STRATIFORM and ALLUVIAL Plafl NUM MINERALIZATION in THE

Total Page:16

File Type:pdf, Size:1020Kb

STRATIFORM and ALLUVIAL Plafl NUM MINERALIZATION in THE LU3 The Canadian M iner alog is t Vol. 33,pp. 1023-lM5(1995) STRATIFORMAND ALLUVIALPLAfl NUM MINERALIZATION IN THENEW CALEDONIA OPHIOLITE COMPLEX THIERRY AUGE lNI PIERREMATIRZOT BRGM'Metallogeny and Geotynarnics", B.P. 6009, 45060 Orldans Cedex 2, France ABSTRA T An unusualtype offt mineralizationhas beenfound in the New Caledoniaophiolite complex, associatedwitl stratiform chromite-bearingrocks at the baseof the cumulateseries (close to the transition zone betweendunite and pyroxene-bearing rocks) and with cbromite-richpyroxenite dykes from the samezone. Two placer deposis, both enrichedin Fl also have been recognized one derived from the chromite-rich horizons and the other a cbromitiferous beach sand of unknown origin. Chromite-bearingrocks aremarked by a very strongenrichment in Pt relative to fhe other platinum-groupelements (PGE), $'ith a rrardmunconcentration of 11.5ppm (average3.9 ppm). The Pt enrichmenttakes the form of platinum-groupminerals (PGM) included in chromite crystals and is interpretedas being pdlrar'/. The following minerals have been identified: ft-Fe{u alloys (isoferroplatinum,tulame€nite, tetraferroplatinum and undeterminedphases), cooperite, laurite, bowieite, malanite, cuprorhodsite,unnamed PGE oxides, and base-metalsulfides with PGE in solid solution. The associatedplacers show a slightly different mineral association,with isoferroplatinum,tulameenite, and rare cooperite,sperrylite, Os-k-Ru alloys and PGE oxides. A more complex paragenesishas been identified in the beach san4 with isoferroplatinum,cooperite, laurite, erlichmanite, Os-Ir-Ru alloys, bowieite, ba$ite, hollingworthire, sperrylite, stibiopalladinite, and unnamed Rh sulfide, Pt-Ru-Rh alloy and PGE oxides. This type of mineralization, which differs markedly from the Os-Ru-h mineralization previously recognized in podiform cbromitite in New Caledonia, shows several analogies with Alaskan-type PGE mineralization.The host chromitite,with typical cumulustextwes, is markedby Ti and Feh emichmentdue to derivationfrom an evolved liquid. The PGM have crystallized directly from the melt before being trappedby cbromite. Precipitationof the Pt-Fe alloys was facilitated by a low fugacity of sulfir. The presenceof the PGM in the melt has induced chromite crystal- lization, facilitating nucleation.This episodeof cbromite and PGE mineralizationin the cumulatesindicates an unusualevent in the evolution of the complex. It may correspondto inje.ctionsof a new mapa (probably of boninitic affnity) into the chamber.PGE oxideshave been recognized in the chrornititehorizons and in the placer deposits.The formation ofthese PGE oxides is related to intenselateritization affecting the primary mineralization.Some oxides are the product of oxidation of pre-existingPGM, whereasothers seem to have crystallizedin laterite.This indicatesa certainmobility of the PGE during the lateritic alteration. Keywords:platinum-group minerals, platinum-group elements, R alloys, ophiolite, ultramafic cumulates,chromitite, platinum mineralization,placer, New Caledonia" Sol"nuanr Un type inhabituel de min6ralisationen platine, associdl desamas de cbromite strafiformes,a 6t6 ddcouvertl la basede la s6riedes cumulats de la nappeophiolitique de Nouvelle-Cal6donie,i proximit6 de la zonede transitionentre dunite et cumulats i plroxbnes. On trouve dgalementune min6ralisationen platine li6e i despyrox6nites chromifOres formant desdykes recoupant cettem6me zone. Deux formationsalluvionnaires, enrichies en Pt, ont dgalement6t6 6tudi6es.L'une d6rive d'unemin6ralisation chromifbred P! I'autre, formant des sablesde plage, n'a pas de sourceconnue. I.es rocheschromifbres sont marqu6espar un fort enrichissementen Pt (avecune teneurd6passant cowamment 10 ppm) par rapportaux autres6l6ments du groupedu platine (EGP).La min6ralisationest due I la prdsencede min6rauxdu groupedu platine (MGP) inclus dansles cristauxde cbromiteet est interpr6t6ecomme primaire. On a identifi6: alliagesPt-Fe{u (isoferroplatine,tulameenite, tetraferroplatine et desphases non d6termin6es),cooperite, laurite, bowielte, malanite,cuprorhodsite, des oxydes de diff6rentsEGP et dessulfires de m6taux de baseavec des EGP en solution solide. Le placer d6rivant de cettemh6ralisation reconnueen roche a un contenuen MGP ldgbrementdiffdrent, avecisofenoplatine, tulameenite, et de rarescooperite, sperrylite, des alliages Os-Ir-Ru et desoxydes de divers EGP. La min6ralisationen sablede plage montreune paragenbseplus complexe,avec isoferroplatine, cooperite, laurite, erlicbmanite, des alliages Os-Ir-Ru, bowieite, irarsite, hollingworthite, sperrylite, stibiopalladinite et des phases notr d6termin6es(sulfure de rhodium, alliage Ft-Ru-Rh et des oxydesde diff6rentsEGP). Cesmindralisations diffbrent de manibre significative des mindralisationsen Os-Ir-Ru d6ji reconnuesdans les chromitites podiformes de Nouvelle-Calddonie;par contre,elles montrentdes analogiescertaines avec les mindralisationsd6critss dans des complexesalask6ens. Irs cbromitites h6tes,qui prdsententdes texturesde cumulagmontrent un emichissementen Ti et Feil, traduisantune cristallisationi partir d'un liquide 6volu6.Les MGP ont directementcristallisd i patir du liquide magmatique,avant d'6treinclus dansla chromite. 1024 TI{E CANADIAN MINERAIOGIST La prdcipitation des alliages Pt-Fe a €tA factlttfe par une faible fugacit6 en soufre. Ia prdsencedes MGP dans le liquide, en facittant sa nucl6ation,a induit la cristallisationde la chromite.Cette min6ralisationen cbromite- 6l6mentsdu groupedu platine correspondh une discontinuit6dans l'6volution du complexe.On proposequ'elle soit li6e i des injections d'un magma non 6volu6 (probablementd'affidt6 boninitique) dans une chambrecontenant un liquide plus diff6renci6. La formation des oxydesde diffdrentsEGP est due d I'intensealtEration lat6ritique qui affectela mindralisationprimaire. Certainsoxydes sont les produits de I'oxydation de MGP pr6existants,d'autres ont directementcristallis6 en lat6rite. Ceci att€steune certainemobilit6 desEGP au coursde l'alt6ration. Mots-cl4s.' min6raux du groupe du platine, 6l6mentsdu groupe du platine, alliags Pt-pg, ophiolite, cumulatsultrama.fiques, chromitite,min6ralisation en platine, placeg Nouvelle-Cal6donie. Irrnooucnox GEor-ocvAND GEocnEMsrRY OFIIIE MINERALZATION Platinum-group minerals, described as "platinum flakes"" were first recorded from New Caledonia in TheNew Caledoniaophiolite rwppe 1891(Felatan 1891). They were recognized in alluvial samples, with gold and cbromite, collected in the The ophiolitic nature of the extensive ultamafic Andam River, which drains metamorphicformations rocks covering about 407o of New Caledonia was of the Central Range. They were ascribed to recognizedn 1977by Aubouin et al. T\e nappe,now serpentinites,which were observedas oosheets"in these discontinuous,was emplaced in the Upper Eocene formations (Glasser 1904). More recently, platinum- @aris er al. 1979). It is mainly composedof mantle group mineralls@GM) have been describedas small rocks; threedifferent units canbe distinguished:1) The inclusionstrapped in chromitecrystals from chromitite northern massifs,composed of mantle peridotite, are and from dunite found in the mantle sequenceof the characterizedby the presenceof spinel and plagioclase New Caledonia ophiolite nappe. They consist of lherzolite and by the abundanceof chromite deposits Os-Ir-Ru alloys, Ru and Os sulfides and Ir-Cu (I\4outte1982, Johan & Aug6 1986);2) The inter- sulfides (Johan& Legendre 1980, Irgendre & Augd mediate massifs are composedof harzburgite, with 1986,Aug6 1988).These PGM belongto the mineral minor dunite and rare small occurrencesof chromite. assemblagesclassically found in ophiolitic chromitite Both the northern and intermediate massifs form (Constantinideset al. 1980. Prichard et al. 198L. klippes scatteredalong the west coast (Paris 1981). Stockman& Hlava 1984,Talkington et al. 1984, Aug6 Finally, 3) The "Massif du Sud", forming the southern 1985, 1986, Cocherie et al. L989, Nilsson 1990, extremity of the island and covering one third of its McElduff & Stumpfl 1990). Such mantle-derived surface,is composedof mantlerocks (harzburgitewith chromitite is characterizedby a chondrite-normalized minor dunite and pyroxenitedykes and small bodiesof patternof the PGE, i.e., strongly depletedin Pt and Pd, chromitite), upon which cumulate dunite, wehrlite, typical of podiform chromitite @ageet al. L982). pyroxenite and layered gabbro have locally been Recent descriptions of Pt mineralization in recognized(Paris 1981). Upper gabbros, sheeted dykes ophiolitic rocks and in placersderived from ophiolites and pillow lava are not presentin the New Caledonia (Prichard et al. 1.986,Prichard & Tarkian 1988, ophiolite nappe. Burgath 1988, Hagen et al. 1990, Comivaux & Laflamme 1990,Ohnenstetter et al. l99l) led us to The PiroguesRiver area investigatethe potential for PGE concentrationin the New Caledoniaophiolite. A geochemicalexploration The mineralization of the Pirogues River @g. 1) survey,conducted wifhin the framework of a research was discoveredduring the exploration survey. Very project on natural resources,and s6asis.:ng in the high Pt contentswere recorded in streamsediments and collection and analysis of stream sediment,laterite, river deposits. Detailed mapping of the area and alluvial concentrateand rock samplesfor the PGE, led sampling of the different rock types facilitated the to the discovery of several types of ft-rich PGE discoveryof the primary mineralization. concentrations,unusual in ophiolites. Two of these, The mineralized
Recommended publications
  • Mineral Profile
    Platinum September 2009 Definition, mineralogy and Pt Pd Rh Ir Ru Os Au nt Atomic 195.08 106.42 102.91 192.22 101.07 190.23 196.97 deposits weight opme vel Atomic Definition and characteristics 78 46 45 77 44 76 79 de number l Platinum (Pt) is one of a group of six chemical elements ra UK collectively referred to as the platinum-group elements Density ne 21.45 12.02 12.41 22.65 12.45 22.61 19.3 (gcm-3) mi (PGE). The other PGE are palladium (Pd), iridium (Ir), osmium e Melting bl (Os), rhodium (Rh) and ruthenium (Ru). Reference is also 1769 1554 1960 2443 2310 3050 1064 na point (ºC) ai commonly made to platinum-group metals and to platinum- Electrical st group minerals, both often abbreviated to PGM. In this su resistivity r document we use PGM to refer to platinum-group minerals. 9.85 9.93 4.33 4.71 6.8 8.12 2.15 f o (micro-ohm re cm at 0º C) nt Chemically the PGE are all very similar, but their physical Hardness Ce Minerals 4-4.5 4.75 5.5 6.5 6.5 7 2.5-3 properties vary considerably (Table 1). Platinum, iridium (Mohs) and osmium are the densest known metals, being significantly denser than gold. Platinum and palladium are Table 1 Selected properties of the six platinum-group highly resistant to heat and to corrosion, and are soft and elements (PGE) compared with gold (Au). ductile. Rhodium and iridium are more difficult to work, while ruthenium and osmium are hard, brittle and almost pentlandite, or in PGE-bearing accessory minerals (PGM).
    [Show full text]
  • ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
    ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg CHROMITITES OF THE BUSHVELD COMPLEX- PROCESS OF FORMATION AND PGE ENRICHMENT J.A. KINNAIRD, F.J. KRUGER, P.A.M. NEX and R.G. CAWTHORN INFORMATION CIRCULAR No. 369 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT by J. A. KINNAIRD, F. J. KRUGER, P.A. M. NEX AND R.G. CAWTHORN (Department of Geology, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, Johannesburg, South Africa) ECONOMIC GEOLOGY RESEARCH INSTITUTE INFORMATION CIRCULAR No. 369 December, 2002 CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT ABSTRACT The mafic layered suite of the 2.05 Ga old Bushveld Complex hosts a number of substantial PGE-bearing chromitite layers, including the UG2, within the Critical Zone, together with thin chromitite stringers of the platinum-bearing Merensky Reef. Until 1982, only the Merensky Reef was mined for platinum although it has long been known that chromitites also host platinum group minerals. Three groups of chromitites occur: a Lower Group of up to seven major layers hosted in feldspathic pyroxenite; a Middle Group with four layers hosted by feldspathic pyroxenite or norite; and an Upper Group usually of two chromitite packages, hosted in pyroxenite, norite or anorthosite. There is a systematic chemical variation from bottom to top chromitite layers, in terms of Cr : Fe ratios and the abundance and proportion of PGE’s. Although all the chromitites are enriched in PGE’s relative to the host rocks, the Upper Group 2 layer (UG2) shows the highest concentration.
    [Show full text]
  • The Bushveld Igneous Complex
    The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad.
    [Show full text]
  • Detrital Platinum-Group Minerals (PGM) in Rivers of the Bushveld Complex, South Africa – a Reconnaissance Study
    Detrital Platinum-Group Minerals (PGM) in Rivers of the Bushveld Complex, South Africa – A Reconnaissance Study Thomas Oberthür, Frank Melcher, Lothar Gast, Christian Wöhrl and Jerzy Lodziak Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany e-mail: [email protected] Introduction Regional geology The initial major discovery of platinum in Sampling concentrated on stream the Bushveld Complex, which subsequently led to sediments of rivers in the vicinity of the original the discovery of the Merensky Reef, was made in discovery of the Merensky Reef on the farm 1924 by panning in a river bed on the farm Maandagshoek close to Burgersfort in the Eastern Maandagshoek in the Eastern Bushveld (Merensky Bushveld (Fig. 1). The localities investigated by 1924, 1926, Wagner 1929, Cawthorn 1999a, 1999b, Cawthorn (1999b, 2001), i. e. those documented by 2001). Wagner (1929) also reports on a number of Merensky (1924) as Pt-bearing, and additional alluvial diggings in the Bushveld Complex that places along the Moopetsi river were sampled. The produced some platinum. However, as mining river valley runs approximately north-south, commenced on the rich pipes and reef-type deposits subparallel to the layering of the Mafic Phase of the of the Bushveld, alluvial PGM soon became Bushveld Complex, and is between 2 and 3 km forgotten and no published information on the wide. On the farm Maandagshoek, the Merensky placer PGM is available. Cawthorn (1999b, 2001) Reef and the UG2 are about 2 km apart and crop performed geochemical investigations of stream- out on the western and eastern side, respectively, of sediments at and close to the 1924 discovery site the Moopetsi river.
    [Show full text]
  • Platinum-Group Element and Minerals in the Lower and Middle Group Chromitites of the Western Bushveld Complex, South Africa
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Platinum-group element and minerals in the Lower and Middle Group chromitites of the western Bushveld Complex, South Africa Junge, M.; Oberthür, T.; Osbahr, I.; Gutter, P.; Originally published: August 2016 Mineralium Deposita 51(2016)7, 841-852 DOI: https://doi.org/10.1007/s00126-016-0676-6 Perma-Link to Publication Repository of HZDR: https://www.hzdr.de/publications/Publ-26567 Release of the secondary publication based on the publisher's specified embargo time. Platinum-group elements and minerals in the Lower and Middle Group chromitites of the western Bushveld Complex, South Africa Malte Junge1, Thomas Oberthür1, Inga Osbahr2 and Paul Gutter3 1Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany; [email protected] 2Helmholtz Institute Freiberg for Resource Technology, Halsbrücker Strasse 34, 09599 Freiberg, Germany 3SYLVANIA Platinum Ltd., P.O. Box 976, Florida Hills 1716, South Africa Abstract The chromitites of the Bushveld Complex in South Africa contain vast resources of platinum- group elements (PGE). However, knowledge of the distribution and the mineralogical siting of the PGE in the Lower Group (LG) and Middle Group (MG) chromitite seams of the Bushveld Complex is limited. We studied concentrates from the LG-6 and MG-2 chromitites of the western Bushveld Complex by a variety of microanalytical techniques. The dominant PGM are sulfides, namely laurite, cooperite-braggite and malanite-cuprorhodsite, followed by PGE-sulfarsenides, sperrylite, and Pt-Fe alloys. Laurite is the most abundant PGM (vol%). The matching sets of PGM present in the LG and MG chromitites of both the western and the eastern Bushveld Complex, and in the UG-2 chromitite, show strong similarities which support the assumption of a characteristic and general chromitite-related PGM assemblage.
    [Show full text]
  • Braggite (Pt, Pd, Ni)S
    Braggite (Pt, Pd, Ni)S c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Tetragonal. Point Group: 4/m or 4. As prisms, to 2 cm, and rounded grains. Twinning: Rarely observed. Physical Properties: Hardness = n.d. VHN = 946–1064, 997 average (100 g load). D(meas.) = ∼10 D(calc.) = 9.383 Optical Properties: Opaque. Color: White in reflected light. Luster: Metallic. Anisotropism: Distinct, in purplish and pinkish shades of gray and brown. R1–R2: (400) 41.3–41.8, (420) 41.8–42.4, (440) 42.1–43.0, (460) 42.4–43.4, (480) 42.5–43.8, (500) 42.7–44.1, (520) 42.7–44.2, (540) 42.6–44.2, (560) 42.5–44.2, (580) 42.4–44.2, (600) 42.3–44.1, (620) 42.2–44.1, (640) 41.9–44.0, (660) 41.9–43.9, (680) 41.9–43.8, (700) 41.5–43.8 Cell Data: Space Group: P 42/m. a = 6.367 c = 6.561 Z = 8 X-ray Powder Pattern: Potgietersrus district, South Africa; can be confused with vysotskite. 2.86 (100), 2.93 (30), 2.64 (30), 1.852 (30), 1.423 (30), 1.713 (20), 1.595 (2) Chemistry: (1) (2) (1) (2) Pt 63.2 62.1 Ni 4.4 2.0 Pd 15.4 19.0 S 17.4 16.9 Total 100.4 100.0 (1) Potgietersrus district, South Africa; by electron microprobe, corresponding to (Pt0.60Pd0.27 Ni0.14)Σ=1.01S1.00. (2) Stillwater complex, Montana, USA; by electron microprobe, corresponding to (Pt0.60Pd0.34Ni0.06)Σ=1.00S1.00.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • A Short Geological Review of the Bushveld Complex by R
    A Short Geological Review of the Bushveld Complex By R. P. Schouwstra and E. D. Kinloch Amplats Research Centre, PO Box 6540, Homestead, 1412, South Africa and C. A. Lee Amplats Geological Services, PO Box 62179, Marshalltown, Johannesburg, 2107, South Africa At present most of the worldwide supply of cooled slowly from molten magma, deep within platinum and palladium and the associated ele- the earth. Silicate minerals in fixed proportions ments is obtained from mines within four major crystallised and aggregated to form the final layered igneous intrusions. These are the Bushveld igneous rocks. The composition of the minerals Complex in South Africa, the Stillwater Complex changed with the slow drop in temperature in the in the U.S.A., the Great Dyke in Zimbabwe, and magma brought about by cooling. The first silicate the Noril’sk/Talnakh Complexes in Russia (1). minerals which crystallised and settled out are rich These layered intrusions consist of rocks which in magnesium and iron (the ‘mafic’ parts of the The location ofplatinum mines are as follows: A is RPM Amandelbult, U is RPM Union, R is RPM Rustenburg, L is Lebowa. P is PPRust, N is Northam, I is Impala and W/E is Western & Eastern Plats Fig. I Simplified geological map of the Bushveld Complex (2). The green shades represent the Bushveld rocks, the rose shades are the granitic cover rocks, the blue and brown shades represent the pre- and post-Bushveld rock^, respectively. The red circular shape near Rustenburg is the Pilanesberg alkali complex. E = eastern limb, W = western limb, N = northern or Potgietersrus limb;f are faults Plutinum MhLr Reu, 2000, 44, (1).
    [Show full text]
  • Chapter 9 Ore Mineral Assemblages
    CHAPTER 9 ORE MINERAL ASSEMBLAGES OCCURRING IN IGNEOUS ROCKS AND VE·IN DEPOSITS 9.1 INTRODUCTION Ore minerals are not uniformly distributed in the earth's crust but generally occur in associations that are characteristic in their mineralogy, textures, and relationships to specific rock types. The existence of these characteristic associations, each containing its own typical suite of ore minerals, con­ siderably simplifies the task ofthe ore microscopist, because it permits him or her to anticipate the minerals that are likely to be encountered once the general association has been recognized. The grouping of ores into charac­ teristic associations is, ofcourse, a useful empirical rule of thumb but is not intended as a rigid scientific classification. Such an empirical division also has the advantage that no genetic models are implied, even though a similar mode oforigin is likely. Indeed, these associations largely result from the for­ mation of the ores under characteristically limited physico-chemical con­ ditions, the nature ofwhich may often be inferred from detailed study ofthe ores. Chapters 9 and 10 present brief discussions of the most commonly encountered ore mineral assemblages and their textures, with the ores cate­ gorized according to their most widely recognized types. These types represent rather broad generalizations, and there is no attempt to make the finer sub­ divisions presented by Cox and Singer (1986). The various sections are not intended as exhaustive discussions ofore petrology, but they do include the currently accepted theories on ore genesis, because the authors believe that an understanding of ore mineralogy and textures is enhanced by some knowl­ edge ofthe ore-forming process .Thesections included should prepare the stu­ dent for most of the ore mineral assemblages encountered in an introductory course and in most ore sampl es that he or she might examine: however.
    [Show full text]
  • Exploration for Platinum-Group Minerals in Till: a New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization
    minerals Article Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization Sheida Makvandi *, Philippe Pagé, Jonathan Tremblay and Réjean Girard IOS Services Géoscientifiques Inc., 1319 Boulevard Saint-Paul, Chicoutimi, QC G7J 3Y2, Canada; [email protected] (P.P.); [email protected] (J.T.); [email protected] (R.G.) * Correspondence: [email protected]; Tel.: +1-418-698-4498 Abstract: The discovery of new mineral deposits contributes to the sustainable mineral industrial development, which is essential to satisfy global resource demands. The exploration for new min- eral resources is challenging in Canada since its vast lands are mostly covered by a thick layer of Quaternary sediments that obscure bedrock geology. In the course of the recent decades, indicator minerals recovered from till heavy mineral concentrates have been effectively used to prospect for a broad range of mineral deposits including diamond, gold, and base metals. However, these methods traditionally focus on (visual) investigation of the 0.25–2.0 mm grain-size fraction of unconsolidated sediments, whilst our observations emphasize on higher abundance, or sometimes unique occurrence of precious metal (Au, Ag, and platinum-group elements) minerals in the finer-grained fractions (<0.25 mm). This study aims to present the advantages of applying a mineral detection routine initially developed for gold grains counting and characterization, to platinum-group minerals in Citation: Makvandi, S.; Pagé, P.; <50 µm till heavy mineral concentrates. This technique, which uses an automated scanning electron Tremblay, J.; Girard, R. Exploration microscopy (SEM) equipped with an energy dispersive spectrometer, can provide quantitative min- for Platinum-Group Minerals in Till: A New Approach to the Recovery, eralogical and semi-quantitative chemical data of heavy minerals of interest, simultaneously.
    [Show full text]
  • On Cooperite, Braggite, and Vysotskitel
    AmericanfrIineralogist, Volume 63 , pages832-839, I 978 On cooperite,braggite, and vysotskitel Louts J. Cesnt, J. H. Gllus Le,rLemltn,JoHN M. SrBwnRr Canada Centre for Mineral and Energy Technology 555Booth Street, Ottawa, CanadaKl A 0GI KsNr TunNsn INP BRtnNJ' SrtNNrn Department of Geology and Geophysics, Yale Uniuersity New Hauen, Connecticut06520 Abstract phase Detailedmineralogical analyses ol cooperite,braggite, and vysotskite,together with of equilibrium studies,reveal that, though there is no uncertaintyregarding the identity cooperite(PtS;P4r/mmc), one may considerbraggite (Pt,Pd)S and vysotskitePdS to be nicfeloanmembers of an isomorphoussolid-solution series (Pd,Pt)S (P4z/ m)' Theresults also the suggestthat this solid-solutionseries (braggite series) may be subdividedby restricting namevysotskite to thosemembers with lessthan about l0 molepercent PtS. Cooperite and is only braggitecan both form at magmatictemperatures of 1000"Cor above,but vysotskite fo.ir"a at submagmatictempiratures, possibly by crystallizationfrom a residualimmiscible sulfide-richmelt or by solid-statereaction. Introduction has since been reported, but not documentedin de- Montana (Cabri Cooperite,braggite, and vysotskiteare the only Pt- tail, from the Stillwater Complex of Isles deposit, Pd sulfide minerals with ideal compositions in the and Laflamme, 1974)and the Lac des system Pt-Pd-S. Cooperite is ideally PtS, braggite Ontario (Cabri and Laflamme,1976). (Pd,Pt)S,and vysotskitePdS. All analyses,however, In this note we report new data on all three miner- of report the presenceof significantamounts of Ni, so als from the Precambrian Stillwater Complex the variations mineralogicallythey must be consideredas being in Montana. Pageet al. (1976) discussed and ultramafic the system Pt-Pd-Ni-S.
    [Show full text]