Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University

Total Page:16

File Type:pdf, Size:1020Kb

Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 2013 Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Food Science Commons Recommended Citation Kaur, Simran, "Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis" (2013). Open Access Theses. 47. https://docs.lib.purdue.edu/open_access_theses/47 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. CHLORINE DIOXIDE GAS TREATMENT OF CANTALOUPE AND RESIDUE ANALYSIS A Thesis Submitted to the Faculty of Purdue University by Simran Kaur In Partial Fulfillment of the Requirements for the Degree of Master of Science December 2013 Purdue University West Lafayette, Indiana ii Two cantaloupes were in love. One said to the other, “Let’s run away together!” The other one said, “No. We cantelope.” iii ACKNOWLEDGEMENTS I would like to thank Dr. Mark Morgan for giving me the opportunity to work on this project. I truly appreciate his support, encouragement and guidance and have thoroughly enjoyed every moment. I would also like to thank my committee members, Dr. Mario Ferruzzi and Dr. Peter Hirst for their suggestions, feedback and comments. Thank you to Ben Paxson for his help with equipment and also to Dr. Applegate for the lab space to do my project. I am also thankful for the help and support from all my friends, old and new, close and far, for their support and companionship throughout my graduate studies, especially my dear friend Nadra Guizani. Most importantly, thank you to my parents and my brother. I find my strength in their constant support, belief and love. And of course, thank you music, caffeine and cantaloupes. iv TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES .......................................................................................................... xii LIST OF ABBREVIATIONS .......................................................................................... xiv ABSTRACT ............................................................................................................. xv CHAPTER 1. INTRODUCTION ................................................................................. 1 CHAPTER 2. LITERATURE REVIEW ...................................................................... 9 2.1 Chlorine Dioxide Properties ................................................................................... 9 2.2 Generation of Chlorine Dioxide............................................................................ 12 2.3 Applications .......................................................................................................... 13 2.4 Regulations ........................................................................................................... 17 2.5 Analytical Methods ............................................................................................... 18 2.5.1 Standard Method 4500-ClO2 C, Amperometric Method I .......................... 19 2.5.2 Standard Method 4500-ClO2 D, DPD Method. ........................................... 20 th 2.5.3 Standard Methods (18 Edition)-4500-ClO2 E, Amperometric Method II . 20 2.5.4 USEPA Method 300.0 Ion Chromatography ............................................... 21 2.5.5 USEPA Method 300.1 Determination of Inorganic Anions in Drinking Water by Ion Chromatography .................................................................... 21 2.5.6 Other Analytical Methods ............................................................................ 22 2.6 Previous Work: Detection of Chloroxyanion Residues in Foods Treated with ClO2 ...................................................................................................................... 24 2.7 Project Analytical Method .................................................................................... 27 CHAPTER 3. PRELIMINARY EXPERIMENTS ..................................................... 29 3.1 Introduction ........................................................................................................... 29 3.2 Materials and Methods .......................................................................................... 30 3.2.1 Materials ...................................................................................................... 30 3.2.1.1 Radiolabeled Materials ...................................................................... 30 3.2.1.2 Non-radiolabeled materials: .............................................................. 30 3.2.1.3 Test commodity: ................................................................................ 31 3.2.2 Methods........................................................................................................ 31 3.2.2.1 Liquid Scintillation Counter (LSC) ................................................... 31 3.2.2.2 Ion Chromatography (IC) .................................................................. 32 3.2.2.3 [36Cl] Chlorine Dioxide Gas Treatment of Test Commodity ............ 33 v Page 3.3 Sample Calculation for Analysis of Data.............................................................. 43 3.3.1 Gas Samples ................................................................................................. 43 3.3.2 Trap and Rinse Solutions ............................................................................. 47 3.3.3 Slurry and Serum Samples ........................................................................... 51 3.3.4 Fractionation Of Residues Via Ion Chromatography .................................. 57 3.4 Results ................................................................................................................... 67 3.4.1 Gas Samples ................................................................................................. 67 3.4.2 Trap and Rinse Solutions ............................................................................. 70 3.4.3 Cantaloupe: .................................................................................................. 71 3.5 Discussion ............................................................................................................. 75 3.5.1 Gas Samples: ................................................................................................ 75 3.5.2 Trap and Rinse Solutions: ............................................................................ 76 3.5.3 Cantaloupe: .................................................................................................. 77 3.6 Conclusions ........................................................................................................... 78 CHAPTER 4. CHLOROXYANION RESIDUES IN CANTALOUPES TREATED WITH CHLORINE DIOXIDE GAS ................................................................................ 80 4.1 Introduction ........................................................................................................... 80 4.2 Materials and Methods .......................................................................................... 81 4.2.1 Materials ...................................................................................................... 81 4.2.1.1 Radiolabeled Materials ...................................................................... 81 4.2.1.2 Non-radiolabeled materials: .............................................................. 82 4.2.1.3 Test commodity: ................................................................................ 83 4.2.2 Methods........................................................................................................ 83 4.2.2.1 Liquid Scintillation Counter (LSC) ................................................... 83 4.2.2.2 Ion Chromatography .......................................................................... 83 4.2.2.3 [36Cl] Chlorine dioxide gas treatment of test commodity [36CDG] .. 84 4.3 Results ................................................................................................................... 97 4.3.1 Gas Samples ................................................................................................. 97 4.3.2 Trap and Rinse Solutions ........................................................................... 102 4.3.3 Cantaloupe ................................................................................................. 103 4.4 Discussion ........................................................................................................... 109 4.4.1 Gas Samples ............................................................................................... 109 4.4.2 Trap and Rinse Solutions ........................................................................... 110 4.4.3 Cantaloupe ................................................................................................. 111 4.5 Conclusion .......................................................................................................... 112 CHAPTER 5. CHLORINE DIOXIDE TREATMENTS, THEIR EFFECT ON RESIDUE CONCENTRATION AND ESTIMATION OF EXPOSURE TO RESIDUES ........................................................................................................... 114 5.1 Introduction ........................................................................................................
Recommended publications
  • Multivalent Metals and Polyatomic Ions 1
    Name Date Comprehension Section 4.2 Use with textbook pages 189–193. Multivalent metals and polyatomic ions 1. Define the following terms: (a) ionic compound (b) multivalent metal (c) polyatomic ion 2. Write the formulae and names of the compounds with the following combination of ions. The first row is completed to help guide you. Positive ion Negative ion Formula Compound name (a) Pb2+ O2– PbO lead(II) oxide (b) Sb4+ S2– (c) TlCl (d) tin(II) fluoride (e) Mo2S3 (f) Rh4+ Br– (g) copper(I) telluride (h) NbI5 (i) Pd2+ Cl– 3. Write the chemical formula for each of the following compounds. (a) manganese(II) chloride (f) vanadium(V) oxide (b) chromium(III) sulphide (g) rhenium(VII) arsenide (c) titanium(IV) oxide (h) platinum(IV) nitride (d) uranium(VI) fluoride (i) nickel(II) cyanide (e) nickel(II) sulphide (j) bismuth(V) phosphide 68 MHR • Section 4.2 Names and Formulas of Compounds © 2008 McGraw-Hill Ryerson Limited 0056_080_BCSci10_U2CH04_098461.in6856_080_BCSci10_U2CH04_098461.in68 6688 PDF Pass 77/11/08/11/08 55:25:38:25:38 PPMM Name Date Comprehension Section 4.2 4. Write the formulae for the compounds formed from the following ions. Then name the compounds. Ions Formula Compound name + – (a) K NO3 KNO3 potassium nitrate 2+ 2– (b) Ca CO3 + – (c) Li HSO4 2+ 2– (d) Mg SO3 2+ – (e) Sr CH3COO + 2– (f) NH4 Cr2O7 + – (g) Na MnO4 + – (h) Ag ClO3 (i) Cs+ OH– 2+ 2– (j) Ba CrO4 5. Write the chemical formula for each of the following compounds. (a) barium bisulphate (f) calcium phosphate (b) sodium chlorate (g) aluminum sulphate (c) potassium chromate (h) cadmium carbonate (d) calcium cyanide (i) silver nitrite (e) potassium hydroxide (j) ammonium hydrogen carbonate © 2008 McGraw-Hill Ryerson Limited Section 4.2 Names and Formulas of Compounds • MHR 69 0056_080_BCSci10_U2CH04_098461.in6956_080_BCSci10_U2CH04_098461.in69 6699 PDF Pass77/11/08/11/08 55:25:39:25:39 PPMM Name Date Comprehension Section 4.2 Use with textbook pages 186–196.
    [Show full text]
  • Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
    Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I)
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Chemical Resistance Table
    CHEMICAL RESISTANCE TABLE Things to consider when choosing a hose • This chemical resistance table indicates if the inner tube of the hose is resistant to specific materials/chemicals throughout different temperatures. • Some materials/chemicals can change color in contact with the hose. If it´s important to have the color unaffected, we recommend you to contact Hydroscand. • For food products the table only indicates whether the inner tube is resistant to the product. This doesn’t automatically significate that the inner tube is approved for food products. • Abrasion, friction and mechanical influence can increase the chemicals aggression and therefore decrease the durability of the hose. • All values in the table are exclusively for the transport of media. • NB! Materials can change color in contact with other kind of materials. • Outer stress is always an important factor to the durability of the hose. NB! This resistance table should be considered as an indication and not a guarantee. International material codes Rubber Plasic NR Natural rubber P.T.F.E. Polytetraflouro ethylene (Teflon®) SBR Styrene butadiene rubber PP Polypropylene NBR Nitrile rubber UPE Ultra high molekular weight EPDM Ethylene-propylene rubber polyethylene IIR Butyl rubber XLPE Cross linked polyethylene (PEX) CR Chloroprene rubber (Neopren) PU Polyurethane CSM Chlorosulfonated polyethylene PE Polyester platsic (Elastomer) rubber (Hypalon) PA Polyamide (Nylon) PVC Polyvinylchloride How to read the table Fitness grade A Good to excelent B Acceptable for limited use
    [Show full text]
  • Healthcare Sterilisation: Challenging Practices, Volume 2
    Healthcare Volume 2 Volume Healthcare Sterilisation: Published by Smithers Rapra Technology Ltd, 2014 Challenging Practices Sterilisation: Volume 2 The collection of topics in this second volume of the book reflects challenges the reader to Challenging think beyond standard methods and question why certain current procedures remain static while technological advances abound in other aspects of sterilisation technology. By small means, better practices may come to pass to help answer some of the residual healthcare sterilisation and nosocomial infection queries: • What are some of the current challenges in healthcare sterilisation, and how can they be handled? • What are some of the acceptable current non-traditional sterilisation methods, challenging alternatives, and novel modalities? • What are some of the packaging, validation and statistical considerations of sterilisation Wayne J. Rogers practices? • How does design-of-product and packaging interrelate with sterilisation processing? Practices • Are the current sterility media and practices optimal for recovery of more modified and more resistant viable organism entities and product? • Are there increased sterility and product quality needs with new types of implantables and technological advances within the three dimensional combinations of diagnostics, drug release and challenging medical devices? Wayne J. Rogers Wayne Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK Telephone: +44 (0)1939 250383 Fax: +44 (0)1939 251118 Web: www.polymer-books.com Healthcare Sterilisation: Challenging Practices Volume 2 Wayne J. Rogers A Smithers Group Company Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom Telephone: +44 (0)1939 250383 Fax: +44 (0)1939 251118 http://www.polymer-books.com First Published in 2014 by Smithers Rapra Technology Ltd Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK ©Smithers Information Ltd., 2014 All rights reserved.
    [Show full text]
  • Advanced Placement Chemistry Summer Assignment Ms
    Advanced Placement Chemistry Summer Assignment Ms. Morrissey ([email protected]) DUE THE FIRST DAY OF SCHOOL! (Tuesday Sept. 8, 2020) A.P. Chemistry is a highly rigorous course that covers most of the material that would be covered in a first year college chemistry course. It is intended for students who are highly motivated to accept the challenge of a college course at the high school level and have demonstrated a willingness to commit considerable time to studying and completing assignments outside of class. The topics to be covered extensively over the summer are provided as test review questions and are usually included in the first 3 chapters of most textbooks used for Honors or AP Chemistry. These chapters are Chapter 1 (Matter and Measurement), Chapter 2 (Atoms, Molecules, and Ions), and Chapter 3 (Stoichiometry). If you have an Honors Chemistry textbook then you may reference that. If you do not then I have posted a pdf version of another textbook used in other AP Chemistry classes on Google Classroom. You must email Ms. Morrissey for the class code to join the Google Classroom. You may also use notes from your previous chemistry class or any reputable online resources. The list of test review questions have been provided to help you focus your review this summer. I highly suggest you utilize this list as your first assessment will be on these topics/calculations. I will also provide additional resources on Google Classroom for you to fully prepare/practice topics that normally require it such as applying sig figs, nomenclature, and all calculations.
    [Show full text]
  • Oxides: Naming and Use
    Oxides: naming and use Oxides: naming and use Lesson plan (Polish) Lesson plan (English) Oxides: naming and use Link to the lesson Before you start you should know the properties of oxygen; the use of oxygen; how to define combustion; how to write the synthesis reaction of metal and non‐metal oxides; what oxides are and how they are produced; examples of oxides. You will learn to name oxides; to correctly write molecular and structural formulas of selected metal and non‐metal oxides basing on their names; to name the oxide basing on its molecular formula; to indicate those oxides that can be found in nature; what the uses of oxides are; to describe the physical properties of selected oxides (e.g. calcium oxide, aluminum oxide, iron oxides, carbon oxides, silicon dioxide, sulfur oxides). Nagranie dostępne na portalu epodreczniki.pl Nagranie dźwiękowe abstraktu Naming of oxides Oxides are binary compounds with oxygen where the oxidation state of oxygen is O-II. Oxygen in chemical compounds is always divalent. Other elements may have different valency number and form one or more oxides (alkali metals, alkaline earth metals, fluoride have only valence of 1). In the names of oxides, the word “oxide” must be preceded by the name of the element that binds to oxygen. The name is composed of the cation name and the word oxide. Examples: Na2O sodium oxide CaO calcium oxide SnO tin(II) oxide or stannous oxide SnO2 tin(IV) oxid Oxides of non‐metals are named by stating the name of the element first, followed by the word oxide.
    [Show full text]
  • 6.2 Electron Configuration and the Periodic Table
    CK-12 Chemistry - Intermediate Quizzes and Tests Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHOR Donald Calbreath, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Polar Ozone Depletion
    POLAR OZONE DEPLETION Nobel Lecture, December 8, 1995 by MARIO J. MOLINA Department of Earth, Atmospheric and Planetary Sciences, and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA In On the rigor of Science In that Empire, the Art of Cartography achieved such Perfection that the map of a single Province occupied an entire City, and the map of the Empire an enti- re Province. With time, those unwieldy maps did not satisfy and the Cartographers raised a Map of the Empire, with the size of the Empire and which coincided with it on every point . Jorge Luis Borges INTRODUCTION The ozone layer acts as an atmospheric shield which protects life on Earth against harmful ultraviolet radiation coming from the sun. This shield is fra- gile: in the past two decades it has become very clear that it can be affected by human activities. Roughly 90% of the Earth’s ozone resides in the stratosphere, which is the atmospheric layer characterized by an inverted - that is, increasing - empera- ture profile that rises typically from -210 K at its base at 10-15 km altitude, to roughly 275 K at 50 km altitude. The maximum concentration of ozone is several parts per million; it is continuously being produced in the upper stratosphere by the action of solar radiation on molecular oxygen, and con- tinuously being destroyed by chemical processes involving free radicals. Work by Paul Crutzen in the early 1970’s [1]established that nitrogen oxi- des of natural origin, present at parts per billion levels in the stratosphere, are responsible for most of this chemical destruction, which occurs by means of catalytic cycles.
    [Show full text]
  • Diurnal Variation of Stratospheric Short-Lived Species
    THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Diurnal variation of stratospheric short-lived species MARYAM KHOSRAVI Department of Earth and Space Sciences CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2012 Diurnal variation of stratospheric short-lived species MARYAM KHOSRAVI © MARYAM KHOSRAVI, 2012 Technical report No. 52L Department of Earth and Space Sciences Global Environmental Measurements and Modelling Chalmers University of Technology SE-412 96 Gothenburg, Sweden Telephone + 46 (0)31-772 1000 Cover: ClO measurement made by ASUR (Airborne SUbmillimeter Radiometer) on 23 January 2000 in the Arctic stratosphere (top) and corresponding smoothed model simulation (bottom). For detailed information see chapter 4 and paper I. This document was typeset using LATEX. Printed by Chalmers Reproservice Chalmers University of Technology G¨oteborg, Sweden 2012 Diurnal variation of stratospheric short-lived species Maryam Khosravi Chalmers University of Technology Department of Earth and Space Sciences Abstract The depletion of ozone in the stratosphere has a direct impact on the amount of ul- traviolet radiation reaching the Earth’s surface. The ozone abundance and distribution is controlled by the photo-chemical reactions and catalytic cycles involving halogens (chlorine and bromine), odd hydrogen and odd nitrogen species as well as by the at- mospheric transport. An introduction to ozone related chemistry of the stratosphere and modelling of short-lived species using photo-chemical models is presented. A one dimensional (1D) atmospheric model is used in two distinct studies: modeling of short-lived species in the Arctic lower stratosphere (paper I) and in the tropical mid to upper stratosphere (paper II). The first part of this thesis describes the diurnal variation of chlorine monoxide, ClO, which is the most important short-lived species controlling ozone in the polar lower stratosphere during winter and early-spring.
    [Show full text]
  • The Interaction of Hydrogen and Chlorine. the Nature of Photoche?Nical Inhibition
    View Article Online / Journal Homepage / Table of Contents for this issue THE INTERACTION OF HYDROGEN AND CHLORINE. 8%5 LX.-The Interaction of Hydrogen and Chlorine. The Nature of Photoche?nical Inhibition. By DAVIDLEONARD CHAPMAN and PATRICKSA~SFIELD MACMAHON. IThas been already remarked (Trans., 1909, 95, 1717) that the gases which are known to retard or prevent the photochemical interaction of hydrogen and chlorine are, without exception, easily reducible substances, and it has been inferred that probably the Published on 01 January 1910. Downloaded by University of Prince Edward Island 25/10/2014 09:30:55. retarding effect is indirectly due to the reduction of the inhibitor by hydrogen or hydrogen chloride. The ground for the above conclusion concerning inhibitors was the following ascertained facts. Oxygen, nitrogen chloride, and the gas formed by the action of moist chlorine or nitric oxide (nitrogen peroxide or nitrosyl chloride) acted as inhibitors, whilst carbon dioxide, nitrogen, and nitrous oxide were mere diluents. That nitrous oxide should appear amongst the list of diluents is not contrary to expectation, since this gas is, in most circumstances, chemically inert. Oxygen is by far the most feeble inhibitor, and it is also the least chemically active." Nitrogen chloride and * As yet, no disappearance of oxygen from an illuminated niixture of hydrogen and chlorine containing it has been detected ; but sufficiently forcible a priori con- siderations can be adduced in support of the assumption that oxygen will slowly react with hydrogen chloride in the presence of chlorine under the influeuce of light. View Article Online 846 CHAPMAN AND MAcMAHON : nitrogen peroxide or nitrosyl chloride are reduced with comparative ease, and they are also powerful inhibitors.
    [Show full text]