A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the Light of Present Day Context

Total Page:16

File Type:pdf, Size:1020Kb

A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the Light of Present Day Context Section Pharmaindustry Commentary A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the light of Present Day Context Prashant Tandon1, Varun Gupta2, Ashish Ranjan3, Purav Gandhi4, Anand Kotiyal5, 3 Aastha Kapoor 3 1Founder ;2VP & Head Medical Affair; Manager Medical Affair; 5Drug Data Analyst Medical Affair, 1mg Technologies Private Limited, 4th Floor, Motorola Building, MG Road, Sector 14, Gurugram, Haryana, 122001. 4Founder, Remedy Social, C/602, Tulip Citadel, Shreyas Tekra, Ambawadi, Ahmedabad 380015, Gujarat. ABSTRACT______________________________________________________________ Background: Current classification of medicines in Conclusions: We have recommended a revised drug India under Drug and Cosmetic Act into Schedule G, classification system that is more comprehensive in coverage and H, H1, X is outdated, evolved through patchwork over eliminates the overlaps between classes. Moreover, considering the years and needs to be thoroughly updated. The the implementation challenges for such a drug classification primary aim of the scheduling system is to ensure system in the diverse and fragmented ecosystem in India, we appropriate access to medicines while balancing recommend a technology backed platform to help monitor the public health and safety. India is experiencing a rapid implementation. transition with the rising burden of chronic non- communicable diseases where regular access of Key words: Drug Classification System, Drug and Cosmetic Act affordable medicines is critical for chronic disease India, Digitization of Prescriptions, Drug Schedules in India, management to prevent complications. Methods: We Schedule H, Monitoring Drug Schedule System analyzed drugs commonly selling across India, Received: 01.09.17 | Accepted:16.09.17 through multiple information sources including 1mg drug database, PharmaTrac (AIOCD-AWACS), Corresponding Author inventory data from distributors and retailers, Dr. Varun Gupta performed extensive literature review and expert 4th Floor, 1mg Technologies Private Limited, Motorola Building, MG interviews. We studied different regulatory systems Road, Sector 14, Gurugram, Haryana 122001 globally to understand best-practices and identify recommendations. Results: We identified series of How to cite this article: Tandon P, Gupta V, Ranjan A, Gandhi P, lacunae in current drug classification system and its Kotiyal A, Kapoor A. A Review on the Current Classification and implementation. Out of approximately 1,600 Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the commonly prescribed medicines, only 656 are light of present day context. Int Arch BioMed Clin Res. 2017;3(3):I- VII.DOI:10.21276/iabcr.2017.3.3.26 currently covered under the four Schedules. There are multiple overlaps in terms of drug substances covered Source of Support: Nil, Conflict of Interest: None under these schedules resulting in ambiguity. Copyright: © the author(s) and publisher. IABCR is an official publication of Ibn Sina Academy of Medieval Medicine & Sciences, registered in 2001 under Indian Trusts Act, 1882. This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited INTRODUCTION_____________________ Drug and Cosmetic Act has not been reviewed in a have been amended from time to time. Several efforts have comprehensive manner since its inception although the rules been made in the last 15 years, since the Mashelkar Access this article online Committee Report (2003) appeared.[1] Since then, there have Quick Response code been many proposals for reform including the Department- Website: www.iabcr.org Related Parliamentary Standing Committee on Health and Family Welfare 59th Report on the functioning of the DOI: 10.21276/iabcr.2017.3.3.26 Central Drugs Standard Control Organization (CDSCO) International Archives of BioMedical and Clinical Research | July–Sept 2017| Vol 3| Issue 3 I www.iabcr.org Tandon P, et al.: A Review on Drug & Cosmetic Act (2012) (henceforth, the 59th Parliamentary Committee followed by other classification systems, we arrived at a Report) and the Ranjit Roy Chaudhary Committee Report recommendation for a new classification system and (2013) and most recently, the Drugs and Cosmetics mapping of certain classes of drugs for the same. [1] (Amendment) Bill, 2015. However, despite these efforts large lacunae remain in terms of classification of medicines RESULTS & DISCUSSION _____________ into different schedules. The current classification of Challenges identified with current Drug Scheduling medicines in Schedule G, H, H1, X is outdated, evolved system: through patchwork over the years and needs to be thoroughly Current drug classification system primarily focuses on five updated. drug classes including Schedule G, H, H1, K, and X. A brief The primary aim of the scheduling system is to ensure overview regarding definition of these drug classes and appropriate access to medicines while balancing public related regulatory guidance is provided in the Table I. health and safety. India is experiencing a rapid transition with the rising burden of chronic non-communicable diseases where regular access of affordable medicines is Table I: An overview of current Drug Schedule classification No. of Drug Prescription critical for chronic disease management to prevent Definition [3,8] Medicines Schedule Guidance complications. A robust scheduling system framework, Covered[3] Schedule G consists for drugs implemented using some of the recent technological that can be administered only advancements can result in improvement in access of Schedule G under supervision of a 57 None medicines without compromising the public safety. Registered Medical Practitioner (RMP) In this review, we focus on highlighting the challenges Schedule H consists of drugs Medicines to confronted due to current schedule classification of which are required to be be sold only Schedule H dispensed on prescription of 537 on medicines available in Indian market and potential Registered Medical Practitioners prescription mechanisms to re-classify all the medicines for clarity and (RMP) of a RMP Medicines to better implementation. Presently, a large no of drugs are not be sold only classified under any of the schedules, leading to confusion at Schedule H1 consists of drugs on multiple points. Additionally, may drugs that have globally including antibiotics, habit prescription forming drugs and a few anti TB of a RMP; Schedule moved to OTC have not been examined in Indian context. drugs which were abused under 46 pharmacist H1 These recommendations can be considered while making Schedule H, and now have a to maintain a regulation on its sales and register/recor amendment in the Drug and Cosmetic Act and Rules. additional warning to the patient d of all medicines sold METHODS__________________________ One of the aspects of this schedule is the list of drugs that We took the following approach for this study: Not clearly Schedule K can be sold without a license, None defined We identified a complete universe of drugs commonly and doctors can directly selling across India, through multiple information sources dispense the same. Medicines to including 1mg drug database, PharmaTrac (AIOCD- be sold only on AWACS) [2], inventory data from multiple distributors and Schedule X consists of drugs prescription retailers. Once the entire list was identified, we mapped a list which are required to be of a RMP dispensed on prescription of of approximately 1,600 unique drug substances present prescription Schedule X Registered Medical Practitioners 16 copy to be across these medicines, and classified them across various (RMP) preserved for It requires special retail license disease areas. two years for selling these medicines. We conducted a systemic analysis of all the 1,600 drug and records of all substances to map them under Schedule G, H, H1, and X, medicines [3] based on the latest edition of Drug and Cosmetics Act and information available on product labels and images. Current drug scheduling system faces a challenge of being We conducted multiple interviews with expert physicians, non-comprehensive on multiple accounts including but not pharmacists, Industry experts and ex-regulators to better limited to the following: understand the gaps in current scheduling system and get recommendations on improvements. i) Out of 1,600 odd medicines commonly prescribed in We also analyzed different regulatory systems including India, only 656 are currently covered under Schedule H, United States Food and Drug Administration, Medicines and H1, G or X.[3] Because of this lacuna, many commonly Healthcare Product Regulatory Agency in UK, Therapeutic prescribed medications have no clear prescription Goods Administration scheduling system from Australia, guidance. Some of the examples are included in Table II. and the World Health Organization, to identify some of the Current lack of classification for these drugs results in a [4-7] best practices being followed by these agencies. scenario where deciding the drug classification for these Using our inputs from the above study and our medicines is open to interpretation for all stakeholders understanding regarding clinic usage and pharmacological including the Registered Medical Practitioners, class of each medicine, potential risks and best practices pharmacists,
Recommended publications
  • Nigerian Veterinary Journal 39(3)
    Nigerian Veterinary Journal 39(3). 2018 Asambe et al. NIGERIAN VETERINARY JOURNAL ISSN 0331-3026 Nig. Vet. J., September 2018 Vol 39 (3): 199 -208. https://dx.doi.org/10.4314/nvj.v39i3.3 ORIGINAL ARTICLE In Vitro Comparative Activity of Ciprofloxacin and Enrofloxacin against Clinical Isolates from Chickens in Benue State, Nigeria Asambe, A.1*; Babashani, M2. and Salisu, U. S.1 ¹.Federal University Dutsinma, Katsina State. 2.Ahmadu Bello University Zaria. *Corresponding author: Email: [email protected]; Tel No:+2348063103254 SUMMARY This study compares the in vitro activities of enrofloxacin and its main metabolite ciprofloxacin against clinical Escherichia coli and non-lactose fermenting enterobacteria isolates from chickens. Ten (10) Escherichia coli and 8 non lactose fermenting enterobacteriaceae species isolated from a pool of clinical cases at the Microbiology Laboratory of the Veterinary Teaching Hospital, University of Agriculture Makurdi were used in this study. Ten-fold serial dilution of 10 varying concentrations (0.1-50μg/mL) of enrofloxacin and ciprofloxacin were tested against the isolates in vitro by Bauer’s disc-diffusion method to determine and compare their antimicrobial activities against the isolates. The 18 isolates tested were susceptible to both enrofloxacin and ciprofloxacin, and their mean values in the susceptibility of Escherichia coli and non-lactose fermenters were significantly different (p < 0.01). The study concluded that the clinical isolates are susceptible to both enrofloxacin and ciprofloxacin though ciprofloxacin exhibit higher activity. Comparatively, ciprofloxacin was found to be more potent than enrofloxacin and the difference statistically significant. Ciprofloxacin was recommended as a better choice in the treatment of bacterial infections of chicken in this area compared to enrofloxacin.
    [Show full text]
  • Fluoroquinolones for Treating Tuberculosis (Presumed Drug- Sensitive) (Review)
    Fluoroquinolones for treating tuberculosis (presumed drug- sensitive) (Review) Ziganshina LE, Titarenko AF, Davies GR This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2013, Issue 6 http://www.thecochranelibrary.com Fluoroquinolones for treating tuberculosis (presumed drug-sensitive) (Review) Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 5 OBJECTIVES ..................................... 6 METHODS ...................................... 6 RESULTS....................................... 9 Figure1. ..................................... 10 Figure2. ..................................... 12 ADDITIONALSUMMARYOFFINDINGS . 15 DISCUSSION ..................................... 20 Figure3. ..................................... 20 Figure4. ..................................... 21 AUTHORS’CONCLUSIONS . 23 ACKNOWLEDGEMENTS . 23 REFERENCES ..................................... 24 CHARACTERISTICSOFSTUDIES . 30 DATAANDANALYSES. 60 Analysis 1.1. Comparison 1 Fluoroquinolones plus standard regimen (HRZE) versus standard regimen alone (HRZE), Outcome1Deathfromanycause. 61 Analysis 1.2. Comparison 1 Fluoroquinolones plus standard regimen (HRZE) versus standard regimen alone (HRZE), Outcome2TB-relateddeath.
    [Show full text]
  • Fluoroquinolones in Children: a Review of Current Literature and Directions for Future Research
    Academic Year 2015 - 2016 Fluoroquinolones in children: a review of current literature and directions for future research Laurens GOEMÉ Promotor: Prof. Dr. Johan Vande Walle Co-promotor: Dr. Kevin Meesters, Dr. Pauline De Bruyne Dissertation presented in the 2nd Master year in the programme of Master of Medicine in Medicine 1 Deze pagina is niet beschikbaar omdat ze persoonsgegevens bevat. Universiteitsbibliotheek Gent, 2021. This page is not available because it contains personal information. Ghent Universit , Librar , 2021. Table of contents Title page Permission for loan Introduction Page 4-6 Methodology Page 6-7 Results Page 7-20 1. Evaluation of found articles Page 7-12 2. Fluoroquinolone characteristics in children Page 12-20 Discussion Page 20-23 Conclusion Page 23-24 Future perspectives Page 24-25 References Page 26-27 3 1. Introduction Fluoroquinolones (FQ) are a class of antibiotics, derived from modification of quinolones, that are highly active against both Gram-positive and Gram-negative bacteria. In 1964,naladixic acid was approved by the US Food and Drug Administration (FDA) as first quinolone (1). Chemical modifications of naladixic acid resulted in the first generation of FQ. The antimicrobial spectrum of FQ is broader when compared to quinolones and the tissue penetration of FQ is significantly deeper (1). The main FQ agents are summed up in table 1. FQ owe its antimicrobial effect to inhibition of the enzymes bacterial gyrase and topoisomerase IV which have essential and distinct roles in DNA replication. The antimicrobial spectrum of FQ include Enterobacteriacae, Haemophilus spp., Moraxella catarrhalis, Neiserria spp. and Pseudomonas aeruginosa (1). And FQ usually have a weak activity against methicillin-resistant Staphylococcus aureus (MRSA).
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Original Article Fluoroquinolones Inhibit HCV by Targeting Its Helicase
    Antiviral Therapy 2012; 17:467–476 (doi: 10.3851/IMP1937) Original article Fluoroquinolones inhibit HCV by targeting its helicase Irfan A Khan1,2, Sammer Siddiqui1, Sadiq Rehmani1, Shahana U Kazmi2, Syed H Ali1,3* 1Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan 2Department of Microbiology, University of Karachi, Karachi, Pakistan 3Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan *Corresponding author e-mail: [email protected] Background: HCV has infected >170 million individuals of 12 different fluoroquinolones. Afterwards, Huh-7 and worldwide. Effective therapy against HCV is still lacking and Huh-8 cells were lysed and viral RNA was extracted. The there is a need to develop potent drugs against the virus. extracted RNA was reverse transcribed and quantified by In the present study, we have employed two culture models real-time quantitative PCR. Fluoroquinolones were also to test the activity of fluoroquinolone drugs against HCV: a tested on purified NS3 protein in a molecular-beacon- subgenomic replicon that is able to replicate independently based in vitro helicase assay. in the cell line Huh-8 and the Huh-7 cell culture model Results: To varying degrees, all of the tested fluoroqui- that employs cells transfected with synthetic HCV RNA to nolones effectively inhibited HCV replication in both produce the infectious HCV particles. Fluoroquinolones have Huh-7 and Huh-8 culture models. The inhibition of HCV also been shown to have inhibitory activity against certain NS3 helicase activity was also observed with all 12 of the viruses, possibly by targeting the viral helicase. To tease out fluoroquinolones.
    [Show full text]
  • The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity
    molecules Review The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity Abdul Naeem 1, Syed Lal Badshah 1,2,*, Mairman Muska 1, Nasir Ahmad 2 and Khalid Khan 2 1 National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (A.N.); [email protected] (M.M.) 2 Department of Chemistry, Islamia College University Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (N.A.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +92-331-931-6672 Academic Editor: Peter J. Rutledge Received: 23 December 2015 ; Accepted: 15 February 2016 ; Published: 28 March 2016 Abstract: Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites—the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV.
    [Show full text]
  • Computational Antibiotics Book
    Andrew V DeLong, Jared C Harris, Brittany S Larcart, Chandler B Massey, Chelsie D Northcutt, Somuayiro N Nwokike, Oscar A Otieno, Harsh M Patel, Mehulkumar P Patel, Pratik Pravin Patel, Eugene I Rowell, Brandon M Rush, Marc-Edwin G Saint-Louis, Amy M Vardeman, Felicia N Woods, Giso Abadi, Thomas J. Manning Computational Antibiotics Valdosta State University is located in South Georgia. Computational Antibiotics Index • Computational Details and Website Access (p. 8) • Acknowledgements (p. 9) • Dedications (p. 11) • Antibiotic Historical Introduction (p. 13) Introduction to Antibiotic groups • Penicillin’s (p. 21) • Carbapenems (p. 22) • Oxazolidines (p. 23) • Rifamycin (p. 24) • Lincosamides (p. 25) • Quinolones (p. 26) • Polypeptides antibiotics (p. 27) • Glycopeptide Antibiotics (p. 28) • Sulfonamides (p. 29) • Lipoglycopeptides (p. 30) • First Generation Cephalosporins (p. 31) • Cephalosporin Third Generation (p. 32) • Fourth-Generation Cephalosporins (p. 33) • Fifth Generation Cephalosporin’s (p. 34) • Tetracycline antibiotics (p. 35) Computational Antibiotics Antibiotics Covered (in alphabetical order) Amikacin (p. 36) Cefempidone (p. 98) Ceftizoxime (p. 159) Amoxicillin (p. 38) Cefepime (p. 100) Ceftobiprole (p. 161) Ampicillin (p. 40) Cefetamet (p. 102) Ceftoxide (p. 163) Arsphenamine (p. 42) Cefetrizole (p. 104) Ceftriaxone (p. 165) Azithromycin (p.44) Cefivitril (p. 106) Cefuracetime (p. 167) Aziocillin (p. 46) Cefixime (p. 108) Cefuroxime (p. 169) Aztreonam (p.48) Cefmatilen ( p. 110) Cefuzonam (p. 171) Bacampicillin (p. 50) Cefmetazole (p. 112) Cefalexin (p. 173) Bacitracin (p. 52) Cefodizime (p. 114) Chloramphenicol (p.175) Balofloxacin (p. 54) Cefonicid (p. 116) Cilastatin (p. 177) Carbenicillin (p. 56) Cefoperazone (p. 118) Ciprofloxacin (p. 179) Cefacetrile (p. 58) Cefoselis (p. 120) Clarithromycin (p. 181) Cefaclor (p.
    [Show full text]
  • Staphylococcus Aureus Keratitis: Incidence, Pathophysiology, Risk Factors and Novel Strategies for Treatment
    Journal of Clinical Medicine Review Staphylococcus aureus Keratitis: Incidence, Pathophysiology, Risk Factors and Novel Strategies for Treatment Jason W. Lee 1, Tobi Somerville 2,3, Stephen B. Kaye 2,3 and Vito Romano 2,3,* 1 School of Medicine, University of Liverpool, Liverpool L69 3GE, UK; [email protected] 2 Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; [email protected] (T.S.); [email protected] (S.B.K.) 3 St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK * Correspondence: [email protected] Abstract: Bacterial keratitis is a devastating condition that can rapidly progress to serious complica- tions if not treated promptly. Certain causative microorganisms such as Staphylococcus aureus and Pseudomonas aeruginosa are notorious for their resistance to antibiotics. Resistant bacterial keratitis results in poorer outcomes such as scarring and the need for surgical intervention. Thorough un- derstanding of the causative pathogen and its virulence factors is vital for the discovery of novel treatments to avoid further antibiotic resistance. While much has been previously reported on P. aeruginosa, S. aureus has been less extensively studied. This review aims to give a brief overview of S. aureus epidemiology, pathophysiology and clinical characteristics as well as summarise the current evidence for potential novel therapies. Keywords: keratitis; microbial keratitis; Staphylococcus aureus; pathophysiology; novel therapy; therapeutics; treatment Citation: Lee, J.W.; Somerville, T.; Kaye, S.B.; Romano, V. Staphylococcus aureus Keratitis: Incidence, Pathophysiology, Risk Factors and 1. Introduction Novel Strategies for Treatment. J. Clin. Keratitis is a sight-threatening disease [1], with the majority of cases attributed to Med.
    [Show full text]
  • Metal Complexes of Quinolone Antibiotics and Their Applications: an Update
    Molecules 2013, 18, 11153-11197; doi:10.3390/molecules180911153 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Metal Complexes of Quinolone Antibiotics and Their Applications: An Update Valentina Uivarosi Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, Bucharest 020956, Romania; E-Mail: [email protected]; Tel.: +4-021-318-0742; Fax: +4-021-318-0750 Received: 8 August 2013; in revised form: 2 September 2013 / Accepted: 2 September 2013 / Published: 11 September 2013 Abstract: Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • 1. All of the Following Ate Psychotropic Substances, Except: 1
    1. All of the following ate psychotropic substances, except: 1. Amobarbital 2. Meprobamate 3. Barbital 4. All of the above 2. As per schedule P of Drugs and Cosmetics Act, the Diphtheria toxoid has expiry period of : 1. 6 months 2. 12 months 3. 2 years 4. 5 years 3. Chloramphenicol comes under schedule : 1. G 2. H 3. W 4. P 4. Example of Narcotic drug is : 1. Coca 2. Opium 3. Charas 4. Doxapram 5. Ergot and its preparation belongs to schedule : 1. P 2. Q 3. C1 4. L 6. Schedule X drug is : 1. Amphetamine 2. Cyclobarbital 3. Glutethimide 4. All of the above 7. Drug Inspector is appointed under section : 1. 19 2. 42 3. 21 4. 30 8. Schedule M and Y were introduced in Drugs and Cosmetics Act in : 1. 1976 2. 1982 3. 1988 4. 1980 9. Example of Schedule G drug is : 1. Tetracycline 2. Ampicillin 3. Ibuprofen 4. Tolbutamide 10. Example of Schedule X drug is : 1. Diazepam 2. Emetine 3. Quinidine 4. Ciprofloxacin 11. Opium has been under legislative control since : 1. 1820 2. 1857 3. 1925 4. 1949 12. Standards for mechanical contraceptives are given in schedule : 1. S 2 R 3. Q 4. T 13. The Drugs and Cosmetics Act has been divided into ...... parts 1. 15 2. 16 3. 18 4. 24 14. The Central Drugs Laboratory is established in : 1. Calcutta 2. Lucknow 3. Mumbai 4. Kasauli 15. The members of the D.T.A.B. hold the office for : 1. 1 year 2. 3 years 3.
    [Show full text]
  • State Controlled Substances Acts
    If you have issues viewing or accessing this file contact us at NCJRS.gov. 13 ~3d-l FROM THE NATIONAL 132321 U.S. Department of Justice .' CRIMINAL National Instiiute of Justice This document has been reproduced exactly as received from the JUSTICE person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of ASSOCIATION Justice. Permission to reproduce this "Ii material has been grantedPub11C QY • DOnaln• / BJ S u.s. DEpartnent of Justice to the National Criminal Justice Reference Service (NCJRS). Further reproduction outside of the NCJRS system requires permis­ sion of the ......·owner . • a._I" A GUIDE TO STATE CONTROLLED • SUBSTANCES ACTS ( Gwen A. Holden, Project Director Penny Wakefield, Project Coordinator Richard J. Rogers, Project Associate Andrew J. Waghorn, Legal Researcher Michelle L. Lehmann, Legal Researcher Revised January 1991 Prepared in cooperation with the U. S. Department of Justice, Bureau of Justice Assistance and the National District Attorneys Association, American Prosecutors Research Institute ~~~............ -------------------------------------------------------------------------------- • • . 'i ..., Disclaimer This revised edition was developed under a contract with the National District Attorneys Association's (NDAA) American Prosecutors Research Institute, supported by funding from the U. S. Department of Justice's Bureau of Justice Assistance, under Grant No. 89-77-CX-0018. The points of view or opinions stated in this document are the results of work performed by the National Criminal Justice Association and project staff and do not necessarily reflect the official position or policies of the U. S.
    [Show full text]