17-Briggs WCRP Final

Total Page:16

File Type:pdf, Size:1020Kb

17-Briggs WCRP Final Observing the Climate System – now and in the future Prof. Stephen Briggs Chair, GCOS Steering Committee Dept. of Chemistry, Cambridge University & Dept. of Meteorology Reading University Credit: Victor & Kennel, Nature Climate Change, 2014. Atmosphere Physical - Surface Physical - subsurface Biogeochemical Surface •Ocean surface heat flux •Subsurface currents •Inorganic carbon •Precipitation •Sea ice •Subsurface salinity •Nitrous oxide •Pressure •Sea level •Subsurface temperature •Nutrients •Radiation budget •Sea state •Ocean colour •Temperature Ocean •Sea surface currents Biological/ecosystems •Oxygen •Water vapour •Sea surface salinity •Transient tracers •Wind speed and direction •Sea surface stress •Marine habitat properties •Plankton Upper-air •Sea surface temperature •Cloud properties •Earth radiation budget Hydrosphere Biosphere •Lightning Essential •Groundwater •Above-ground biomass •Temperature •Lakes •Albedo •Water vapour Climate •River discharge •Evaporation from land •Wind speed and direction Cryosphere •Fire •Fraction of absorbed Atmospheric Composition Variables •Glaciers photosynthetically active •Aerosol and ozone precursors •Ice sheets and ice shelves radiation (FAPAR) •Aerosols properties Land •Permafrost •Land cover •Carbon dioxide, methane and •Snow •Leaf area index other greenhouse gases ECV •Soil carbon •Ozone Anthroposphere •Soil moisture •Anthropogenic Greenhouse gas fluxes •Land surface temperature •Anthropogenic water use Ocean Precipitation, Cloud Acidification Carbon Properties, Deforestation Dioxide, Water Vapour Methane Sea Level Rise Surface Mitigation Fisheries Temperature Ecosystem Loss Water Carbon Sea Surface Soil Moisture, River & Subsurface Soil Carbon, Discharge, Salinity, Inorganic Above-ground Lakes, Sea Level, Biomass, Fire, Groundwater, Carbon Sea Surface GHG Fluxes Temperature Cryosphere, Water use Radiation Budgets, Coral Bleaching Temperature Wind speed & Agriculture direction Human Health Systemic Risks Floods Energy Security Droughts Ocean Surface Albedo, Heat Flux, Sea Latent and Slow Economic Water Resources Surface & Sensible Heat Subsurface fluxes, Land Development Storms Temperature, Surface Temperature Temperature Heat waves Understanding and monitoring Climate Cycles Monitoring contributing to the Paris Agreement & Global Stocktake Glacier Mass Mean Temperature Ocean Acidity Atmospheric CO2 Balance Global mean temperature anomalies, with respect to the 1850–1900 Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations Globally averaged mole fraction (measure of concentration), Mean cumulative mass balance of all baseline, for the five global datasets (Source: UK Met Office Hadley obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over from1984 to 2016, of CO2 in reported glaciers (blue line) and the Centre) 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration parts per million (left), CH4 in parts per billion (middle) and reference glaciers (red line). SOURCE: world (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii N2O in parts per billion (right). The red line is the monthly Ocean Timeseries Data Organization & Graphical System (HOT-DOGS). (Source: US mean mole fraction with the seasonal variations removed; the glacier monitoring service http://wgms.ch/ National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017) blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch) Ocean Heat Content Sea Ice Extent Sea Level Arctic Antarctic Change Global ocean heat content change (x 1022 J) for the 0–700 metre Global mean sea-level time series (with seasonal cycle removed), layer: three-monthly means (red), and annual (black) and 5-year January 1993–January 2018, from satellite altimetry multi-missions. (blue) running means, from the US National Oceanic and Atmospheric Data from AVISO September sea-ice extent for the Arctic, and (right) September sea-ice extent for the Antarctic. Percentage of Administration (NOAA) dataset. (Source: prepared by WMO using (Source: Collecte- Localisation-Satellite (CLS) – Laboratoire d’Etudes long-term average of the reference period 1981–2010 (Source: prepared by WMO using data from the US data from NOAA National Centers for Environmental Information) en Géophysique et Océanographie Spatiales (LEGOS)) National Snow and Ice Data Center) GCOS encourages Data Rescue GCOS Cooperation Mechanism Argo is one core network, with Deep Argo in pilot mode. Argo is one core network, with Deep Argo in pilot mode. Global River Discharge Data • While river discharge is measured, in some parts of the world river discharge data is not routinely exchanged • Measurements and data exchange are coordinated internationally by WMO • The data is held by the Global Runoff Data Centre (GRDC) in Koblenz, Germany Arctic Permafrost Monitoring Glaciers distinct from the Greenland & Antarctic Ice Sheets 215,000 glaciers · 158,000 km3 · 0.32 m potential SLE Farinotti et al. (2019), Nature Geoscience www.swisseduc.ch/glaciers/ intro data methods results take home Annual glacier contributions to sea-level rise 1961-2016 Global ΔM 2011-16: -335 Gt yr-1 about 1 mm SLE yr-1 (3 x remaining ice of the Alps)Zemp et al. (2019) Shepherd et al,. Nature, June 2018. CPOM, Univ of Leeds. intro data methods results take home Main contributions to sea-level budget 2004-2015 Antarctic Ice Sheet residuals Greenland thermal expansion Ice Sheet glaciers Glacier data from Zemp et al. (2019), other values from Cazenave et al. (2018), observed GMSLR: 3.5 mm per year Thermal expansion + Ocean mass change regional sea-level trends mm p.a. Space-based CO2 and CH4 Measurements Provide Increased Coverage and Resolution Spatially-resolved estimates of the column-averaged CO2 and CH4 dry air mole fractions, XCO2 and XCH4, like those from NASA’s Orbiting Carbon Observatory-2 (OCO-2) and Japan’s Greenhouse gases Observing SATellite (GOSAT) are less precise and accurate than ground- based in situ data but provide high spatial and temporal resolution and greater coverage of the globe. ppm CO2 XCO2 measurements collected by OCO-2 in May 2016. Persistent spatial anomalies in OCO-2 XCO2 estimates for 201 22 5 – 2018. Yellow regions have persistently high CO2. A System Approach for Atmospheric Inventories Measurements Models Products UNFCCC/COP25 Japan Pavilion Seminar 23 Aeolus: Atmospheric Dynamics Weak Polar Vortex Subtropical Jet Streams Subtropical Jet Polar Jet Stream seen from east (blue); seen from east (blue) seen from west seen from east from west (red) (blue) 27 February 2019 © ESA/ECMWF ESA UNCLASSIFIED - For Official Use m/s NoRSC’19 | 18 Sept. 2019 | Slide 24 Biomass Mission Measure forest biomass and height (200 m. pixel) Payload P-Band radar Orbit SSO, alt: 666 km; LTAN: 06h00 Satellite 1250 Kg Consortium Prime: ADS-UK, Instrument: ADS-DE Launch 2022 ESA UNCLASSIFIED - For Official Use NoRSC’19 | 18 Sept. 2019 | Slide 25 Sentinel Status S-1 S-2 S-3 S-4 S-5P S-5 S-6 Radar High Res. Medium Atmospheric Atmospheric Atmospheric Altimetry Optical Res. Optical Chemistry Chemistry Chemistry & Altimetry (GEO) (LEO) (LEO) A A A A A A A 3 Apr. 2014 23 Jun. 2015 16 Feb. 2016 2022 13 Oct. 2017 2021 2020 B B B B B B 25 Apr. 2016 6 Mar. 2017 25 Apr. 2018 2027 2027 2025 C C C C 2022/23 2022/23 2023 > 2027 D D D > 2022/23 > 2022/23 > 2023 ESA UNCLASSIFIED - For Official Use NoRSC’19 | 18 Sept. 2019 | Slide 26 Global fires detected in August 2018 compared to August 2019 The Sentinel-3 World Fire Atlas recorded 79 000 wildfires in August 2019, compared to just over 16 000 fires during the same period in 2018. Sentinel-5p and Sentinel-3: Amazon Fires See World Fire Atlas at: See: Monitoring air pollution from fires https://s3worldfireatlas.esa.int/ ESA UNCLASSIFIED - For Official Use NoRSC’19 | 18 Sept. 2019 | Slide 28 Sub-kilometric soil moisture (SMOS+S1 -500m) April May 2016 June 2016 July 2016 2016 Monsoon Aug. 2016 Sept. Oct. 2016 Nov. 2016 Dec. 2016 Karnataka 2016 S.W. India www.satykut.com Courtesy Al Bitar & Tomer ESA UNCLASSIFIED - For Official Use Monsoon NoRSC’19 | 18 Sept. 2019 | Slide 29 Observation, Infrastructure & Information Weather, Climate, Water and related GCOS Systems environmental Services and Applications Sensing Data Records Delivery of Services Decision Making •Observation of the Earth •Preparation of Climate •Delivery of targeted and Implementation System Data records information for specific •Implement actions based •Archiving, applications or to inform on the information •Reanalysis, decisions •Production of long GCOS supports datasets observations and •Climate projections production of climate the data records that underpin climate service delivery, e.g. for weather, hydrology, ocean cryosphere and biosphere. Data Managers, Modeler, Network and system Service companies & Re-Analyses (ECMFW, National authorities, operators: e.g. national agencies, (Copernicus, ESRI, NCEP, DWD, JMA, insurance companies, meteorological services, Google Maps, national Research, data Providers, private sector satellite agencies meteorological services) etc.) Feedback on user needs and gaps in observational and data systems Reanalysis data and derived products Before… Science inputs Raw materials Consolidation of Geophysical Models Decision Making - data sources the famous “users” Geospatially Referenced •Observation of the - “wholesale Earth System services” Continuous fields - Government as output - Policy • Satellite data f(x,y,z,t,,x0,x1…) •
Recommended publications
  • The Global Atmosphere Watch Programme 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses
    THE GLOBAL ATMOSPHERE WATCH PROGRAMME 25 YEARS OF GLOBAL COORDINATED ATMOSPHERIC COMPOSITION OBSERVATIONS AND ANALYSES WMO-No. 1143 WMO-No. 1143 © World Meteorological Organization, 2014 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] ISBN 978-92-63-11143-2 Cover illustrations: The two photos show the changes in ozone observations from 1957 (International Geophysical Year) until now. On the left, Dobson instruments are being calibrated at the Tateno station in Japan before they are deployed to their individual stations. On the right, Dobson instruments have been set up for a modern intercomparison study. The spectrophotometers are the same, but the measurement and calibration process are now monitored by computers. NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion what- soever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.
    [Show full text]
  • Global Atmosphere Watch GAW
    AREP GAW Global Atmosphere Watch GAW Liisa Jalkanen Atmospheric Environment Research (AER) Division WMO Secretariat AREP GAW World Meteorological Organization Independent technical UN agency 189 Members manage through WMO Congress and Executive Council Secretariat in Geneva (staff 280) Technical Departments Observing and Information Systems (OBS) Climate and Water (CLW) Weather and Disaster Risk Reduction Services (WDS) Research (RES) Atmospheric Research and Environment Branch (ARE) Atmospheric Environment Research Division (AER) Global Atmosphere Watch (GAW) AREP GAW THE GAW MISSION • Systematic long-term monitoring of atmospheric chemical and physical parameters globally • Analysis and assessment • Development of predictive capability (GURME and Sand and Dust Storm Warning System) AREP GAW Components of the GAW Programme OPAG EPAC Scientifc Advisory Groups Expert Groups Ozone | UV | GHG | RG | PC ET-WDC Chapter 2.3 JSSC Aerosols | GURME Administration WMO/GAW IGACO Offices Management Ozone/UV | GHG | Air Quality | Aerosols Chapter 2.5 Secretariat NMHSs Central QA/SACs WDCs & GAWSIS CCLs WOUDC | WDCGG | WDCA Facilities WCCs | RCCs Chapter 2.4 WRDC | WDCPC | WDC-RSAT Observing Contributing GAW Stations Satellites Systems Networks Global | Regional Aircraft Chapter 3 Contributing Parties to the Systems Programs Operational Research Users & Conventions GEOSS | GCOS IGAC | SOLAS Centers Projects Applications UNFCCC | Vienna C. GMES | … iLEAPS | … AREP GAW Observations • Weather related observations (OBS) • Climate observations (GCOS) • Atmospheric
    [Show full text]
  • Global Monitoring Division Collaborations/Stakeholders
    Global Monitoring Division Collaborations/Stakeholders Contents: page • Joint Institutes...................................................................2 • NOAA Laboratories and Divisions…………………………………….2 • NOAA Programs…………………………………………………………………4 • Other Federal Agencies……………………………………………………..4 • State and Municipal Agencies……………………………………………9 • National and International Networks……………………………….10 • Observatory Partnerships…………………………………………………11 • International Partnerships………………………………………………..15 • Other Research Collaborations……………………………………….18 2 GLOBAL MONITORING DIVISION COLLABORATIONS 2013- Present JOINT INSTITUTES: • Cooperative Institute for Research in Environmental Sciences (CIRES): NOAA Cooperative Institute at the University of Colorado. Extensive joint research and atmospheric monitoring projects are conducted at the Boulder facilities. • Cooperative Institute for Arctic Research (CIFAR): NOAA Cooperative Institute at the University of Alaska. Cooperative research in Arctic atmospheric science at the Barrow and Boulder facilities. • Cooperative Institute for Mesoscale Meteorological Studies (CIMMS): NOAA Cooperative Institute at the University of Oklahoma. GMD provides large amounts of high quality data for modelers. • Cooperative Institute for Research in the Atmosphere (CIRA): NOAA Cooperative Institute at the Colorado State University. Joint research projects are conducted at the Boulder facility. • Joint Institute for Marine and Atmospheric Research (JIMAR): NOAA Cooperative Institute at the University of Hawaii. Studies of
    [Show full text]
  • GAW Report No. 207
    GAW Report No. 207 Recommendations for a Composite Surface-Based Aerosol Network (Emmetten, Switzerland, 28-29 April 2009) For more information, please contact: World Meteorological Organization Research Department Atmospheric Research and Environment Branch 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland Tel.: +41 (0) 22 730 81 11 – Fax: +41 (0) 22 730 81 81 E-mail: [email protected] Website: http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html © World Meteorological Organization, 2012 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.
    [Show full text]
  • Wmo/Gaw Experts Workshop on a Global Surface-Based Network for Long Term Observations of Column Aerosol Optical Properties
    WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH No. 162 WMO/GAW EXPERTS WORKSHOP ON A GLOBAL SURFACE-BASED NETWORK FOR LONG TERM OBSERVATIONS OF COLUMN AEROSOL OPTICAL PROPERTIES Davos, Switzerland, 8-10 March 2004 2005 WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH No. 162 WMO/GAW EXPERTS WORKSHOP ON A GLOBAL SURFACE-BASED NETWORK FOR LONG TERM OBSERVATIONS OF COLUMN AEROSOL OPTICAL PROPERTIES Hosted by the World Optical Depth Research and Calibration Centre (Davos, Switzerland, 8-10 March 2004) Edited by U. Baltensperger, L. Barrie and C. Wehrli WMO TD No. 1287 Foreword Suspended particulate matter in the atmosphere, commonly known as aerosol by the technical and scientific community, plays a role in climate change, air quality/human health, ozone depletion and the long-range transport and deposition of toxics and nutrients. Aerosols have many sources ranging from sea spray and mineral dust that are mechanically generated by wind at the Earth’s surface to sulphates, nitrates and organics produced primarily by chemical reaction of gases in the atmosphere producing non-volatile products that condense to form particles. In addition, semi-volatile substances such as certain herbicides and pesticides can simply condense on existing particles. Aerosols range in size from molecular clusters a few nm in diameter to dust and sea salt, which can be as large as tens of µm. The dynamics of aerosol production, transformation and removal that govern size distribution and composition are affected not only by clear air processes but also by interaction with clouds and precipitation. The complexity of aerosol processes in our environment is so great that it leads to large uncertainties in our quantitative understanding of their role in many of the major environmental issues listed above.
    [Show full text]
  • Air Quality Products and Services from the Global to Urban Scales
    URBANIZATION AND MEGACITIES: GAW Urban Research Meteorology and Environ- IMPACT BASED FORECASTS AND RISK ment Project (GURME) GURME is an integral part of urban research and services, and BASED WARNINGS its activities include: Multiple hazards in urban areas defining meteorologial and air quality measurements that support urban forecasting Poor air quality, providing cities access to air quality numerical pre- extreme heat/cold weather and human thermal diction systems and monitoring information which stress serve as the basis for health-related prediction ser- hurricanes, typhoons, extreme local winds vices, and flooding, promoting city pilot projects for different cities to de- sea-level rise due to climate change, monstrate successful expansion of MeteoServices for ur- energy and water sustainability, ban environment issues. public health issues caused by the above, and climate change: 70% of greenhouse gas emissions Go to http://mce2.org/wmogurme/ for list of projects. from urban areas India Commonwealth Games GURME Pilot Project The Indian Institute of Tropical Meteorology (IITM), Pune, Air Quality Integrated Urban Weather, Water, Environ- is spearheading the country's first major initiative named ment and Climate Services a "System of Air Quality Forecasting and Research Products and A priority of WMO is to enhance the capabilities of (SAFAR)", which was successfully tested during the com- National Meteorological and Hydrology Services in monwealth Games 2010 for National Capital Region Delhi. conducting research and providing services for cities The vision is to spread the SAFAR to other major cities in Services to deal with weather, water, climate and environmen- India. http://safar.tropmet.res.in/ tal problems.
    [Show full text]
  • World Meteorological Organization (WMO)
    OCEANS AND THE LAW OF THE SEA: REPORT OF THE SECRETARY-GENERAL – PART II (2015) CONTRIBUTION OF WMO SUMMARY WMO is the authoritative voice on the state and behaviour of the Earth’s atmosphere, its interaction with the oceans, the climate it produces and the resulting distribution of water resources. The Oceans provide essential natural resources to human beings, and regulate the global climate. WMO contributes to oceans-related issues through the observation and monitoring of the ocean and climate; research on the climate and Earth systems; development and delivery of services for disaster risk reduction, including marine hazards; provision of science-based information and tools for policymakers and the general public at regional and global levels. WMO continues strengthening the global observing systems through implementation of the WMO Integrated Global Observing System (WIGOS) and WMO Information System (WIS), and observing networks with partners. The WMO-ICSU-IOC-UNEP Global Climate Observing System (GCOS) serves the requirements of Members for comprehensive, continuous, reliable climate data and information, for climate monitoring, research, projections and assessments, to provide climate information and to promote sustainable development. The IOC-WMO-UNEP-ICSU Global Ocean Observing System (GOOS) improves its capabilities in climate- and ocean-related services, and recognizes the importance of coastal observations and links to products for societal benefits. WMO coordinates the World Climate Research Programme (WCRP) to work on sea level rise and study changes in tracks of medium-latitude storms such as tropical cyclones, which reflect the complexity and interactions among the major components of the planet – ocean, atmosphere, land and ice.
    [Show full text]
  • Implementing an Integrated, Global Greenhouse Gas Information System (IG 3IS)
    Implementing an Integrated, Global Greenhouse Gas Information System (IG 3IS) Oksana Tarasova 1 and James Butler 2,3 Towards a Global Carbon Observing System: Progress and Challenges 1-2 October 2013, Geneva 1WMO Global Atmosphere Watch, Geneva, CH 2WMO Commission for Atmospheric Sciences, Geneva, CH IGIS Tarasova and Butler, WMO 3Global Monitoring Division, NOAA/ESRL Boulder, CO, USA GEO-Carbon 2013 Outline • Drivers of the need for an IG 3IS • Components of an IG 3IS • What WMO is doing • An international framework beyond WMO • Beginnings of an IG 3IS IGIS Tarasova and Butler, WMO GEO-Carbon 2013 A Few Fundamentals . IGIS Tarasova and Butler, WMO GEO-Carbon 2013 Atmospheric CO 2 - The Primary Driver of Climate Change Pre-industrial level of CO 2 was 280 ppm • Atmospheric CO 2 continues + 75 ppm to increase every year within 50 years The trend is largely driven by fossil fuel emissions • The growth rate increases decadally Variability is largely driven by the Earth System • The Earth System continues to capture 50% of emissions Despite the increase in emissions Do we understand carbon cycle? IGIS Tarasova and Butler, WMO GEO-Carbon 2013 Methane is Pre-industrial CH 4 confounding was 700 ppb • After ~10yr hiatus, CH 4 began increasing again in 2007 • Cause of this increase is uncertain Sources of atmospheric CH 4 are legion CH 4 growth rate contours Renewed interest in extraction • The recent trend seems to be largely driven by emissions in the tropics and subtropics The arctic was significant only in 2007 Extraction does not seem significant – yet IGIS (Plots courtesy of E.Tarasova Dlugokencky, and Butler, NOAA) WMO GEO-Carbon 2013 400 ppm May 31, 2012 Monthly CO 2 averages reached 400 ppm for the first time at all arctic sites.
    [Show full text]
  • The Global Atmosphere Watch Programme
    The Global Atmosphere Watch Programme Greg Carmichael & Oksana Tarasova* *WMO Research Department Global Atmosphere Watch Programme Provides international leadership in research and capacity development in atmospheric composition observations and analysis through: GAW station in Sorong • maintaining and applying long-term systematic GAW Global station Sonnblick observations of the chemical composition and related physical characteristics of the atmosphere, • emphasizing quality assurance and quality control, • delivering integrated products and services related to atmospheric composition of relevance to society. 40th Anniversary GAW builds on partnerships involving of Cape Grim contributors from 100 countries (including many contributions from research community) Elements integrated in GAW •Observations •Quality assurance •Data management •Modeling and analysis •Joint research •Capacity building •Outreach and communications Promote a “value chain” from observations to services Overarching Objective - Improve Prediction Capabilities via Incorporating/Integrating Composition, Weather and Climate Seamless Prediction Across all Relevant Temporal and Spatial Scales (GDPFS) Applications in GAW to supports Members Observations and reanalysis: direct support of conventions (LRTAP, Montreal Protocol) Specific service oriented applications: • Support of climate negotiations: IG3IS • Ecosystem services: Analysis of total deposition, nitrogen cycle, deposition to the oceans/marine geoengineering • Health: Regional (GAQF) and Urban air quality (GURME)
    [Show full text]
  • Goals of the Meeting and Review of the History of the Tiksi Observatory and Current Infrastructure
    Goals of the Meeting and Review of the History of the Tiksi Observatory, Current Infrastructure, and Operation Status A. Makshtas, (Roshydromet), T. Uttal (NOAA) , T. Laurila (FMI) Hydrometeorological Observatory in Tiksi – the key component of created in framework of IPY network of polar observatories Main goals Organization and collection of long-term weather and climate grade records of the atmosphere and associated land/ocean parameters for development of weather forecast and climate study. Integration the data of observations and measurements into international observing networks: the Global Atmosphere Watch, the Baseline Surface Radiation Network, the Climate Reference Network, the Global Terrestrial Network for Permafrost and the Micropulse Lidar Network - Participated Organizations Arctic and Antarctic Research Institute, Russia Atmospheric Turbulence and Diffusion Division, USA Center for Environmental Chemistry, SPA Typhoon”, Russia Earth System Research Laboratory, USA Finnish Meteorological Institute, Finland, Institute of Physic of Atmosphere RAS, Russia Main Geophysical Observatory, Russia University of Washington, USA Main joint projects Name of project Main goal of project 1 Study of surface aerosol Investigations of atmospheric aerosol in frame of GAW ( FMI, ESRL, AARI) program 2 Unification the data standard meteorological Creation of homogeneous climatic datasets of meteorological observations data. Participation in CRN program. Transmission of data to (AARI, ATDD) GTS WMO 3 Study of surface radiation balance in Tiksi Creation of homogeneous climatic datasets of radiation data. (AARI, ESRL, FMI) Participation in BSRN program 4 Investigations of cloudiness Studies of characteristics and temporal variability of polar (MGO, ESRL, AARI, NESDIS) cloudiness. 5 Monitoring of UV radiation and total ozone content Study of UV-radiation intensity in dependence of total ozone (MGO, ESRL) content and aerosol optical thickness.
    [Show full text]
  • World Weather Watch
    WORLD METEOROLOGICAL ORGANIZATION Weather • Climate • Water WORLD WEATHER WATCH TWENTY-SECOND STATUS REPORT ON IMPLEMENTATION 2005 TWENTY-SECOND STATUS REPORT ON IMPLEMENTATION REPORT STATUS TWENTY-SECOND WMO-No. 986 — WWW WMO-No. 986 Secretariat of the World Meteorological Organization – Geneva – Switzerland WORLD METEOROLOGICAL ORGANIZATION Weather • Climate • Water WORLD WEATHER WATCH TWENTY-SECOND STATUS REPORT ON IMPLEMENTATION 2005 WMO-No. 986 Secretariat of the World Meteorological Organization – Geneva – Switzerland © 2005, World Meteorological Organization ISBN 92-63-10986-9 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, of its authorities, or concerning the delimitation of its frontiers or boundaries. C O N T E N T S Page FOREWORD............................................................................................................................................................... v EXECUTIVE SUMMARY......................................................................................................................................... 1 CHAPTER I — INTRODUCTION .......................................................................................................................... 3 Purpose and scope of the WWW Programme .........................................................................................................
    [Show full text]
  • WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015
    GAW Report No. 172 WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015 For more information, please contact: World Meteorological Organization Atmospheric Research and Environment Programme Department 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27 E-mail: [email protected] – Website: www.wmo.int/web/arep/arep-home.html WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH No. 172 WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008 – 2015 A Contribution to the Implementation of the WMO Strategic Plan: 2008-2011 Main Contributors (in alphabetical order): Chair Gerhard Müller Scientific Advisory Groups and Expert Teams Rick Artz and SAG Precipitation Chemistry Urs Baltensperger and SAG Aerosols Greg Carmichael and SAG GURME Ed Dlugokencky and SAG Greenhouse Gases Stuart Penkett and SAG Reactive Gases Johannes Stähelin and SAG Ozone Ann Webb and SAG UV Expert Team on World Data Centres (ET-WDC) External Contributors Øystein Hov Jörg Klausen Bill Sturges WMO/GAW Secretariat Leonard Barrie Geir Braathen Liisa Jalkanen Slobodan Nickovic WMO TD NO. 1384 TABLE OF CONTENTS FOREWORD........................................................................................................................................... i 1 INTRODUCTION ..........................................................................................................................7 1.1 The Rationale for GAW.................................................................................................................7
    [Show full text]