Chapter 9 Ore Mineral Assemblages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Profile
Platinum September 2009 Definition, mineralogy and Pt Pd Rh Ir Ru Os Au nt Atomic 195.08 106.42 102.91 192.22 101.07 190.23 196.97 deposits weight opme vel Atomic Definition and characteristics 78 46 45 77 44 76 79 de number l Platinum (Pt) is one of a group of six chemical elements ra UK collectively referred to as the platinum-group elements Density ne 21.45 12.02 12.41 22.65 12.45 22.61 19.3 (gcm-3) mi (PGE). The other PGE are palladium (Pd), iridium (Ir), osmium e Melting bl (Os), rhodium (Rh) and ruthenium (Ru). Reference is also 1769 1554 1960 2443 2310 3050 1064 na point (ºC) ai commonly made to platinum-group metals and to platinum- Electrical st group minerals, both often abbreviated to PGM. In this su resistivity r document we use PGM to refer to platinum-group minerals. 9.85 9.93 4.33 4.71 6.8 8.12 2.15 f o (micro-ohm re cm at 0º C) nt Chemically the PGE are all very similar, but their physical Hardness Ce Minerals 4-4.5 4.75 5.5 6.5 6.5 7 2.5-3 properties vary considerably (Table 1). Platinum, iridium (Mohs) and osmium are the densest known metals, being significantly denser than gold. Platinum and palladium are Table 1 Selected properties of the six platinum-group highly resistant to heat and to corrosion, and are soft and elements (PGE) compared with gold (Au). ductile. Rhodium and iridium are more difficult to work, while ruthenium and osmium are hard, brittle and almost pentlandite, or in PGE-bearing accessory minerals (PGM). -
STRATIFORM and ALLUVIAL Plafl NUM MINERALIZATION in THE
LU3 The Canadian M iner alog is t Vol. 33,pp. 1023-lM5(1995) STRATIFORMAND ALLUVIALPLAfl NUM MINERALIZATION IN THENEW CALEDONIA OPHIOLITE COMPLEX THIERRY AUGE lNI PIERREMATIRZOT BRGM'Metallogeny and Geotynarnics", B.P. 6009, 45060 Orldans Cedex 2, France ABSTRA T An unusualtype offt mineralizationhas beenfound in the New Caledoniaophiolite complex, associatedwitl stratiform chromite-bearingrocks at the baseof the cumulateseries (close to the transition zone betweendunite and pyroxene-bearing rocks) and with cbromite-richpyroxenite dykes from the samezone. Two placer deposis, both enrichedin Fl also have been recognized one derived from the chromite-rich horizons and the other a cbromitiferous beach sand of unknown origin. Chromite-bearingrocks aremarked by a very strongenrichment in Pt relative to fhe other platinum-groupelements (PGE), $'ith a rrardmunconcentration of 11.5ppm (average3.9 ppm). The Pt enrichmenttakes the form of platinum-groupminerals (PGM) included in chromite crystals and is interpretedas being pdlrar'/. The following minerals have been identified: ft-Fe{u alloys (isoferroplatinum,tulame€nite, tetraferroplatinum and undeterminedphases), cooperite, laurite, bowieite, malanite, cuprorhodsite,unnamed PGE oxides, and base-metalsulfides with PGE in solid solution. The associatedplacers show a slightly different mineral association,with isoferroplatinum,tulameenite, and rare cooperite,sperrylite, Os-k-Ru alloys and PGE oxides. A more complex paragenesishas been identified in the beach san4 with isoferroplatinum,cooperite, laurite, erlichmanite, Os-Ir-Ru alloys, bowieite, ba$ite, hollingworthire, sperrylite, stibiopalladinite, and unnamed Rh sulfide, Pt-Ru-Rh alloy and PGE oxides. This type of mineralization, which differs markedly from the Os-Ru-h mineralization previously recognized in podiform cbromitite in New Caledonia, shows several analogies with Alaskan-type PGE mineralization.The host chromitite,with typical cumulustextwes, is markedby Ti and Feh emichmentdue to derivationfrom an evolved liquid. -
ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg
ECONOMIC GEOLOGY RESEARCH INSTITUTE HUGH ALLSOPP LABORATORY University of the Witwatersrand Johannesburg CHROMITITES OF THE BUSHVELD COMPLEX- PROCESS OF FORMATION AND PGE ENRICHMENT J.A. KINNAIRD, F.J. KRUGER, P.A.M. NEX and R.G. CAWTHORN INFORMATION CIRCULAR No. 369 UNIVERSITY OF THE WITWATERSRAND JOHANNESBURG CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT by J. A. KINNAIRD, F. J. KRUGER, P.A. M. NEX AND R.G. CAWTHORN (Department of Geology, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, Johannesburg, South Africa) ECONOMIC GEOLOGY RESEARCH INSTITUTE INFORMATION CIRCULAR No. 369 December, 2002 CHROMITITES OF THE BUSHVELD COMPLEX – PROCESSES OF FORMATION AND PGE ENRICHMENT ABSTRACT The mafic layered suite of the 2.05 Ga old Bushveld Complex hosts a number of substantial PGE-bearing chromitite layers, including the UG2, within the Critical Zone, together with thin chromitite stringers of the platinum-bearing Merensky Reef. Until 1982, only the Merensky Reef was mined for platinum although it has long been known that chromitites also host platinum group minerals. Three groups of chromitites occur: a Lower Group of up to seven major layers hosted in feldspathic pyroxenite; a Middle Group with four layers hosted by feldspathic pyroxenite or norite; and an Upper Group usually of two chromitite packages, hosted in pyroxenite, norite or anorthosite. There is a systematic chemical variation from bottom to top chromitite layers, in terms of Cr : Fe ratios and the abundance and proportion of PGE’s. Although all the chromitites are enriched in PGE’s relative to the host rocks, the Upper Group 2 layer (UG2) shows the highest concentration. -
DOGAMI MP-20, Investigations of Nickel in Oregon
0 C\1 a: w a.. <( a.. en ::::> 0 w z <( __j __j w () en � INVESTIGATIONS OF NICKEL IN OREGON STATE OF OREGON DEPARTMENT OF GEOL.OGY AND MINERAL. IN OUSTRIES DONAL.D .A HUL.L. STATE GEOLOGIST 1978 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 State Office Building, Portland, Oregon 97201 MISCELLANEOUS PAPER 20 INVESTIGATIONS OF NICKEL IN OREGON Len Ramp, Resident Geologist Grants Pass Field Office Oregon Department of Geology and Mineral Industries Conducted in conformance with ORS 516.030 . •. 5 1978 GOVERNING BOARD Leeanne MacColl, Chairperson, Portland Talent Robert W. Doty STATE GEOLOGIST John Schwabe Portland Donald A. Hull CONTENTS INTRODUCTION -- - ---- -- -- --- Purpose and Scope of this Report Acknowledgments U.S. Nickel Industry GEOLOGY OF LATERITE DEPOSITS - -- - 3 Previous Work - - - - --- 3 Ultramafic Rocks - ----- --- 3 Composition - - -------- - 3 Distribution ------ - - - 3 Structure - 3 Geochemistry of Nickel ---- 4 Chemical Weathering of Peridotite - - 4 The soi I profile ------- 5 M i nero I ogy -- - ----- 5 Prospecting Guides and Techniques- - 6 OTHER TYPES OF NICKEL DEPOSITS - - 7 Nickel Sulfide Deposits- - - - - - 7 Deposits in Oregon 7 Other areas --- 8 Prospecting techniques 8 Silica-Carbonate Deposits - -- 8 DISTRIBUTION OF LATERITE DEPOSITS - ------ 9 Nickel Mountain Deposits - - ------ --------- 9 Location --------------- --- 9 Geology - ------- ----- 11 Ore deposits ----------- - -- 11 Soil mineralogy - ------- 12 Structure --- ---- ---- 13 Mining and metallurgy ------------ ---- 13 Production- -
Cobalt Mineral Ecology
American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods. -
The Bushveld Igneous Complex
The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad. -
Detrital Platinum-Group Minerals (PGM) in Rivers of the Bushveld Complex, South Africa – a Reconnaissance Study
Detrital Platinum-Group Minerals (PGM) in Rivers of the Bushveld Complex, South Africa – A Reconnaissance Study Thomas Oberthür, Frank Melcher, Lothar Gast, Christian Wöhrl and Jerzy Lodziak Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany e-mail: [email protected] Introduction Regional geology The initial major discovery of platinum in Sampling concentrated on stream the Bushveld Complex, which subsequently led to sediments of rivers in the vicinity of the original the discovery of the Merensky Reef, was made in discovery of the Merensky Reef on the farm 1924 by panning in a river bed on the farm Maandagshoek close to Burgersfort in the Eastern Maandagshoek in the Eastern Bushveld (Merensky Bushveld (Fig. 1). The localities investigated by 1924, 1926, Wagner 1929, Cawthorn 1999a, 1999b, Cawthorn (1999b, 2001), i. e. those documented by 2001). Wagner (1929) also reports on a number of Merensky (1924) as Pt-bearing, and additional alluvial diggings in the Bushveld Complex that places along the Moopetsi river were sampled. The produced some platinum. However, as mining river valley runs approximately north-south, commenced on the rich pipes and reef-type deposits subparallel to the layering of the Mafic Phase of the of the Bushveld, alluvial PGM soon became Bushveld Complex, and is between 2 and 3 km forgotten and no published information on the wide. On the farm Maandagshoek, the Merensky placer PGM is available. Cawthorn (1999b, 2001) Reef and the UG2 are about 2 km apart and crop performed geochemical investigations of stream- out on the western and eastern side, respectively, of sediments at and close to the 1924 discovery site the Moopetsi river. -
The Opaque Mineralogy of Metasedimentary Rocks of the Meguma Group, Beaverbank-Rawdon Area, Nova Scotia S
Document généré le 2 oct. 2021 11:42 Atlantic Geology The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia S. J. Haysom, R. J. Horne et G. Pe-Piper Volume 33, numéro 3, fall 1997 URI : https://id.erudit.org/iderudit/ageo33_3err01 Aller au sommaire du numéro Éditeur(s) Atlantic Geoscience Society ISSN 0843-5561 (imprimé) 1718-7885 (numérique) Découvrir la revue Citer ce document Haysom, S. J., Horne, R. J. & Pe-Piper, G. (1997). The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia. Atlantic Geology, 33(3), 67–68. All rights reserved © Atlantic Geology, 1997 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ A tlantic Geology 249 ERRATUM The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia S. J. Haysom1, R.J. Home2 and G. Pe-Piper1 1 Department of Geology, Saint M ary’s University, Halifax, Nova Scotia B3H 3C 3, Canada 2Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2 T9, Canada Date Received January 15, 1996 Date Accepted June 13, 1997 (Ref.: 1997. -
Platinum-Group Element and Minerals in the Lower and Middle Group Chromitites of the Western Bushveld Complex, South Africa
Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Platinum-group element and minerals in the Lower and Middle Group chromitites of the western Bushveld Complex, South Africa Junge, M.; Oberthür, T.; Osbahr, I.; Gutter, P.; Originally published: August 2016 Mineralium Deposita 51(2016)7, 841-852 DOI: https://doi.org/10.1007/s00126-016-0676-6 Perma-Link to Publication Repository of HZDR: https://www.hzdr.de/publications/Publ-26567 Release of the secondary publication based on the publisher's specified embargo time. Platinum-group elements and minerals in the Lower and Middle Group chromitites of the western Bushveld Complex, South Africa Malte Junge1, Thomas Oberthür1, Inga Osbahr2 and Paul Gutter3 1Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany; [email protected] 2Helmholtz Institute Freiberg for Resource Technology, Halsbrücker Strasse 34, 09599 Freiberg, Germany 3SYLVANIA Platinum Ltd., P.O. Box 976, Florida Hills 1716, South Africa Abstract The chromitites of the Bushveld Complex in South Africa contain vast resources of platinum- group elements (PGE). However, knowledge of the distribution and the mineralogical siting of the PGE in the Lower Group (LG) and Middle Group (MG) chromitite seams of the Bushveld Complex is limited. We studied concentrates from the LG-6 and MG-2 chromitites of the western Bushveld Complex by a variety of microanalytical techniques. The dominant PGM are sulfides, namely laurite, cooperite-braggite and malanite-cuprorhodsite, followed by PGE-sulfarsenides, sperrylite, and Pt-Fe alloys. Laurite is the most abundant PGM (vol%). The matching sets of PGM present in the LG and MG chromitites of both the western and the eastern Bushveld Complex, and in the UG-2 chromitite, show strong similarities which support the assumption of a characteristic and general chromitite-related PGM assemblage. -
Braggite (Pt, Pd, Ni)S
Braggite (Pt, Pd, Ni)S c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Tetragonal. Point Group: 4/m or 4. As prisms, to 2 cm, and rounded grains. Twinning: Rarely observed. Physical Properties: Hardness = n.d. VHN = 946–1064, 997 average (100 g load). D(meas.) = ∼10 D(calc.) = 9.383 Optical Properties: Opaque. Color: White in reflected light. Luster: Metallic. Anisotropism: Distinct, in purplish and pinkish shades of gray and brown. R1–R2: (400) 41.3–41.8, (420) 41.8–42.4, (440) 42.1–43.0, (460) 42.4–43.4, (480) 42.5–43.8, (500) 42.7–44.1, (520) 42.7–44.2, (540) 42.6–44.2, (560) 42.5–44.2, (580) 42.4–44.2, (600) 42.3–44.1, (620) 42.2–44.1, (640) 41.9–44.0, (660) 41.9–43.9, (680) 41.9–43.8, (700) 41.5–43.8 Cell Data: Space Group: P 42/m. a = 6.367 c = 6.561 Z = 8 X-ray Powder Pattern: Potgietersrus district, South Africa; can be confused with vysotskite. 2.86 (100), 2.93 (30), 2.64 (30), 1.852 (30), 1.423 (30), 1.713 (20), 1.595 (2) Chemistry: (1) (2) (1) (2) Pt 63.2 62.1 Ni 4.4 2.0 Pd 15.4 19.0 S 17.4 16.9 Total 100.4 100.0 (1) Potgietersrus district, South Africa; by electron microprobe, corresponding to (Pt0.60Pd0.27 Ni0.14)Σ=1.01S1.00. (2) Stillwater complex, Montana, USA; by electron microprobe, corresponding to (Pt0.60Pd0.34Ni0.06)Σ=1.00S1.00. -
The Opaque Mineralogy of Metasedimentary Rocks of the Meguma Group, Beaverbank-Rawdon Area, Nova Scotia
A tlantic G eology 105 The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia S.J. Haysom1, RJ. Horne2 and G. Pe-Piper1 departm ent of Geology, Saint Mary’s University, Halifax, Nova Scotia B3H 3C 3, Canada 2Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2 T9, Canada Date Received January 15, 1996 Date Accepted June 13, 1997 Opaque mineralogy of a representative cross-section of deformed and metamorphosed turbiditic slate and metasandstone of the Meguma Group has been investigated optically and by electron microprobe. A strong strati graphic control over the presence and abundance of certain opaque minerals is recognized, -which may prove useful for environmental evaluation such as acid drainage potential. Abundant pyrite and pyrrhotite in the lower Halifax Formation reflect concentration of early diagenetic pyrite resulting from the reduction of seawater sulphate under anoxic conditions. Magnetite is restricted to the Goldenville Formation. Ilmenite and rutile occur through out the succession, and minor chalcopyrite, arsenopyrite, covellite, hematite and glaucodot were also noted. Pyrrhotite and ilmenite, as well as spessartine, chlorite and chloritoid porphyroblasts, developed during pro grade metamorphism before and/or during cleavage formation, which also resulted in removal of early diagenetic pyrite. Later pyrite formed by replacement or remobilization of pyrrhotite during retrograde metamorphism. Colloform pyrite, arsenopyrite and chalcopyrite are the youngest mineral phases. On a dtudid la structure mindralogique opaque d’un echantillon representatif de mdtagres et d’ardoise turbiditique deformes et metamorphises du groupe de Meguma, optiquement ainsi qu’a l’aide d’une microsonde dlectronique. -
Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________