A Numerical Modelling Case Study of Cyclone Nilofar Mohammad Akhtaruzzaman Sarker

Total Page:16

File Type:pdf, Size:1020Kb

A Numerical Modelling Case Study of Cyclone Nilofar Mohammad Akhtaruzzaman Sarker Water and Environment Journal. Print ISSN 1747-6585 Cyclone hazards in the Arabian sea–A numerical modelling case study of Cyclone Nilofar Mohammad Akhtaruzzaman Sarker Royal HaskoningDHV, Rightwell House, Bretton, Peterborough, PE3 8DW, UK Keywords Abstract numerical modelling; natural hazards; cyclone; extreme waves; storm surge; port develop- Cyclones cause significant loss of life and damage to properties, ecosystems and ment; Arabian Sea. marine facilities. To address such issues, Royal HaskoningDHV (RHDHV) has devel- oped regional tidal hydrodynamic and wave models covering the Northern Arabian Correspondence Sea. A total of 29 major cyclones were identified in the Arabian Sea since 1945. Dr Mohammad Akhtaruzzaman Sarker, However, as less information is available on Cyclone Nilofar (2014), this paper has Principal Engineer; research fields: numerical modelling of coastal processes including concentrated on this event to illustrate the use of numerical modelling to simulate waves, tides, sediment transport, cyclones, waves and surge generated by cyclones. Sample results from the modelling study tsunamis, sea ice and water quality (dredge are presented in this paper. The methodology described in this paper for modelling plume, outfall discharge and oil spills). cyclone waves and surges in the Arabian Sea could be applied to simulate such nat- Email: [email protected] ural hazards at other sites around the world. doi:10.1111/wej.12214 Introduction especially vulnerable to tropical cyclones with around Tropical cyclones are associated with high-pressure gra- 718,000 deaths from them in the past 50 years (Haque et al., dients and consequent strong winds and storm surges. Very 2012). The deadliest tropical cyclone was the 1970 Bhola strong winds may damage installations, dwellings, transpor- Cyclone, which had a death toll of anywhere from 300,000 to tation and communication systems, trees etc. and cause 500,000 lives (https://en.wikipedia.org/wiki/Effects_of_tropi- fires resulting in considerable loss of life and damage to cal_cyclones). property. Destruction of transportation or communications Despite their devastating effects, tropical cyclones are infrastructure hampers clean-up and rescue efforts. Heavy essential features of the Earth’s atmosphere as they bring and prolonged rains due to cyclones may cause floods and rain to dry areas and transfer heat and energy between the submergence of low lying areas and can lead to mudslides equator and the cooler regions nearer the poles. and landslides in mountainous areas causing loss of life and A large tidal hydrodynamic model is required to simulate property. Floods, standing water and coastal inundation due cyclone surge on a region whereas a large wave model is to storm surges pollute drinking water sources and spread required to simulate cyclone waves. Given the above risks, diseases leading to outbreak of epidemics. RHDHV has developed regional tidal hydrodynamic and Cyclones also impose significant risks during construction wave models covering the Northern Arabian Sea to investi- and operation of sea ports, oil terminals & jetties, offshore gate the natural hazards and to support their project work in exploratory drilling rigs and offshore oil extraction rigs. They the region. The models have been used to assess cyclones put lives and properties in coastal areas at greater risks and within this region. cause significant loss of ecosystems and marine facilities. Literature search on cyclones in the Arabian Sea was car- The destruction from a tropical cyclone depends on its inten- ried out and a total of 29 major cyclones were identified sity, its size, and its location. since 1945. However, the present study was focused to the During the last two centuries, tropical cyclones have been recent cyclone “Cyclone Nilofar” that occurred in October responsible for the deaths of about 1.9 million people 2014. Cyclone waves and surge were modelled. Sample worldwide (https://en.wikipedia.org/wiki/Effects_of_tropical_ results from these modelling studies are presented in this cyclones). It is estimated that 10,000 people per year perish paper for illustration purposes only. due to tropical cyclones (https://en.wikipedia.org/wiki/ The methodology described in this paper for modelling Effects_of_tropical_cyclones). For example, Bangladesh is cyclone waves and surges in the Arabian Sea could be Water and Environment Journal (2016) VC 2016 CIWEM. 1 Cyclone hazards in the Arabian sea M. A. Sarker1 Fig. 1. Cumulative track map of Tropical Cyclones in the Arabian Sea from 1970 to 2005 [https:// upload.wikimedia.org/wikipedia/commons/c/c0/ North_Indian_cyclone_tracks.jpg]. [Colour figure can be viewed at wileyonlinelibrary.com] applied to simulate such natural hazards at other sites A total of 29 cyclones were initially identified to have around the world. crossed the Arabian Sea since 1945 and affected the Omani coastline. The events were selected based on a combination of severity (wind speed, central pressure and diameter) and the Cyclones in the Arabian sea proximity to the site of interest. Tracks and pressure fields of the selected cyclones were obtained from the Joint Typhoon As reported in [https://en.wikipedia.org/wiki/North_Indian_ Warning Center (JTWC), USA (The Joint Typhoon Warning Cen- Ocean_tropical_cyclone, the Arabian Sea is located in the ter (JTWC), the U.S. Department of Defence Agency). Data of north-west of the Indian Ocean. Tropical cyclones in the these 29 selected cyclones are listed in Table 2. basin are abbreviated ARB by the India Meteorological In particular, the passage of Cyclone Gonu (in 2007), Department (IMD), the official Regional Specialized Meteoro- Cyclone Phet (in 2010) and Cyclone Nilofar (in 2014) has logical Centre (RSMC) of the basin. The Arabian Sea’s coast is raised awareness of the risk of cyclonic events. Cyclones shared among India, Yemen, Oman, Iran, Pakistan, Sri Lanka, Gonu and Phet had a significant effect on the Omani coast- Maldives and Somalia. Monsoons are characteristic of the line and their impact is well documented. As less information Arabian Sea and responsible for the yearly cycling of its is available on Cyclone Nilofar, this paper has concentrated waters. In summer, strong winds blow from the south-west on this event to illustrate the use of numerical modelling to to the north-east, bringing rain to the Indian subcontinent. simulate waves and surge generated by cyclones. During the winter, the winds are milder and blow in the opposite direction, from the north-east to the south-west. Cyclones occur frequently in the Arabian Sea and can affect Cyclone Nilofar (2014) the Northern Arabian Sea Region. These events usually occur during the transition periods of the monsoons which are Formation of Cyclone Nilofar between May and June and between October and November. Cyclone Nilofar was classified as an extremely Severe Cumulative track map of Tropical Cyclones in the Arabian Sea Cyclonic Storm and was the strongest tropical cyclone of from 1970 to 2005 is illustrated in Fig. 1 (https://upload.wikime- 2014 within the North Indian Ocean and the strongest storm dia.org/wikipedia/commons/c/c0/North_Indian_cyclone_tracks. to form over the Arabian Sea since Cyclone Phet in 2010. jpg). The Saffir-Simpson Scale classifying depression, tropical Nilofar originated from a low pressure area in the Arabian storm and cyclone is given in Table 1. Sea that intensified into a depression on 25 October 2014. It 2 Water and Environment Journal (2016) VC 2016 CIWEM. M. A. Sarker1 Cyclone hazards in the Arabian sea Table 1 Saffir-Simpson cyclone classification 1-min peak wind 1-min peak wind 1-min peak wind Storm type Category Pressure (hPa) speed (knots) speed (mph) speed (km/h) Depression TD - < 34 <39 < 63 Tropical Storm TS - 34 – 63 39 – 73 63 – 118 Hurricane 1 > 980 64 – 82 74 – 95 119 – 153 Hurricane 2 965 – 980 83 – 95 96 – 110 154 – 177 Hurricane 3 945 – 965 96 – 113 111 – 130 178 – 210 Hurricane 4 920 – 945 114 – 135 131 - 155 211 - 250 Hurricane 5 < 920 > 135 > 155 > 250 slowly consolidated and reached cyclonic storm strength Track of Cyclone Nilofar the following day. The system rapidly intensified in the fol- The track (route) of Cyclone Nilofar was obtained from JTWC and lowing days, reaching a peak intensity of 950 mbar (28.05 is shown in Fig. 2 (The Joint Typhoon Warning Center (JTWC), the inHg) on 28 October 2014. Over time the storm tracked U.S. Department of Defence Agency). The JTWC archived cyclone northeastwards towards an area of high vertical wind shear, data also contains 6 hourly information including date and time, causing the storm to rapidly weaken. The name Nilofar, tracks (path), maximum sustained wind speeds, radius of maxi- referring to the water lily, was suggested by Pakistan mum sustained wind speeds and the minimum central pres- (https://en.wikipedia.org/wiki/Cyclone_Nilofar). sures. Such data of Cyclone Nilofar is provided in Table 3. Table 2 Major cyclones in the Arabian Sea during 1945-2014 (The Joint Typhoon Warning Center (JTWC), the U.S. Department of Defence Agency) Time & Date Max sustained Codes & Distance from Ras wind speeds Minimum central Radius of max No. Year Names Markaz (miles) Start End (knots) pressure (mb) winds (nm) 1 1959 01 Unknown 18 May 18:00 24 May 00:00 Unknown Unknown Unknown 2 1962 01 Unknown 27 May 18:00 30 May 00:00 Unknown Unknown Unknown 3 1963 02 Unknown 17 May 18:00 26 May 12:00 Unknown Unknown Unknown 4 1966 13 Unknown 31 Oct 18:00 11 Nov 12:00 Unknown Unknown Unknown 5 1970 01 Unknown 28
Recommended publications
  • Escap/77/Inf/1
    ESCAP/77/INF/1 Distr.: General 12 March 2021 English only Economic and Social Commission for Asia and the Pacific Seventy-seventh session Bangkok and online, 26-29 April 2021 Items 4 (f) and (i) of the provisional agenda* Review of the implementation of the 2030 Agenda for Sustainable Development in Asia and the Pacific and issues pertinent to the subsidiary structure of the Commission: Committee on Environment and Development Committee on Disaster Risk Reduction Annual reports of international and intergovernmental organizations provided to the Commission** Summary The present document contains overviews of the annual reports of the following international and intergovernmental organizations: the Coordinating Committee for Geoscience Programmes in East and Southeast Asia; the Mekong River Commission; the Typhoon Committee; and the Panel on Tropical Cyclones. These organizations were established under the auspices of the Economic and Social Commission for Asia and the Pacific to work on areas under their respective competence to support economic and social development in the region. The Commission may wish to comment on the work of these organizations and take note of the present document. I. Coordinating Committee for Geoscience Programmes in East and Southeast Asia 1. The Coordinating Committee for Geoscience Programmes in East and Southeast Asia has been established under the Economic and Social Commission for Asia and the Pacific (ESCAP) since 1966. In 1991, the Coordinating Committee for Geoscience Programmes in East and Southeast Asia has become an independent intergovernmental organization. With a vision to be “a premier intergovernmental Earth Science Organization in East and Southeast Asia”, the Coordinating Committee for Geoscience Programmes in East and Southeast Asia has worked towards its mission to contribute significantly to the economic development and sustainable management of the environment and of improving the quality of life of its member countries by the application of Earth Science knowledge.
    [Show full text]
  • Coastal Sea Level Response to the Tropical Cyclonic Forcing in the North Indian Ocean’ by Mehta Et Al
    16 April 2014 To The Editor Ocean Science Sub: Reply to the comments of reviewer#2 on ’Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean’ by Mehta et al. (OSD). Sir, Kindly find the reply to the comments of reviewer#2 on the manuscript submitted by Mehra et al. (OSD) entitled "Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean". Thanks & regards Prakash Mehra NIO, Goa, India Interactive comment on “Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean” by P. Mehra et al. Anonymous Referee #2 Received and published: 22 March 2014 Reviewer's comment: This paper describes and analyses the coastal sea level response to two storm events at the end of 2011 in the north Indian Ocean. The authors use the sea level and atmospheric observations at 9 locations along the Indian coast and perform a classical but robust analysis (spectral analyses and multi-linear regression). Although there are no new findings, it gives a fair idea of the causes of the sea level variation in response to these strong atmospheric events. The Figures, Tables and References are clear and support well the present text. It is also interesting to have an analysis done at large scale and on both sides of the Indian Subcontinent (Arabian Sea and Bay of Bengal). The scientific quality of the paper is good but in my opinion the presentation of the results is poor and makes the paper hard to read and the purpose of the authors difficult to follow.
    [Show full text]
  • Analysis of Average Rainfall Super Cyclone by Using Double Integration Technique
    International Journal of Scientific Research in ___________________________ Research Paper . Mathematical and Statistical Sciences Volume-7, Issue-2, pp.82-85, April (2020) E-ISSN: 2348-4519 DOI: https://doi.org/10.26438/ijsrmss/v7i2.8285 Analysis of Average Rainfall Super Cyclone by using Double Integration Technique A. Tiwari1, Y. K. Rajoria2*, R. Boadh3, R. Singh4 1,2,3,4 Department of Mathematics, KR Mangalam University, Gurugram, Haryana, India *Corresponding Author: [email protected] Tel.: +91 9897108103 Available online at: www.isroset.org Received: 06/Mar/2020, Accepted: 10/Apr/2020, Online: 30/Apr/2020 Abstract— Cyclones are highly calamitous weather phenomena initiating harm to the life and physical organization in tropical seafaring countries. Cyclones form over whole-hearted tropical oceans and change to the land under the act of routing forces. India's eastern coastline is one of the most violent wind inclined regions on the planet. Despite the fact that the coastline of Orisha has been just about 17% of the Indian eastern coastline, yet Orisha has been influenced by about 35% of all cyclonic and serious cyclonic tempests that have crossed the eastern coastline and related tempest floods that have been regularly immersing huge areas along the coasts. A Cyclone is an enormous scale air mass that turns around a solid focal point of low climatic weight caused due to low atmospheric pressure over oceans resulting in rainfall in the coastal regions. The results of this study indicate that the double integration technique has good potential for calculating the average rainfall during the super cyclone. Keywords—Tempests, Tropical Cyclone, Super Cyclone, Rainfall, Double IntegrationTechinque I.
    [Show full text]
  • Study Report on Gaja Cyclone 2018 Study Report on Gaja Cyclone 2018
    Study Report on Gaja Cyclone 2018 Study Report on Gaja Cyclone 2018 A publication of: National Disaster Management Authority Ministry of Home Affairs Government of India NDMA Bhawan A-1, Safdarjung Enclave New Delhi - 110029 September 2019 Study Report on Gaja Cyclone 2018 National Disaster Management Authority Ministry of Home Affairs Government of India Table of Content Sl No. Subject Page Number Foreword vii Acknowledgement ix Executive Summary xi Chapter 1 Introduction 1 Chapter 2 Cyclone Gaja 13 Chapter 3 Preparedness 19 Chapter 4 Impact of the Cyclone Gaja 33 Chapter 5 Response 37 Chapter 6 Analysis of Cyclone Gaja 43 Chapter 7 Best Practices 51 Chapter 8 Lessons Learnt & Recommendations 55 References 59 jk"Vªh; vkink izca/u izkf/dj.k National Disaster Management Authority Hkkjr ljdkj Government of India FOREWORD In India, tropical cyclones are one of the common hydro-meteorological hazards. Owing to its long coastline, high density of population and large number of urban centers along the coast, tropical cyclones over the time are having a greater impact on the community and damage the infrastructure. Secondly, the climate change is warming up oceans to increase both the intensity and frequency of cyclones. Hence, it is important to garner all the information and critically assess the impact and manangement of the cyclones. Cyclone Gaja was one of the major cyclones to hit the Tamil Nadu coast in November 2018. It lfeft a devastating tale of destruction on the cyclone path damaging houses, critical infrastructure for essential services, uprooting trees, affecting livelihoods etc in its trail. However, the loss of life was limited.
    [Show full text]
  • Press Release-5
    Government of India Earth System Science Organisation Ministry of Earth Sciences India Meteorological Department Earth System Science Organisation PRESS RELEASE-5 Time of issue: 1330 hours IST Dated: 28-10-2019 Sub: (a) Super Cyclonic Storm over eastcentral Arabian Sea to weaken gradually from 28th evening and (b) development of fresh low pressure area over Equatorial Indian Ocean to the south of Sri Lanka (a) Super Cyclonic Storm over eastcentral Arabian Sea to weaken gradually from 28th evening Yesterday’s Super Cyclonic Storm “KYARR” (pronounced as KYARR) over eastcentral Arabian Sea moved west-northwestwards and lay centered near latitude 18.2°N and longitude 65.0°E over eastcentral Arabian Sea, about 830 km west-southwest of Mumbai (Maharashtra), 1160 km east-northeast of Salalah (Oman) and 690 km east-southeast of Masirah (Oman). It is very likely to move west-northwestwards till 30th October re-curve west- southwestwards thereafter and move towards Gulf of Aden off south Oman-Yemen coasts during subsequent 3 days. It is very likely to maintain the intensity of a Super Cyclonic Storm till 28th October evening and weaken gradually thereafter. Forecast track and intensity are given in the following table: Date/Time(IST) Position Maximum sustained Category of cyclonic disturbance (Lat. 0N/ long. surface 0E) wind speed (Kmph) 28.10.19/0830 18.2/65.0 230-240 gusting to 265 Super Cyclonic Storm 28.10.19/1130 18.4/64.8 220-230 gusting to 255 Super Cyclonic Storm 28.10.19/1730 18.6/64.3 210-220 gusting to 240 Extremely Severe Cyclonic Storm
    [Show full text]
  • Coastal Sea Level Response to the Tropical Cyclonic Forcing in the North
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 575–611, 2014 Open Access www.ocean-sci-discuss.net/11/575/2014/ Ocean Science doi:10.5194/osd-11-575-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Ocean Science (OS). Please refer to the corresponding final paper in OS if available. Coastal sea level response to the tropical cyclonic forcing in the north Indian Ocean P. Mehra1, S. Mohan1, P. Vethamony1, K. Vijaykumar1, T. M. Balakrishnan Nair2, Y. Agarvadekar1, K. Jyoti1, K. Sudheesh1, R. Luis1, S. Lobo1, and B. Harmalkar1 1CSIR-National Institute of Oceanography (NIO), Goa, India 2Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, Goa, India Received: 13 December 2013 – Accepted: 27 January 2014 – Published: 20 February 2014 Correspondence to: P. Mehra ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 575 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The study examines the observed storm-generated sea-level variation due to deep depression (Event-E1) in the Arabian Sea from 26 November–1 December 2011 and a cyclonic storm “THANE” (Event-E2) over the Bay of Bengal during 25–31 Decem- 5 ber 2011. The sea-level and surface meteorological measurements collected during these extreme events exhibit strong synoptic disturbances leading to storm surge up to 43 cm on the west coast and 29 cm on the east coast of India due to E1 and E2. E1 generated sea level oscillations at the measuring stations on the west coast (Ratnagiri, Verem and Karwar) and east coast (Mandapam and Tuticorin) of India with significant 10 energy bands centered at periods of 92, 43 and 23 min.
    [Show full text]
  • NUMERICAL SIMULATION of TROPICAL CYCLONES and STORM SURGES in the ARABIANSEA Mohsen Soltanpour, K
    36th International Conference on Coastal Engineering K. N. Toosi University of Technology Waseda University Tehran University NUMERICAL SIMULATION OF TROPICAL CYCLONES AND STORM SURGES IN THE ARABIANSEA Mohsen Soltanpour, K. N. Toosi University of Technology Zahra Ranji, K. N. Toosi University of Technology Tomoya Shibayama, Waseda University Sarmad Ghader, University of Tehran Shinsaku Nishizaki, Waseda University Study Area Motivation Numerical Simulation Conclusion 1/19 20 Cyclones and Depressions Study Area 15 Motivation 10 Numerical 5 Simulation Frequency of occurence (percent) ofoccurence Frequency 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Conclusion 30 Sever Cyclonic Storms 25 20 2/19 15 10 5 Frequency of occurence (percent) ofoccurence Frequency 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Target Study Area Motivation Gonu, 2007 Cyclones Ashobaa, 2015 Numerical Simulation Conclusion 3/19 Study Area Field Measurements (Gonu) Motivation Chabahar Bay Numerical Simulation Conclusion 4/19 Study Area Motivation Numerical More severe Simulation cyclonic storms since 2000 Conclusion 6/19 Time History of Maximum Wind Speed during Cyclone Modelling Study Area Atmosphere Framework Model (WRF) Motivation Numerical Simulation WAVE Model Current vector Ocean Circulation Conclusion (SWAN, SWAVE) Radiation Stress Model (FVCOM) Boundary Boundary condition condition 7/19 Global Global Wave Model Tide Model (WWIII) (TPXO 8) Study Area Motivation Numerical WRF domain Simulation Conclusion 8/19 FVCOM, SWAVE, SWAN domain WRF Model Study
    [Show full text]
  • Cro Ssro Ads Asia
    CROSSROADS 06 ASIA Conflict · · Development The Anxiety of Development Megaprojects and the Politics of Place in Gwadar, Pakistan Hafeez Jamali Working Paper Series Paper Working crossroads asia crossroads ISSN 2192-6034 Bonn, January 2013 Crossroads Asia Working Papers Competence Network Crossroads Asia: Conflict – Migration – Development Editors: Ingeborg Baldauf, Stephan Conermann, Anna-Katharina Hornidge, Hermann Kreutzmann, Shahnaz Nadjmabadi, Dietrich Reetz, Conrad Schetter and Martin Sökefeld. How to cite this paper: Jamali, Hafeez A. (2013): The Anxiety of Development: Mega-projects and the Politics of Place in Gwadar, Pakistan. In: Crossroads Asia Working Paper Series, No. 6. Partners of the Network: Imprint Competence Network Crossroads Asia: Conflict – Migration – Development Project Office Center for Development Research/ZEFa Department of Political and Cultural Change University of Bonn Walter-Flex Str. 3 D-53113 Bonn Tel: + 49-228-731722 Fax: + 49-228-731972 Email: [email protected] Homepage: www.crossroads-asia.de 1 The Anxiety of Development: Mega-Projects and the Politics of Place in Gwadar, Pakistan Hafeez Ahmed Jamali1 Table of Contents Abstract ......................................................................................................................................................... 3 1. Introduction .......................................................................................................................................... 4 2. Anxiety of Development ......................................................................................................................
    [Show full text]
  • United Nations E/ESCAP/CDR(2)/5 Economic and Social Council Distr.: General 8 April 2011
    United Nations E/ESCAP/CDR(2)/5 Economic and Social Council Distr.: General 8 April 2011 Original: English Economic and Social Commission for Asia and the Pacific Committee on Disaster Risk Reduction Second session Bangkok, 29 June-1 July 2011 Item 8 of the provisional agenda Activities of ESCAP cooperative mechanisms on disaster risk reduction Work of the Typhoon Committee and Panel on Tropical Cyclones Note by the secretariat Summary The Typhoon Committee is an ESCAP-affiliated regional institution and a regional body of the Tropical Cyclone Programme of the World Meteorological Organization (WMO). The Panel on Tropical Cyclones is a regional body jointly established by WMO and ESCAP. The main objectives of the Typhoon Committee and the Panel on Tropical Cyclones are to promote measures to improve tropical cyclone warning systems in the north-western Pacific Ocean, and in the Bay of Bengal and the Arabian Sea, respectively. They develop activities under three substantive components, namely disaster risk reduction, hydrology and meteorology, as well as in the areas of training and research. The present document summarizes key information from the reports on the forty-third session of the Typhoon Committee and the thirty-eighth session of the Panel on Tropical Cyclones in order to provide an overall picture of the framework of cooperation. The document describes actions which could enhance the effectiveness of collaboration with regard to the management of disaster risk reduction related to typhoons and tropical cyclones, in particular the socio-economic impacts of such disasters. The Committee on Disaster Risk Reduction may wish to provide the Typhoon Committee and the Panel on Tropical Cyclones with guidance on their future actions, particularly with regard to obtaining the support of international organizations and funding sources, and developing partnerships with other organizations.
    [Show full text]
  • Special Report: Mena Construction Risk
    SPECIAL REPORT: MENA CONSTRUCTION RISK Risk management in the MENA construction sector IN ASSOCIATION WITH globalreinsurance.com | 09 SPECIAL REPORT among emerging markets. The Dubai International Financial Centre has become the recognised hub for the industry, attracting specialist re/insurers and brokers from Europe, London, Asia, Bermuda and beyond to set up offices. More recently, a number of MGAs with Lloyd’s backing have entered the DIFC. High levels of competition have, however, exerted downward pressure on rates. “Price continues to be highly competitive in the GCC and property insurance prices have seen a 10-15% reduction”, says Ramesh Viswanathan, senior underwriter, engineering, Trust Re. “However, a conscious decision is taken to underwrite keeping in mind selection of risks based on risk management practices and previous claims experience.” According to the MENA Insurance Pulse 2018, the region’s insurance markets are expected to continue outgrowing GDP over the next 12 months. It notes that price adequacy in commercial lines - especially property business - has improved in response to the industrial and commercial property fire losses, but that “a higher frequency of large Fire, wind, water claims and deteriorating reinsurance contract terms and conditions took their toll on technical profitability”. and earth: An added attraction for international carriers seeking diversification is the low level of Re-evaluating the exposure to natural catastrophe risk. However, losses resulting from fires and natural perils have begun to erode hazard exposures underwriting profitability. When some reinsurers have pulled back their capacity, citing unprofitable rates on As a massive growth region, the past decade has seen a line, others have swiftly moved in to construction and engineering boom across the Middle East take their place.
    [Show full text]
  • Strong Upper Ocean Cooling Due to the Stir of Phet Super Cyclone
    STRONG UPPER OCEAN COOLING DUE TO THE STIR OF PHET SUPER CYCLONE K. Muni Krishna Teaching Associate & Young Scientist, Dept of Meteorology and Oceanography, Andhra University Visakhapatnam, India; Tel: +91-891-2717663 Email: [email protected] KEY WORDS: Winds, upwelling, cyclone, mixed layer, ekman pumping. ABSTRACT Arabian Sea is more vulnerable to cyclonic systems during the recent decades, the intensity (cat 4 or 5) of cyclone systems are increased due to the effect of global warming. It is essential to study the upper ocean changes during the cyclone period. In the present study focuses on the upper ocean changes during the Phet super cyclone (31 May – 7 June 2010). Multi satellite data provide inimitable opportunity to explore upper ocean rejoinders along the long track of major super cyclonic storm Phet. Two large areas of maximizing upwelling and surface cooling (2 – 6°C) are observed along the track. The first cooling area is looks like a cold tongue and it is approximately 350 km. This is a unique feature and also first time observed in the Arabian Sea. The mixed layer and the depth of 20°C isotherm are deepening 54 m and 2m respectively after the passage of Phet. 1. INTRODUCTION Tropical cyclones seldom assault the Oman coast during summer and may change greatly the ocean conditions. They depend on the ocean for their energy supply. Observations have shown that the state of the ocean has a great influence on the intensities, structures and even paths of tropical cyclones (Fisher, 1958; Tisdale and Clapp, 1963; Perlroth, 1967 and Brand, 1971; Black, 1977; Chang and Anthes, 1979) and also capable of altering the upper layers of the ocean.
    [Show full text]
  • 1 Numerical Simulation of Tropical Cyclones And
    NUMERICAL SIMULATION OF TROPICAL CYCLONES AND STORM SURGES IN THE ARABIAN SEA Mohsen Soltanpour1, Zahra Ranji2, Tomoyo Shibayama3, Sarmad Ghader4, Shinsaku Nishizaki5 Winds, waves and storm surges of Gonu and Ashobaa, as two recent cyclones in the Arabian Sea and Gulf of Oman, are simulated by a system of WRF-FVCOM-SWAN. The employed models are separately calibrated using the available data. Surges are found to be highly dependent on coastal geometry and landfall location, rather than the storm intensity. Comparisons at different stations reveal that the results of models are in a good agreement with measured parameters. Negative surges are also observed in the enclosed basins of the Persian Gulf and Red Sea. The calibrated atmosphere- wave-ocean model can be utilized for the prediction of extreme events, expected to increase in future due to the impact of the climate change. Keywords: Gulf of Oman; Arabian Sea; Tropical cyclones; Storm surge INTRODUCTION Storm surge is rising of the sea level over coastal regions due to the superposed actions of low pressure and the wind-induced surface shear stress. As the increase of temporary water level occurs at the same time of high wave action, it can result in disastrous flooding and coastal damages. Storm surges are more destructive if they coincide with high tides. However, the prevailing damage of cyclones at coasts are mainly located near the landfall, as the high winds/large waves are concentrated in the vicinity of the storm track. Rego and Li (2010b) demonstrated that the coastal surge of a hurricane depends to a large extent on the track of the storm.
    [Show full text]