The Current Anti-TB Drug Research and Development Pipeline
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the Light of Present Day Context
Section Pharmaindustry Commentary A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the light of Present Day Context Prashant Tandon1, Varun Gupta2, Ashish Ranjan3, Purav Gandhi4, Anand Kotiyal5, 3 Aastha Kapoor 3 1Founder ;2VP & Head Medical Affair; Manager Medical Affair; 5Drug Data Analyst Medical Affair, 1mg Technologies Private Limited, 4th Floor, Motorola Building, MG Road, Sector 14, Gurugram, Haryana, 122001. 4Founder, Remedy Social, C/602, Tulip Citadel, Shreyas Tekra, Ambawadi, Ahmedabad 380015, Gujarat. ABSTRACT______________________________________________________________ Background: Current classification of medicines in Conclusions: We have recommended a revised drug India under Drug and Cosmetic Act into Schedule G, classification system that is more comprehensive in coverage and H, H1, X is outdated, evolved through patchwork over eliminates the overlaps between classes. Moreover, considering the years and needs to be thoroughly updated. The the implementation challenges for such a drug classification primary aim of the scheduling system is to ensure system in the diverse and fragmented ecosystem in India, we appropriate access to medicines while balancing recommend a technology backed platform to help monitor the public health and safety. India is experiencing a rapid implementation. transition with the rising burden of chronic non- communicable diseases where regular access of Key words: Drug Classification System, Drug and Cosmetic Act affordable medicines is critical for chronic disease India, Digitization of Prescriptions, Drug Schedules in India, management to prevent complications. Methods: We Schedule H, Monitoring Drug Schedule System analyzed drugs commonly selling across India, Received: 01.09.17 | Accepted:16.09.17 through multiple information sources including 1mg drug database, PharmaTrac (AIOCD-AWACS), Corresponding Author inventory data from distributors and retailers, Dr. -
Nigerian Veterinary Journal 39(3)
Nigerian Veterinary Journal 39(3). 2018 Asambe et al. NIGERIAN VETERINARY JOURNAL ISSN 0331-3026 Nig. Vet. J., September 2018 Vol 39 (3): 199 -208. https://dx.doi.org/10.4314/nvj.v39i3.3 ORIGINAL ARTICLE In Vitro Comparative Activity of Ciprofloxacin and Enrofloxacin against Clinical Isolates from Chickens in Benue State, Nigeria Asambe, A.1*; Babashani, M2. and Salisu, U. S.1 ¹.Federal University Dutsinma, Katsina State. 2.Ahmadu Bello University Zaria. *Corresponding author: Email: [email protected]; Tel No:+2348063103254 SUMMARY This study compares the in vitro activities of enrofloxacin and its main metabolite ciprofloxacin against clinical Escherichia coli and non-lactose fermenting enterobacteria isolates from chickens. Ten (10) Escherichia coli and 8 non lactose fermenting enterobacteriaceae species isolated from a pool of clinical cases at the Microbiology Laboratory of the Veterinary Teaching Hospital, University of Agriculture Makurdi were used in this study. Ten-fold serial dilution of 10 varying concentrations (0.1-50μg/mL) of enrofloxacin and ciprofloxacin were tested against the isolates in vitro by Bauer’s disc-diffusion method to determine and compare their antimicrobial activities against the isolates. The 18 isolates tested were susceptible to both enrofloxacin and ciprofloxacin, and their mean values in the susceptibility of Escherichia coli and non-lactose fermenters were significantly different (p < 0.01). The study concluded that the clinical isolates are susceptible to both enrofloxacin and ciprofloxacin though ciprofloxacin exhibit higher activity. Comparatively, ciprofloxacin was found to be more potent than enrofloxacin and the difference statistically significant. Ciprofloxacin was recommended as a better choice in the treatment of bacterial infections of chicken in this area compared to enrofloxacin. -
Fluoroquinolones for Treating Tuberculosis (Presumed Drug- Sensitive) (Review)
Fluoroquinolones for treating tuberculosis (presumed drug- sensitive) (Review) Ziganshina LE, Titarenko AF, Davies GR This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2013, Issue 6 http://www.thecochranelibrary.com Fluoroquinolones for treating tuberculosis (presumed drug-sensitive) (Review) Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 5 OBJECTIVES ..................................... 6 METHODS ...................................... 6 RESULTS....................................... 9 Figure1. ..................................... 10 Figure2. ..................................... 12 ADDITIONALSUMMARYOFFINDINGS . 15 DISCUSSION ..................................... 20 Figure3. ..................................... 20 Figure4. ..................................... 21 AUTHORS’CONCLUSIONS . 23 ACKNOWLEDGEMENTS . 23 REFERENCES ..................................... 24 CHARACTERISTICSOFSTUDIES . 30 DATAANDANALYSES. 60 Analysis 1.1. Comparison 1 Fluoroquinolones plus standard regimen (HRZE) versus standard regimen alone (HRZE), Outcome1Deathfromanycause. 61 Analysis 1.2. Comparison 1 Fluoroquinolones plus standard regimen (HRZE) versus standard regimen alone (HRZE), Outcome2TB-relateddeath. -
Fluoroquinolones in Children: a Review of Current Literature and Directions for Future Research
Academic Year 2015 - 2016 Fluoroquinolones in children: a review of current literature and directions for future research Laurens GOEMÉ Promotor: Prof. Dr. Johan Vande Walle Co-promotor: Dr. Kevin Meesters, Dr. Pauline De Bruyne Dissertation presented in the 2nd Master year in the programme of Master of Medicine in Medicine 1 Deze pagina is niet beschikbaar omdat ze persoonsgegevens bevat. Universiteitsbibliotheek Gent, 2021. This page is not available because it contains personal information. Ghent Universit , Librar , 2021. Table of contents Title page Permission for loan Introduction Page 4-6 Methodology Page 6-7 Results Page 7-20 1. Evaluation of found articles Page 7-12 2. Fluoroquinolone characteristics in children Page 12-20 Discussion Page 20-23 Conclusion Page 23-24 Future perspectives Page 24-25 References Page 26-27 3 1. Introduction Fluoroquinolones (FQ) are a class of antibiotics, derived from modification of quinolones, that are highly active against both Gram-positive and Gram-negative bacteria. In 1964,naladixic acid was approved by the US Food and Drug Administration (FDA) as first quinolone (1). Chemical modifications of naladixic acid resulted in the first generation of FQ. The antimicrobial spectrum of FQ is broader when compared to quinolones and the tissue penetration of FQ is significantly deeper (1). The main FQ agents are summed up in table 1. FQ owe its antimicrobial effect to inhibition of the enzymes bacterial gyrase and topoisomerase IV which have essential and distinct roles in DNA replication. The antimicrobial spectrum of FQ include Enterobacteriacae, Haemophilus spp., Moraxella catarrhalis, Neiserria spp. and Pseudomonas aeruginosa (1). And FQ usually have a weak activity against methicillin-resistant Staphylococcus aureus (MRSA). -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Original Article Fluoroquinolones Inhibit HCV by Targeting Its Helicase
Antiviral Therapy 2012; 17:467–476 (doi: 10.3851/IMP1937) Original article Fluoroquinolones inhibit HCV by targeting its helicase Irfan A Khan1,2, Sammer Siddiqui1, Sadiq Rehmani1, Shahana U Kazmi2, Syed H Ali1,3* 1Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan 2Department of Microbiology, University of Karachi, Karachi, Pakistan 3Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan *Corresponding author e-mail: [email protected] Background: HCV has infected >170 million individuals of 12 different fluoroquinolones. Afterwards, Huh-7 and worldwide. Effective therapy against HCV is still lacking and Huh-8 cells were lysed and viral RNA was extracted. The there is a need to develop potent drugs against the virus. extracted RNA was reverse transcribed and quantified by In the present study, we have employed two culture models real-time quantitative PCR. Fluoroquinolones were also to test the activity of fluoroquinolone drugs against HCV: a tested on purified NS3 protein in a molecular-beacon- subgenomic replicon that is able to replicate independently based in vitro helicase assay. in the cell line Huh-8 and the Huh-7 cell culture model Results: To varying degrees, all of the tested fluoroqui- that employs cells transfected with synthetic HCV RNA to nolones effectively inhibited HCV replication in both produce the infectious HCV particles. Fluoroquinolones have Huh-7 and Huh-8 culture models. The inhibition of HCV also been shown to have inhibitory activity against certain NS3 helicase activity was also observed with all 12 of the viruses, possibly by targeting the viral helicase. To tease out fluoroquinolones. -
Rifalazil | Medchemexpress
Inhibitors Product Data Sheet Rifalazil • Agonists Cat. No.: HY-105099 CAS No.: 129791-92-0 Molecular Formula: C₅₁H₆₄N₄O₁₃ • Molecular Weight: 941.07 Screening Libraries Target: DNA/RNA Synthesis; Bacterial Pathway: Cell Cycle/DNA Damage; Anti-infection Storage: 4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture) SOLVENT & SOLUBILITY In Vitro DMSO : 8.33 mg/mL (8.85 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 1.0626 mL 5.3131 mL 10.6262 mL Stock Solutions 5 mM 0.2125 mL 1.0626 mL 2.1252 mL 10 mM --- --- --- Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.2 mg/mL (2.34 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.2 mg/mL (2.34 mM); Clear solution BIOLOGICAL ACTIVITY Description Rifalazil (KRM-1648; ABI-1648), a rifamycin derivative, inhibits the bacterial DNA-dependent RNA polymerase and kills bacterial cells by blocking off the β-subunit in RNA polymerase[1]. Rifalazil (KRM-1648; ABI-1648) is an antibiotic, exhibits high potency against mycobacteria, gram-positive bacteria, Helicobacter pylori, C. pneumoniae and C. trachomatis with MIC values from 0.00025 to 0.0025 μg/ml[3]. Rifalazil (KRM-1648; ABI-1648) has the potential for the treatment of Chlamydia infection, Clostridium difficile associated diarrhea (CDAD), and tuberculosis (TB)[2]. -
The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity
molecules Review The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity Abdul Naeem 1, Syed Lal Badshah 1,2,*, Mairman Muska 1, Nasir Ahmad 2 and Khalid Khan 2 1 National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (A.N.); [email protected] (M.M.) 2 Department of Chemistry, Islamia College University Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (N.A.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +92-331-931-6672 Academic Editor: Peter J. Rutledge Received: 23 December 2015 ; Accepted: 15 February 2016 ; Published: 28 March 2016 Abstract: Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites—the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. -
EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance . -
Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful. -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9 -
(12) United States Patent (10) Patent No.: US 8,097,607 B2 Cabana Et Al
USO08097607B2 (12) United States Patent (10) Patent No.: US 8,097,607 B2 Cabana et al. (45) Date of Patent: *Jan. 17, 2012 (54) LOW DOSE RIFALAZIL COMPOSITIONS Emori et al., “Evaluation of in Vivo Therapeutic Efficacy of a New Benzoxazinorifamycin, KRM-1648, in SCID Mouse Model for Dis (76) Inventors: Bernard E. Cabana, Montgomery seminated Mycobacterium avium Complex Infection.” International Village, MD (US); Arthur F. Michaelis, Journal of Antimicrobial Agents 10(1):59 (1998). Devon, PA (US); Gary P. Magnant, Fujii et al., “In Vitro and In Vivo Antibacterial Activities of KRM Topsfield, MA (US); Chalom B. 1648 and KRM-1657, New Rifamycin Derivatives.” Antimicrobial Sayada, Luxembourg (LU) Agents and Chemotherapy 38: 1118, (1994). Gidoh et al., “Bactericidal Action at Low Doses of a New Rifamycin (*) Notice: Subject to any disclaimer, the term of this Derivative, 3'-hydroxy-5'-(4-isobutyl-1-piperazinyl) patent is extended or adjusted under 35 Benzoxazinorifamycin (KRM-1648) on Mycobacterium leprae U.S.C. 154(b) by 447 days. Inoculated into Ffootpads of Nude Mice.” Leprosy Review 63(4):319 This patent is Subject to a terminal dis (1992). claimer. Heep et al., “Detection of Rifabutin Resistance and Association of rpoB Mutation S with Resistance to Four Rifamycin Derivatives in Helicobacter pylori.” Journal of Clinical Microbiology & Infectious (21) Appl. No.: 10/668,792 Diseases 21:143 (2002). Hirara et al., “In Vitro and in Vivo Activities of the (22) Filed: Sep. 23, 2003 Benezoxazinorifamycin KRM-1648 Against Mycobacterium tuber (65) Prior Publication Data culosis,” Antimocrobial Agents and Chemotherapy 39 (10):2295 (1995). US 2004/O15784.0 A1 Aug.