Healthcare Sterilisation: Challenging Practices, Volume 2

Total Page:16

File Type:pdf, Size:1020Kb

Healthcare Sterilisation: Challenging Practices, Volume 2 Healthcare Volume 2 Volume Healthcare Sterilisation: Published by Smithers Rapra Technology Ltd, 2014 Challenging Practices Sterilisation: Volume 2 The collection of topics in this second volume of the book reflects challenges the reader to Challenging think beyond standard methods and question why certain current procedures remain static while technological advances abound in other aspects of sterilisation technology. By small means, better practices may come to pass to help answer some of the residual healthcare sterilisation and nosocomial infection queries: • What are some of the current challenges in healthcare sterilisation, and how can they be handled? • What are some of the acceptable current non-traditional sterilisation methods, challenging alternatives, and novel modalities? • What are some of the packaging, validation and statistical considerations of sterilisation Wayne J. Rogers practices? • How does design-of-product and packaging interrelate with sterilisation processing? Practices • Are the current sterility media and practices optimal for recovery of more modified and more resistant viable organism entities and product? • Are there increased sterility and product quality needs with new types of implantables and technological advances within the three dimensional combinations of diagnostics, drug release and challenging medical devices? Wayne J. Rogers Wayne Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK Telephone: +44 (0)1939 250383 Fax: +44 (0)1939 251118 Web: www.polymer-books.com Healthcare Sterilisation: Challenging Practices Volume 2 Wayne J. Rogers A Smithers Group Company Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom Telephone: +44 (0)1939 250383 Fax: +44 (0)1939 251118 http://www.polymer-books.com First Published in 2014 by Smithers Rapra Technology Ltd Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK ©Smithers Information Ltd., 2014 All rights reserved. Except as permitted under current legislation no part of this publication may be photocopied, reproduced or distributed in any form or by any means or stored in a database or retrieval system, without the prior permission from the copyright holder. A catalogue record for this book is available from the British Library. Every effort has been made to contact copyright holders of any material reproduced within the text and the author and publishers apologise if any have been overlooked. ISBN: 978-1-90903-068-8 (hardback) 978-1-90903-069-5 (softback) 978-1-90903-070-1 (ebook) Typeset by Argil Services Preface Beyond the steadfast and traditional techniques of steam, dry heat and irradiation, sterilisation remains a challenge in the 21st century. Some chemical sterilisation methods such as ethylene oxide, are carcinogenic, explosive, hazardous and toxic. Non-traditional methods (e.g., hydrogen peroxide and plasma and ozone) and alternative and newer methods (chlorine dioxide, peracetic acid, hydrogen peroxide and oxides of nitrogen) have attempted to replace these dangers and hazards. They frequently have their limitations such as less penetration, adverse effects on some materials (e.g., corrosion, damage, oxidising and residuals), and some are less reliable than the steadfast and traditional methods of steam, dry heat and irradiation. Sterilisation is not a singular problem or discipline but an interfacial area of investigation of materials, biocompatibility, biocontainment, chemistry, engineering, microbiology, material, drug and patient safety, product design, statistics and validation. It requires a mulitidiciplinary effort and synergism. In parallel to these challenges, design of package, products and processing may be created that are optimal for the final sterilisation outcome(s). Optimal design, material and process development, and innovation can help to improve the current challenges of sterilisation. To achieve sterilisation without adversely affecting package and product quality and sterility, requires validation, statistics and improved scientific approaches to optimally accomplish sterility. This volume makes you question and think what you are doing in selection, design, statistics, in following standards and performing validations for sterilisation and sterile claims. iii Healthcare Sterilisation: Challenging Practices Volume 2 iv Contents 1 Traditional Chemical Sterilisation Methods ............................................... 1 1.1 Ethylene Oxide Sterilisation ........................................................... 3 1.1.1 Green sterilisation (Benefits versus Risks) .......................... 4 1.1.2 Ethylene Oxide Residuals .................................................. 8 1.1.3 Advantages of Ethylene Oxide Sterilisation ...................... 10 1.1.4 Some interdependent variables of using Ethylene Oxide... 11 1.1.5 Material Considerations with Ethylene Oxide Sterilisation ..................................................................... 13 1.1.6 Principles of Ethylene Oxide Sterilisation ......................... 14 1.1.7 Factors Affecting Lethality and Demonstrating Effectiveness .................................................................... 15 1.1.8 Microbial Effectiveness of Sterilisation ............................ 17 1.1.9 Process Variables and Types of Ethylene Oxide Sterilisation ...................................................................... 24 1.1.9.1 Process Variables................................................ 24 1.1.9.1.1 Ethylene Oxide Concentration .............. 24 1.1.9.1.2 Temperature .......................................... 25 1.1.9.1.3 Relative Humidity ................................. 25 1.1.9.1.4 Exposure ............................................... 28 1.1.10 Typical Process Sequences for Ethylene Oxide Sterilisation ...................................................................... 30 1.1.10.1 Staging ............................................................... 30 1.1.10.2 Air Removal ..................................................... 31 1.1.10.3 Typical Profile, Phases or Steps in an Ethylene Oxide Sterilisation Process ................................. 34 v Healthcare Sterilisation: Challenging Practices Volume 2 1.1.11 Some Types of Ethylene Oxide Sterilisation Cycles ......... 35 1.1.11.1 Other Ethylene Oxide Sterilisation Methods or Cycles ................................................................ 36 1.1.12 Advantages and Disadvantages of Ethylene Oxide Sterilisation ...................................................................... 38 1.1.12.1 Advantages ....................................................... 38 1.1.12.2 Disadvantages .................................................... 39 1.1.13 Recommended/Non-recommended uses of Ethylene Oxide Sterilisation .......................................................... 40 1.1.14 Some General Considerations of the Ethylene Oxide Technique ........................................................................ 41 1.1.15 Some Material Compatibility Considerations................... 42 1.1.16 Safety and Regulations for Using Ethylene Oxide ........... 44 1.1.17 Process Improvement and Enhancement .......................... 46 1.2 Glutaraldehyde (Liquid) Sterilisation ............................................ 48 1.2.1 Glutaraldehyde – A Fogging or Aerosolised Method ........ 49 1.3 Propylene Oxide ........................................................................... 50 1.4 β -Propiolactone............................................................................ 52 1.5 Glyoxal ........................................................................................ 54 1.6 Other Sterilants ............................................................................. 54 1.6.1 Chlorine Dioxide ............................................................. 54 1.6.2 Peracetic Acid .................................................................. 56 1.6.3 Hydrogen Peroxide (Liquid, Vapour, No Plasma) ............ 58 1.6.4 Methyl Bromide ............................................................... 61 1.6.5 Low Steam Formaldehyde ............................................... 62 1.7 Conclusions ................................................................................. 63 2 Traditional Liquid Chemical Sterilisation ................................................. 69 2.1 Glutaraldehyde Sterilisation ......................................................... 72 2.1.1 Characteristics of Glutaraldehyde .................................... 73 2.1.2 Properties of Glutaraldehyde ........................................... 74 vi Contents 2.1.3 Some Advantages and Disadvantages of Glutaraldehyde.. 75 2.1.4 Health Risks .................................................................... 76 2.1.5 Sterilisation and High-level Disinfection .......................... 77 2.1.6 Formulations ................................................................... 77 2.1.7 Applications and Uses ...................................................... 79 2.1.8 Glutaraldehyde within Closed Systems ............................ 80 2.1.9 Two-part Sterilisation Process using Glutaraldehyde ........ 81 2.1.10 Performance ..................................................................... 82 2.2 Chlorine Dioxide .......................................................................... 84 2.2.1 Characteristics ................................................................. 84 2.2.2 Chlorine Dioxide Solutions ............................................. 86 2.2.3 Performance ....................................................................
Recommended publications
  • Fluorosulfates of Silver, Ruthenium, and Osmium
    FLUOROSULFATES OF SILVER, RUTHENIUM, AND OSMIUM by PATRICK CHEUNG SHING LEUNG B.Sc. (Hons.), The University of British Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Chemistry) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December, 1979 © Patrick Cheung Shing Leung, 1979 In presenting this thesis in partial fulfilment of the requirements f an advanced degree at the University of British Columbia, I agree tha the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of CMMUTtY The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ABSTRACT A number of synthetic routes to silver(II) fluorosulfate, Ag(SC>3F)2, were systematically explored. The most suitable and versatile route was found to be the oxidation of silver metal by a solution of bisfluorosulfuryl peroxide, S20gF2, in fluorosulfuric acid, HSO^F, according to: HS03F Ag + S206F2 m- Ag (SC>3F) 2> Additional methods which were found to be suitable involved the oxidation of a wide variety of silver(I) compounds such as S F or the nsert:LOn of S0 Ag20 or AgSO^F by 2°6 2' i- 3 into AgF2. Structural conclusions on Ag(S03F)2 and the other compounds synthesized subsequently were based on the vibrational, elec• tronic and electron spin resonance spectra, as well as on magnetic susceptibility measurements made between 300 and 77 K.
    [Show full text]
  • (VI) and Chromium (V) Oxide Fluorides
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1976 The chemistry of chromium (VI) and chromium (V) oxide fluorides Patrick Jay Green Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Green, Patrick Jay, "The chemistry of chromium (VI) and chromium (V) oxide fluorides" (1976). Dissertations and Theses. Paper 4039. https://doi.org/10.15760/etd.5923 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. All ABSTRACT OF THE TllESIS OF Patrick Jay Green for the Master of Science in Chemistry presented April 16, 1976. Title: Chemistry of Chromium(VI) and Chromium(V) Oxide Fluorides. APPROVEO BY MEMBERS OF THE THESIS CO'"o\l TIEE: y . • Ii . ' I : • • • • • New preparative routes to chromyl fluoride were sought. It was found that chlorine ironofluoride reacts with chromium trioxide and chromyl chlo­ ride to produce chromyl fluoride. Attempts were ~ade to define a mechan­ ism for the reaction of ClF and Cr0 in light of by-products observed 3 and previous investigations. Carbonyl fluoride and chromium trioxide react to fom chro·yl fluoride and carbo:i dioxide. A mechanism was also proposed for this react10n. Chromium trioxide 11itl\ l~F6 or WF5 reacts to produce chromyl fluoride and the respective oxide tetrafluoride. 2 Sulfur hexafluoride did not react with Cr03.
    [Show full text]
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 13
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=15852 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 13 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-29025-8 Toxicology; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Research Council 292 pages 6 x 9 PAPERBACK (2013) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 13 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 13 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine.
    [Show full text]
  • Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 2013 Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Food Science Commons Recommended Citation Kaur, Simran, "Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis" (2013). Open Access Theses. 47. https://docs.lib.purdue.edu/open_access_theses/47 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. CHLORINE DIOXIDE GAS TREATMENT OF CANTALOUPE AND RESIDUE ANALYSIS A Thesis Submitted to the Faculty of Purdue University by Simran Kaur In Partial Fulfillment of the Requirements for the Degree of Master of Science December 2013 Purdue University West Lafayette, Indiana ii Two cantaloupes were in love. One said to the other, “Let’s run away together!” The other one said, “No. We cantelope.” iii ACKNOWLEDGEMENTS I would like to thank Dr. Mark Morgan for giving me the opportunity to work on this project. I truly appreciate his support, encouragement and guidance and have thoroughly enjoyed every moment. I would also like to thank my committee members, Dr. Mario Ferruzzi and Dr. Peter Hirst for their suggestions, feedback and comments. Thank you to Ben Paxson for his help with equipment and also to Dr. Applegate for the lab space to do my project. I am also thankful for the help and support from all my friends, old and new, close and far, for their support and companionship throughout my graduate studies, especially my dear friend Nadra Guizani.
    [Show full text]
  • Toxicological Profile for Chlorine Dioxide and Chlorite
    TOXICOLOGICAL PROFILE FOR CHLORINE DIOXIDE AND CHLORITE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2004 CHLORINE DIOXIDE AND CHLORITE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. CHLORINE DIOXIDE AND CHLORITE iii UPDATE STATEMENT Toxicological Profile for Chlorine Dioxide and Chlorite, Draft for Public Comment was released in September 2002. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia 30333 CHLORINE DIOXIDE AND CHLORITE vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • Chemical Resistance Table
    CHEMICAL RESISTANCE TABLE Things to consider when choosing a hose • This chemical resistance table indicates if the inner tube of the hose is resistant to specific materials/chemicals throughout different temperatures. • Some materials/chemicals can change color in contact with the hose. If it´s important to have the color unaffected, we recommend you to contact Hydroscand. • For food products the table only indicates whether the inner tube is resistant to the product. This doesn’t automatically significate that the inner tube is approved for food products. • Abrasion, friction and mechanical influence can increase the chemicals aggression and therefore decrease the durability of the hose. • All values in the table are exclusively for the transport of media. • NB! Materials can change color in contact with other kind of materials. • Outer stress is always an important factor to the durability of the hose. NB! This resistance table should be considered as an indication and not a guarantee. International material codes Rubber Plasic NR Natural rubber P.T.F.E. Polytetraflouro ethylene (Teflon®) SBR Styrene butadiene rubber PP Polypropylene NBR Nitrile rubber UPE Ultra high molekular weight EPDM Ethylene-propylene rubber polyethylene IIR Butyl rubber XLPE Cross linked polyethylene (PEX) CR Chloroprene rubber (Neopren) PU Polyurethane CSM Chlorosulfonated polyethylene PE Polyester platsic (Elastomer) rubber (Hypalon) PA Polyamide (Nylon) PVC Polyvinylchloride How to read the table Fitness grade A Good to excelent B Acceptable for limited use
    [Show full text]
  • Polar Ozone Depletion
    POLAR OZONE DEPLETION Nobel Lecture, December 8, 1995 by MARIO J. MOLINA Department of Earth, Atmospheric and Planetary Sciences, and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA In On the rigor of Science In that Empire, the Art of Cartography achieved such Perfection that the map of a single Province occupied an entire City, and the map of the Empire an enti- re Province. With time, those unwieldy maps did not satisfy and the Cartographers raised a Map of the Empire, with the size of the Empire and which coincided with it on every point . Jorge Luis Borges INTRODUCTION The ozone layer acts as an atmospheric shield which protects life on Earth against harmful ultraviolet radiation coming from the sun. This shield is fra- gile: in the past two decades it has become very clear that it can be affected by human activities. Roughly 90% of the Earth’s ozone resides in the stratosphere, which is the atmospheric layer characterized by an inverted - that is, increasing - empera- ture profile that rises typically from -210 K at its base at 10-15 km altitude, to roughly 275 K at 50 km altitude. The maximum concentration of ozone is several parts per million; it is continuously being produced in the upper stratosphere by the action of solar radiation on molecular oxygen, and con- tinuously being destroyed by chemical processes involving free radicals. Work by Paul Crutzen in the early 1970’s [1]established that nitrogen oxi- des of natural origin, present at parts per billion levels in the stratosphere, are responsible for most of this chemical destruction, which occurs by means of catalytic cycles.
    [Show full text]
  • Diurnal Variation of Stratospheric Short-Lived Species
    THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Diurnal variation of stratospheric short-lived species MARYAM KHOSRAVI Department of Earth and Space Sciences CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2012 Diurnal variation of stratospheric short-lived species MARYAM KHOSRAVI © MARYAM KHOSRAVI, 2012 Technical report No. 52L Department of Earth and Space Sciences Global Environmental Measurements and Modelling Chalmers University of Technology SE-412 96 Gothenburg, Sweden Telephone + 46 (0)31-772 1000 Cover: ClO measurement made by ASUR (Airborne SUbmillimeter Radiometer) on 23 January 2000 in the Arctic stratosphere (top) and corresponding smoothed model simulation (bottom). For detailed information see chapter 4 and paper I. This document was typeset using LATEX. Printed by Chalmers Reproservice Chalmers University of Technology G¨oteborg, Sweden 2012 Diurnal variation of stratospheric short-lived species Maryam Khosravi Chalmers University of Technology Department of Earth and Space Sciences Abstract The depletion of ozone in the stratosphere has a direct impact on the amount of ul- traviolet radiation reaching the Earth’s surface. The ozone abundance and distribution is controlled by the photo-chemical reactions and catalytic cycles involving halogens (chlorine and bromine), odd hydrogen and odd nitrogen species as well as by the at- mospheric transport. An introduction to ozone related chemistry of the stratosphere and modelling of short-lived species using photo-chemical models is presented. A one dimensional (1D) atmospheric model is used in two distinct studies: modeling of short-lived species in the Arctic lower stratosphere (paper I) and in the tropical mid to upper stratosphere (paper II). The first part of this thesis describes the diurnal variation of chlorine monoxide, ClO, which is the most important short-lived species controlling ozone in the polar lower stratosphere during winter and early-spring.
    [Show full text]
  • The Interaction of Hydrogen and Chlorine. the Nature of Photoche?Nical Inhibition
    View Article Online / Journal Homepage / Table of Contents for this issue THE INTERACTION OF HYDROGEN AND CHLORINE. 8%5 LX.-The Interaction of Hydrogen and Chlorine. The Nature of Photoche?nical Inhibition. By DAVIDLEONARD CHAPMAN and PATRICKSA~SFIELD MACMAHON. IThas been already remarked (Trans., 1909, 95, 1717) that the gases which are known to retard or prevent the photochemical interaction of hydrogen and chlorine are, without exception, easily reducible substances, and it has been inferred that probably the Published on 01 January 1910. Downloaded by University of Prince Edward Island 25/10/2014 09:30:55. retarding effect is indirectly due to the reduction of the inhibitor by hydrogen or hydrogen chloride. The ground for the above conclusion concerning inhibitors was the following ascertained facts. Oxygen, nitrogen chloride, and the gas formed by the action of moist chlorine or nitric oxide (nitrogen peroxide or nitrosyl chloride) acted as inhibitors, whilst carbon dioxide, nitrogen, and nitrous oxide were mere diluents. That nitrous oxide should appear amongst the list of diluents is not contrary to expectation, since this gas is, in most circumstances, chemically inert. Oxygen is by far the most feeble inhibitor, and it is also the least chemically active." Nitrogen chloride and * As yet, no disappearance of oxygen from an illuminated niixture of hydrogen and chlorine containing it has been detected ; but sufficiently forcible a priori con- siderations can be adduced in support of the assumption that oxygen will slowly react with hydrogen chloride in the presence of chlorine under the influeuce of light. View Article Online 846 CHAPMAN AND MAcMAHON : nitrogen peroxide or nitrosyl chloride are reduced with comparative ease, and they are also powerful inhibitors.
    [Show full text]
  • Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods
    Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods Marlin D. Harmony Department of Cherni..str)', The University of Kansas, Lawrence, KS 66045 Victor W. Laurie Department of Chemistry, Princeton Unit'er.it)", Princeton, NJ 08540 Robert L. Kuczkowski Department of Chemistry, University of Michigan, Ann Arbor, Ml48109 R. H. Schwendeman Department of Chemistry, Michigan State University, East Lansing, MI 48824 D. A. Ramsay Her::;berg institute of Astrophysics, National Research COl/neil of Canada, OIlf1l<'U, KIA ORG, Canada Frank J. Lovas, Walter J. Lafferty, and Arthur G. Maki National Bureau of Standards, Washing/Oil, DC 20334 Spectroscopic data related to the structures of polyatomic molecules in the gas phase have been reviewed, critically evaluated, and compiled. All reported bond distances and angles have been classified as equilibrium (r 0)' average (r,), substitution (r.), or effective (ro) parameters, and have been given a quality rating which is a measure of the parameter uncertainty. The surveyed literature includes work from all of the areas of gas-phase spectroscopy from which precise quantitative struc· tural information can be derived. Introductory material includes definitions of the various types of parameters and a description of the evaluation procedure. Key words: Bond angles; bond distances; gas·phase polyatomic molecules; gas·phase spectroscopy; microwave spectroscopy; molecular conformation; molecular spectroscopy; molecular structure; molecules; SLrUClure. Contents Page Page 1. Introduction.... .. ............. 619 Inorganic Molecules ....................... 628 2. Definitions of Structural Parameters ......... 620 C1 Molecules ............................. 650 3. Uncertainties ............................ 623 C~ Molecules ............................. 668 4,. Evaluation Procedure ..................... 625 C3 Molecules ............................. 688 5. Description of Tables ..................... 625 c.! Molecules ............................. 702 Appendix: Selected Diatomic Molecule Distances .
    [Show full text]
  • Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)
    NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G.
    [Show full text]
  • I&A-Red Absorption Spectrum of Gaseous Chloryl Fluoride
    Spectrochimica Acta, 1963, Vol. 19, pp. 1449 to 1466. Pergamon Press Ltd. Printed in Northern Ireland I&a-red absorption spectrum of gaseous chloryl fluoride (FClO, ) A. J. ARV~A and P. J. AYMONINO Instituto Superior de Inve&igaciones. Facultad do Quimica y Farmacia. Universidad National do La Plat’a. La Plata. Argentina (Received 12 Decenzber 1962) Abstract-The infrared spectrum of gaseous chloryl fluoride has been investigated in the region bet,ween 2.5 and 25 p at pressures from ca. 1 mm Hg to ca. 1 atm at room temperature. The strong bands located at 1265, 1104, 627 and 542 cm-l have been assigned to four of the six fundamental vibrations expected for a pyramidal tctratomic molecule pertaining to the C, point group. The other two bands could not be detected but they were tcnt,atively located at 405 and 349 cm-l. A correlation of the chloryl fluoride spectrum with spectra of related molecules and ions has been useful to the assignment of the bands. Chloryl fluoride was obtained by SCHIV~TZand SCHUMACHER[I] in the thermal reaction between fluorine and chlorine dioxide. Its infrared absorption spectrum in the sodium chloride region at low gas pressure has been published by SMITH et aZ. [2], although BURKE and SNITH had reported in 1956, at the Columbus Sym- posium of Molecular Structure and Spectra, that two weak bands which were observed by CLAASSEN et al. [3] in the infrared absorption spectrum of impure chlorine trifiuoride, were due to the presence of chloryl fluoride. SMITH et al. obtained the spectrum for analytical purposes employing a lo-cm path length cell and silver chloride windows.
    [Show full text]