee Run- Wolf Creek Susquehanna River Shenango River Neshannock Creek Lower Clarion Mosquito Creek River Piney Creek Sandy Lick Creek Lower West Branch Beech Creek Bear Susquehanna
Recommended publications
  • Chautauqua County
    CHAUTAUQUA Greenway Plan COUNTY April 2012 A four season destination for outdoor active living, nurtured by public/private partnerships. Prepared by Pashek Associates in cooperation with Chautauqua County Department of Planning & Economic Development “It is a wholesome and necessary thing for us to turn again to the earth and in the contemplation of her beauties to know of wonder and humility. - Rachel Carson” Photo Credit: Mark Geise All of the photographs in this document were taken at various locations throughout Chautauqua County. ACKNOWLEDGEMENTS A special thank you goes out to the citizens and organizations of Chautauqua County for their enthusiasm and input during this study. Also, the time commitment, wealth of knowledge, decision-making ability, and dedication of the following individuals made the Chautauqua County Greenway Plan possible. Chautauqua County Gregory J. Edwards ........................................................... County Executive Chautauqua County Department of Planning & Economic Development William Daly ...................................................................................... Director Mark Geise ........................................................................... Deputy Director Christine Kinn .........................................................................Senior Planner Don McCord ............................................................................Senior Planner Jeffrey Diers .............................................................Watershed Coordinator Debbie Liliestedt
    [Show full text]
  • A Preliminary Assessment of the Native Fish Stocks of Jasper National Park
    A Preliminary Assessment of the Native Fish Stocks of Jasper National Park David W. Mayhood Part 3 of a Fish Management Plan for Jasper National Park Freshwater Research Limited A Preliminary Assessment of the Native Fish Stocks of Jasper National Park David W. Mayhood FWR Freshwater Research Limited Calgary, Alberta Prepared for Canadian Parks Service Jasper National Park Jasper, Alberta Part 3 of a Fish Management Plan for Jasper National Park July 1992 Cover & Title Page. Alexander Bajkov’s drawings of bull trout from Jacques Lake, Jasper National Park (Bajkov 1927:334-335). Top: Bajkov’s Figure 2, captioned “Head of specimen of Salvelinus alpinus malma, [female], 500 mm. in length from Jaques [sic] Lake.” Bottom: Bajkov’s Figure 3, captioned “Head of specimen of Salvelinus alpinus malma, [male], 590 mm. in length, from Jaques [sic] Lake.” Although only sketches, Bajkov’s figures well illustrate the most characteristic features of this most characteristic Jasper native fish. These are: the terminal mouth cleft bisecting the anterior profile at its midpoint, the elongated head with tapered snout, flat skull, long lower jaw, and eyes placed high on the head (Cavender 1980:300-302; compare with Cavender’s Figure 3). The head structure of bull trout is well suited to an ambush-type predatory style, in which the charr rests on the bottom and watches for prey to pass over. ABSTRACT I conducted an extensive survey of published and unpublished documents to identify the native fish stocks of Jasper National Park, describe their original condition, determine if there is anything unusual or especially significant about them, assess their present condition, outline what is known of their biology and life history, and outline what measures should be taken to manage and protect them.
    [Show full text]
  • Channel Catfish Life History and Biology
    SRAC Publication No. 180 Southern Regional Aquaculture Center December, 1988 . Channel Catfish Life History and Biology Thomas L. Wellborn* Channel cattish, Ictalurus punctatus Rocky Mountains. Since then chan- is located on the back between the (Rafinesque), is the most important nel catfish have been widely intro- dorsal and caudal fins (Fig. 1). One species of aquatic animal commer- duced throughout the United States conspicuous characteristic of all cially cultured in the United States. and the world. catfish is the presence of barbels It belongs to the family Ictaluridae, around the mouth. The barbels are order Siluriformes. Members of the Physical characteristics arranged in a definite pattern with order Siluriformes are found in fresh Like all native North American cat- four under the jaw and one on each and salt water worldwide. There are fishes, a channel catfish has a body tip of the maxilla (upper jaw). at least 39 species of catfish in North that is cylindrical in cross-section, America, but only six have been cul- and lacks scales. Fins are soft-rayed The channel catfish is the only tured or have potential for commer- except for the dorsal and pectoral spotted North American catfish with cial production. They are the blue fins which have sharp, hard spines a deeply forked tail. There are 24-29 catfish, Ictalurus furcatus (LeSueur); that can inflict a nasty, painful rays in the anal fin. They are general- the white catfish, Ictalurus catus wound if a catfish is handled care- ly olivaceous to blue on the back, (Linnaeus); the black bullhead, Ic- lessly.
    [Show full text]
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Species-Specific Effects of Turbidity on the Physiology of Imperiled Blackline Shiners Notropis Spp. in the Laurentian Great Lakes
    Vol. 31: 271–277, 2016 ENDANGERED SPECIES RESEARCH Published November 28 doi: 10.3354/esr00774 Endang Species Res OPENPEN ACCESSCCESS Species-specific effects of turbidity on the physiology of imperiled blackline shiners Notropis spp. in the Laurentian Great Lakes Suzanne M. Gray1,4,*, Laura H. McDonnell1, Nicholas E. Mandrak2, Lauren J. Chapman1,3 1Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada 2Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada 3Wildlife Conservation Society, Bronx, NY 10460, USA 4Present address: School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA ABSTRACT: Increased sedimentary turbidity associated with human activities is often cited as a key stressor contributing to the decline of fishes globally. The mechanisms underlying negative effects of turbidity on fish populations have been well documented, including effects on behavior (e.g. visual impairment) and/or respiratory function (e.g. clogging of the gills); however, the long- term physiological consequences are less well understood. The decline or disappearance of sev- eral blackline shiners Notropis spp. in the Laurentian Great Lakes has been associated with increased turbidity. Here, we used non-lethal physiological methods to assess the responses of 3 blackline shiners under varying degrees of threat in Canada (Species at Risk Act; pugnose shiner N. anogenus: endangered; bridle shiner N. bifrenatus: special concern; blacknose shiner N. het- erolepis: common) to increased turbidity. Fish were exposed for 3 to 6 mo to continuous low levels of turbidity (~7 nephelometric turbidity units, NTU). To test for effects on respiratory function, we measured both resting metabolic rate (RMR) and critical oxygen tension (the oxygen partial pres- sure at which the RMR of fish declines).
    [Show full text]
  • BIOLOGICAL FIELD STATION Cooperstown, New York
    BIOLOGICAL FIELD STATION Cooperstown, New York 49th ANNUAL REPORT 2016 STATE UNIVERSITY OF NEW YORK COLLEGE AT ONEONTA OCCASIONAL PAPERS PUBLISHED BY THE BIOLOGICAL FIELD STATION No. 1. The diet and feeding habits of the terrestrial stage of the common newt, Notophthalmus viridescens (Raf.). M.C. MacNamara, April 1976 No. 2. The relationship of age, growth and food habits to the relative success of the whitefish (Coregonus clupeaformis) and the cisco (C. artedi) in Otsego Lake, New York. A.J. Newell, April 1976. No. 3. A basic limnology of Otsego Lake (Summary of research 1968-75). W. N. Harman and L. P. Sohacki, June 1976. No. 4. An ecology of the Unionidae of Otsego Lake with special references to the immature stages. G. P. Weir, November 1977. No. 5. A history and description of the Biological Field Station (1966-1977). W. N. Harman, November 1977. No. 6. The distribution and ecology of the aquatic molluscan fauna of the Black River drainage basin in northern New York. D. E Buckley, April 1977. No. 7. The fishes of Otsego Lake. R. C. MacWatters, May 1980. No. 8. The ecology of the aquatic macrophytes of Rat Cove, Otsego Lake, N.Y. F. A Vertucci, W. N. Harman and J. H. Peverly, December 1981. No. 9. Pictorial keys to the aquatic mollusks of the upper Susquehanna. W. N. Harman, April 1982. No. 10. The dragonflies and damselflies (Odonata: Anisoptera and Zygoptera) of Otsego County, New York with illustrated keys to the genera and species. L.S. House III, September 1982. No. 11. Some aspects of predator recognition and anti-predator behavior in the Black-capped chickadee (Parus atricapillus).
    [Show full text]
  • Fish Inventory at Stones River National Battlefield
    Fish Inventory at Stones River National Battlefield Submitted to: Department of the Interior National Park Service Cumberland Piedmont Network By Dennis Mullen Professor of Biology Department of Biology Middle Tennessee State University Murfreesboro, TN 37132 September 2006 Striped Shiner (Luxilus chrysocephalus) – nuptial male From Lytle Creek at Fortress Rosecrans Photograph by D. Mullen Table of Contents List of Tables……………………………………………………………………….iii List of Figures………………………………………………………………………iv List of Appendices…………………………………………………………………..v Executive Summary…………………………………………………………………1 Introduction…………………………………………………………………...……..2 Methods……………………………………………………………………………...3 Results……………………………………………………………………………….7 Discussion………………………………………………………………………….10 Conclusions………………………………………………………………………...14 Literature Cited…………………………………………………………………….15 ii List of Tables Table1: Location and physical characteristics (during September 2006, and only for the riverine sites) of sample sites for the STRI fish inventory………………………………17 Table 2: Biotic Integrity classes used in assessing fish communities along with general descriptions of their attributes (Karr et al. 1986) ………………………………………18 Table 3: List of fishes potentially occurring in aquatic habitats in and around Stones River National Battlefield………………………………………………………………..19 Table 4: Fish species list (by site) of aquatic habitats at STRI (October 2004 – August 2006). MF = McFadden’s Ford, KP = King Pond, RB = Redoubt Brannan, UP = Unnamed Pond at Redoubt Brannan, LC = Lytle Creek at Fortress Rosecrans……...….22 Table 5: Fish Species Richness estimates for the 3 riverine reaches of STRI and a composite estimate for STRI as a whole…………………………………………………24 Table 6: Index of Biotic Integrity (IBI) scores for three stream reaches at Stones River National Battlefield during August 2005………………………………………………...25 Table 7: Temperature and water chemistry of four of the STRI sample sites for each sampling date…………………………………………………………………………….26 Table 8 : Total length estimates of specific habitat types at each riverine sample site.
    [Show full text]
  • Carp, Bighead (Hypophthalmichthys Nobilis)
    Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994.
    [Show full text]
  • Fish of Greatest Conservation Need
    APPENDIX G. FISH OF GREATEST CONSERVATION NEED Taxa Common Name Scientific Name Tier Opportunity Ranking Fish Alewife Alosa pseudoharengus IV a Fish Allegheny pearl dace Margariscus margarita IV b Fish American brook lamprey Lampetra appendix IV c Fish American eel Anguilla rostrata III a Fish American shad Alosa sapidissima IV a Fish Appalachia darter Percina gymnocephala IV c Fish Ashy darter Etheostoma cinereum I b Fish Atlantic sturgeon Acipenser oxyrinchus I b Fish Banded sunfish Enneacanthus obesus IV c Fish Bigeye jumprock Moxostoma ariommum III c Fish Black sculpin Cottus baileyi IV c Fish Blackbanded sunfish Enneacanthus chaetodon I a Fish Blackside darter Percina maculata IV c Fish Blotched chub Erimystax insignis IV c Fish Blotchside logperch Percina burtoni II a Fish Blueback Herring Alosa aestivalis IV a Fish Bluebreast darter Etheostoma camurum IV c Fish Blueside darter Etheostoma jessiae IV c Fish Bluestone sculpin Cottus sp. 1 III c Fish Brassy Jumprock Moxostoma sp. IV c Fish Bridle shiner Notropis bifrenatus I a Fish Brook silverside Labidesthes sicculus IV c Fish Brook Trout Salvelinus fontinalis IV a Fish Bullhead minnow Pimephales vigilax IV c Fish Candy darter Etheostoma osburni I b Fish Carolina darter Etheostoma collis II c Virginia Wildlife Action Plan 2015 APPENDIX G. FISH OF GREATEST CONSERVATION NEED Fish Carolina fantail darter Etheostoma brevispinum IV c Fish Channel darter Percina copelandi III c Fish Clinch dace Chrosomus sp. cf. saylori I a Fish Clinch sculpin Cottus sp. 4 III c Fish Dusky darter Percina sciera IV c Fish Duskytail darter Etheostoma percnurum I a Fish Emerald shiner Notropis atherinoides IV c Fish Fatlips minnow Phenacobius crassilabrum II c Fish Freshwater drum Aplodinotus grunniens III c Fish Golden Darter Etheostoma denoncourti II b Fish Greenfin darter Etheostoma chlorobranchium I b Fish Highback chub Hybopsis hypsinotus IV c Fish Highfin Shiner Notropis altipinnis IV c Fish Holston sculpin Cottus sp.
    [Show full text]
  • Fish Species of Saskatchewan
    Introduction From the shallow, nutrient -rich potholes of the prairies to the clear, cool rock -lined waters of our province’s north, Saskatchewan can boast over 50,000 fish-bearing bodies of water. Indeed, water accounts for about one-eighth, or 80,000 square kilometers, of this province’s total surface area. As numerous and varied as these waterbodies are, so too are the types of fish that inhabit them. In total, Saskatchewan is home to 67 different fish species from 16 separate taxonomic families. Of these 67, 58 are native to Saskatchewan while the remaining nine represent species that have either been introduced to our waters or have naturally extended their range into the province. Approximately one-third of the fish species found within Saskatchewan can be classed as sportfish. These are the fish commonly sought out by anglers and are the best known. The remaining two-thirds can be grouped as minnow or rough-fish species. The focus of this booklet is primarily on the sportfish of Saskatchewan, but it also includes information about several rough-fish species as well. Descriptions provide information regarding the appearance of particular fish as well as habitat preferences and spawning and feeding behaviours. The individual species range maps are subject to change due to natural range extensions and recessions or because of changes in fisheries management. "...I shall stay him no longer than to wish him a rainy evening to read this following Discourse; and that, if he be an honest Angler, the east wind may never blow when he goes a -fishing." The Compleat Angler Izaak Walton, 1593-1683 This booklet was originally published by the Saskatchewan Watershed Authority with funds generated from the sale of angling licences and made available through the FISH AND WILDLIFE DEVELOPMENT FUND.
    [Show full text]
  • Susquehanna Riyer Drainage Basin
    'M, General Hydrographic Water-Supply and Irrigation Paper No. 109 Series -j Investigations, 13 .N, Water Power, 9 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR HYDROGRAPHY OF THE SUSQUEHANNA RIYER DRAINAGE BASIN BY JOHN C. HOYT AND ROBERT H. ANDERSON WASHINGTON GOVERNMENT PRINTING OFFICE 1 9 0 5 CONTENTS. Page. Letter of transmittaL_.__.______.____.__..__.___._______.._.__..__..__... 7 Introduction......---..-.-..-.--.-.-----............_-........--._.----.- 9 Acknowledgments -..___.______.._.___.________________.____.___--_----.. 9 Description of drainage area......--..--..--.....-_....-....-....-....--.- 10 General features- -----_.____._.__..__._.___._..__-____.__-__---------- 10 Susquehanna River below West Branch ___...______-_--__.------_.--. 19 Susquehanna River above West Branch .............................. 21 West Branch ....................................................... 23 Navigation .--..........._-..........-....................-...---..-....- 24 Measurements of flow..................-.....-..-.---......-.-..---...... 25 Susquehanna River at Binghamton, N. Y_-..---...-.-...----.....-..- 25 Ghenango River at Binghamton, N. Y................................ 34 Susquehanna River at Wilkesbarre, Pa......_............-...----_--. 43 Susquehanna River at Danville, Pa..........._..................._... 56 West Branch at Williamsport, Pa .._.................--...--....- _ - - 67 West Branch at Allenwood, Pa.....-........-...-.._.---.---.-..-.-.. 84 Juniata River at Newport, Pa...-----......--....-...-....--..-..---.-
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]