Metal Complexes of Quinolone Antibiotics and Their Applications: an Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the Light of Present Day Context
Section Pharmaindustry Commentary A Review on the Current Classification and Regulatory Provisions for Medicines in Drug & Cosmetic Act, in the light of Present Day Context Prashant Tandon1, Varun Gupta2, Ashish Ranjan3, Purav Gandhi4, Anand Kotiyal5, 3 Aastha Kapoor 3 1Founder ;2VP & Head Medical Affair; Manager Medical Affair; 5Drug Data Analyst Medical Affair, 1mg Technologies Private Limited, 4th Floor, Motorola Building, MG Road, Sector 14, Gurugram, Haryana, 122001. 4Founder, Remedy Social, C/602, Tulip Citadel, Shreyas Tekra, Ambawadi, Ahmedabad 380015, Gujarat. ABSTRACT______________________________________________________________ Background: Current classification of medicines in Conclusions: We have recommended a revised drug India under Drug and Cosmetic Act into Schedule G, classification system that is more comprehensive in coverage and H, H1, X is outdated, evolved through patchwork over eliminates the overlaps between classes. Moreover, considering the years and needs to be thoroughly updated. The the implementation challenges for such a drug classification primary aim of the scheduling system is to ensure system in the diverse and fragmented ecosystem in India, we appropriate access to medicines while balancing recommend a technology backed platform to help monitor the public health and safety. India is experiencing a rapid implementation. transition with the rising burden of chronic non- communicable diseases where regular access of Key words: Drug Classification System, Drug and Cosmetic Act affordable medicines is critical for chronic disease India, Digitization of Prescriptions, Drug Schedules in India, management to prevent complications. Methods: We Schedule H, Monitoring Drug Schedule System analyzed drugs commonly selling across India, Received: 01.09.17 | Accepted:16.09.17 through multiple information sources including 1mg drug database, PharmaTrac (AIOCD-AWACS), Corresponding Author inventory data from distributors and retailers, Dr. -
1057-1064, 1984 the Effect of Pipemidic Acid on The
Microbiol. Immunol. Vol. 28 (9), 1057-1064, 1984 The Effect of Pipemidic Acid on the Growth of a Stable L-Form of •ôNH•ôStaphylococcus aureus•ôNS•ô Kunihiko YABU,*,1 Hiromi ToMizu,1 and Yayoi KANDA2 1 Department of Biology, Hokuriku University School of Pharmacy, Kanazawa-machi, Kanazawa, Ishikawa ,920-11, and 2Department of Microbiology, Teikyo University School of Medicine, Kaga 2-chome, Ilabashi-ku, Tokyo 173 (Accepted for publication, June 12, 1984) Bacterial L-forms usually display spherical forms in an osmotically protective medium and seem to lack the typical binary fission process of cellular division ob servedin most bacteria (7). Although various modes of replication, such as budding binary fission, and release of elementary bodies from large bodies have been observed by light and electron microscopy (2, 5, 16), little is known about the processes involved in replication of L-forms. In the course of an experiment designed to test the effect of DNA synthesis inhibitors on the growth of a stable L-form of •ôNH•ôStaphylococcus•ôNS•ôaureus which grows in liquid medium, it was found that pipemidic acid, a synthetic antibacterial agent structurally related to nalidixic acid (13), induced a marked morphological altera tionat growth inhibitory concentrations. This study was initiated in an attempt to clarify the mechanism of replication of stable L-forms by analyzing the mor phologicalalteration caused by pipemidic acid. The stable L-form used was isolated as follows. S. •ôNH•ôaureus•ôNS•ôFDA 209P was grown in 10ml of Brain Heart Infusion broth (Difco) at 37C. The culture grown at 5•~105 colony-forming units (CFU) per ml was washed with saline by filtration and suspended in saline containing 100ƒÊg of N-methyl-N'-nitro-N-nitrosoguanidine per nil. -
Clinically Isolated Chlamydia Trachomatis Strains
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, JUIY 1988, p. 1080-1081 Vol. 32, No. 7 0066-4804/88/071080-02$02.00/0 Copyright © 1988, American Society for Microbiology In Vitro Activities of T-3262, NY-198, Fleroxacin (AM-833; RO 23-6240), and Other New Quinolone Agents against Clinically Isolated Chlamydia trachomatis Strains HIROSHI MAEDA,* AKIRA FUJII, KATSUHISA NAKATA, SOICHI ARAKAWA, AND SADAO KAMIDONO Department of Urology, School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe-city, Japan Received 9 December 1987/Accepted 29 March 1988 The in vitro activities of three newly developed quinolone drugs (T-3262, NY-198, and fleroxacin [AM-833; RO 23-6240]) against 10 strains of clinically isolated Chiamydia trachomatis were assessed and compared with those of other quinolones and minocycline. T-3262 (MIC for 90% of isolates tested, 0.1 ,ug/ml) was the most active of the quinolones. The NY-198 and fleroxacin MICs for 90% of isolates were 3.13 and 62.5 ,ug/ml, respectively. Recently, it has become well known that Chlamydia 1-ml sample of suspension was seeded into flat-bottomed trachomatis is an important human pathogen. It is respon- tubes with glass cover slips and incubated at 37°C in 5% CO2 sible not only for trachoma but also for sexually transmitted for 24 h. The monolayer was inoculated with 103 inclusion- infections, including lymphogranuloma venereum. In forming units of C. trachomatis. The tubes were centrifuged women, it causes cervicitis, endometritis, and salpingitis at 2,000 x g at 25°C for 45 min and left undisturbed at room asymptomatically (19), while in men it causes nongono- temperature for 2 h. -
Nigerian Veterinary Journal 39(3)
Nigerian Veterinary Journal 39(3). 2018 Asambe et al. NIGERIAN VETERINARY JOURNAL ISSN 0331-3026 Nig. Vet. J., September 2018 Vol 39 (3): 199 -208. https://dx.doi.org/10.4314/nvj.v39i3.3 ORIGINAL ARTICLE In Vitro Comparative Activity of Ciprofloxacin and Enrofloxacin against Clinical Isolates from Chickens in Benue State, Nigeria Asambe, A.1*; Babashani, M2. and Salisu, U. S.1 ¹.Federal University Dutsinma, Katsina State. 2.Ahmadu Bello University Zaria. *Corresponding author: Email: [email protected]; Tel No:+2348063103254 SUMMARY This study compares the in vitro activities of enrofloxacin and its main metabolite ciprofloxacin against clinical Escherichia coli and non-lactose fermenting enterobacteria isolates from chickens. Ten (10) Escherichia coli and 8 non lactose fermenting enterobacteriaceae species isolated from a pool of clinical cases at the Microbiology Laboratory of the Veterinary Teaching Hospital, University of Agriculture Makurdi were used in this study. Ten-fold serial dilution of 10 varying concentrations (0.1-50μg/mL) of enrofloxacin and ciprofloxacin were tested against the isolates in vitro by Bauer’s disc-diffusion method to determine and compare their antimicrobial activities against the isolates. The 18 isolates tested were susceptible to both enrofloxacin and ciprofloxacin, and their mean values in the susceptibility of Escherichia coli and non-lactose fermenters were significantly different (p < 0.01). The study concluded that the clinical isolates are susceptible to both enrofloxacin and ciprofloxacin though ciprofloxacin exhibit higher activity. Comparatively, ciprofloxacin was found to be more potent than enrofloxacin and the difference statistically significant. Ciprofloxacin was recommended as a better choice in the treatment of bacterial infections of chicken in this area compared to enrofloxacin. -
Antibiotic Resistance in the European Union Associated with Therapeutic Use of Veterinary Medicines
The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/CVMP/342/99-Final Antibiotic Resistance in the European Union Associated with Therapeutic use of Veterinary Medicines Report and Qualitative Risk Assessment by the Committee for Veterinary Medicinal Products 14 July 1999 Public 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Switchboard: (+44-171) 418 8400 Fax: (+44-171) 418 8447 E_Mail: [email protected] http://www.eudra.org/emea.html ãEMEA 1999 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 DEFINITION OF ANTIBIOTICS 1 1.1.1 Natural antibiotics 1 1.1.2 Semi-synthetic antibiotics 1 1.1.3 Synthetic antibiotics 1 1.1.4 Mechanisms of Action 1 1.2 BACKGROUND AND HISTORY 3 1.2.1 Recent developments 3 1.2.2 Authorisation of Antibiotics in the EU 4 1.3 ANTIBIOTIC RESISTANCE 6 1.3.1 Microbiological resistance 6 1.3.2 Clinical resistance 6 1.3.3 Resistance distribution in bacterial populations 6 1.4 GENETICS OF RESISTANCE 7 1.4.1 Chromosomal resistance 8 1.4.2 Transferable resistance 8 1.4.2.1 Plasmids 8 1.4.2.2 Transposons 9 1.4.2.3 Integrons and gene cassettes 9 1.4.3 Mechanisms for inter-bacterial transfer of resistance 10 1.5 METHODS OF DETERMINATION OF RESISTANCE 11 1.5.1 Agar/Broth Dilution Methods 11 1.5.2 Interpretative criteria (breakpoints) 11 1.5.3 Agar Diffusion Method 11 1.5.4 Other Tests 12 1.5.5 Molecular techniques 12 1.6 MULTIPLE-DRUG RESISTANCE -
Fluoroquinolones for Treating Tuberculosis (Presumed Drug- Sensitive) (Review)
Fluoroquinolones for treating tuberculosis (presumed drug- sensitive) (Review) Ziganshina LE, Titarenko AF, Davies GR This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2013, Issue 6 http://www.thecochranelibrary.com Fluoroquinolones for treating tuberculosis (presumed drug-sensitive) (Review) Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 5 OBJECTIVES ..................................... 6 METHODS ...................................... 6 RESULTS....................................... 9 Figure1. ..................................... 10 Figure2. ..................................... 12 ADDITIONALSUMMARYOFFINDINGS . 15 DISCUSSION ..................................... 20 Figure3. ..................................... 20 Figure4. ..................................... 21 AUTHORS’CONCLUSIONS . 23 ACKNOWLEDGEMENTS . 23 REFERENCES ..................................... 24 CHARACTERISTICSOFSTUDIES . 30 DATAANDANALYSES. 60 Analysis 1.1. Comparison 1 Fluoroquinolones plus standard regimen (HRZE) versus standard regimen alone (HRZE), Outcome1Deathfromanycause. 61 Analysis 1.2. Comparison 1 Fluoroquinolones plus standard regimen (HRZE) versus standard regimen alone (HRZE), Outcome2TB-relateddeath. -
Fluoroquinolones in Children: a Review of Current Literature and Directions for Future Research
Academic Year 2015 - 2016 Fluoroquinolones in children: a review of current literature and directions for future research Laurens GOEMÉ Promotor: Prof. Dr. Johan Vande Walle Co-promotor: Dr. Kevin Meesters, Dr. Pauline De Bruyne Dissertation presented in the 2nd Master year in the programme of Master of Medicine in Medicine 1 Deze pagina is niet beschikbaar omdat ze persoonsgegevens bevat. Universiteitsbibliotheek Gent, 2021. This page is not available because it contains personal information. Ghent Universit , Librar , 2021. Table of contents Title page Permission for loan Introduction Page 4-6 Methodology Page 6-7 Results Page 7-20 1. Evaluation of found articles Page 7-12 2. Fluoroquinolone characteristics in children Page 12-20 Discussion Page 20-23 Conclusion Page 23-24 Future perspectives Page 24-25 References Page 26-27 3 1. Introduction Fluoroquinolones (FQ) are a class of antibiotics, derived from modification of quinolones, that are highly active against both Gram-positive and Gram-negative bacteria. In 1964,naladixic acid was approved by the US Food and Drug Administration (FDA) as first quinolone (1). Chemical modifications of naladixic acid resulted in the first generation of FQ. The antimicrobial spectrum of FQ is broader when compared to quinolones and the tissue penetration of FQ is significantly deeper (1). The main FQ agents are summed up in table 1. FQ owe its antimicrobial effect to inhibition of the enzymes bacterial gyrase and topoisomerase IV which have essential and distinct roles in DNA replication. The antimicrobial spectrum of FQ include Enterobacteriacae, Haemophilus spp., Moraxella catarrhalis, Neiserria spp. and Pseudomonas aeruginosa (1). And FQ usually have a weak activity against methicillin-resistant Staphylococcus aureus (MRSA). -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Original Article Fluoroquinolones Inhibit HCV by Targeting Its Helicase
Antiviral Therapy 2012; 17:467–476 (doi: 10.3851/IMP1937) Original article Fluoroquinolones inhibit HCV by targeting its helicase Irfan A Khan1,2, Sammer Siddiqui1, Sadiq Rehmani1, Shahana U Kazmi2, Syed H Ali1,3* 1Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan 2Department of Microbiology, University of Karachi, Karachi, Pakistan 3Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan *Corresponding author e-mail: [email protected] Background: HCV has infected >170 million individuals of 12 different fluoroquinolones. Afterwards, Huh-7 and worldwide. Effective therapy against HCV is still lacking and Huh-8 cells were lysed and viral RNA was extracted. The there is a need to develop potent drugs against the virus. extracted RNA was reverse transcribed and quantified by In the present study, we have employed two culture models real-time quantitative PCR. Fluoroquinolones were also to test the activity of fluoroquinolone drugs against HCV: a tested on purified NS3 protein in a molecular-beacon- subgenomic replicon that is able to replicate independently based in vitro helicase assay. in the cell line Huh-8 and the Huh-7 cell culture model Results: To varying degrees, all of the tested fluoroqui- that employs cells transfected with synthetic HCV RNA to nolones effectively inhibited HCV replication in both produce the infectious HCV particles. Fluoroquinolones have Huh-7 and Huh-8 culture models. The inhibition of HCV also been shown to have inhibitory activity against certain NS3 helicase activity was also observed with all 12 of the viruses, possibly by targeting the viral helicase. To tease out fluoroquinolones. -
Evaluation of Antibiotic Consumption at Rakovica Community Health Center
ORIGINAL SCIENTIFIC PAPER ORIGINALNI NAUČNI RAD ORIGINAL SCIENTIFIC PAPER EVALUATION OF ANTIBIOTIC CONSUMPTION AT RAKOVICA COMMUNITY HEALTH CENTER FROM 2011 TO 2015 Marijana Tomic Smiljanic1, Vesela Radonjic2, Dusan Djuric3 1 Community Health Center in Rakovica, Belgrade, Serbia 2 Medicines and Medical Devices Agency of Serbia, Belgrade; University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy 3 University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy EVALUACIJA POTROŠNJE ANTIBIOTIKA U DOMU ZDRAVLJA RAKOVICA U PERIODU 2011_2015. GODINA Marijana Tomić Smiljanić1, Vesela Radonjić2, Dušan Đurić3 1 Dom zrdavlja Rakovica, Beograd, Srbija 2 Agencija za lekove i medicinska sredstva Srbije, Beograd, Univerzitet u Kragujevcu, Srbija, Fakultet medicinskih nauka, Odsek za farmaciju 3 Univerzitet u Kragujevcu, Srbija, Fakultet medicinskih nauka, Odsek za farmaciju Received / Primljen: 08.06.2016. Accepted / Prihvaćen: 12.07.2016. ABSTRACT SAŽETAK Antibacterial drugs are among the major discoveries of the Antibakterijski lekovi su među najvećim otkrićima 20. 20th century because they signifi cantly reduced the rate of mor- veka, jer su znatno smanjili stopu obolevanja i smrtnosti bidity and mortality as well as the risk of infections related to od infektivnih bolesti i rizik od infekcije kod invazivnih invasive medical procedures. Indiscriminate and wrongful use medicinskih procedura. Neodgovorna i pogrešna upotre- of these powerful life-saving drugs has led to the development ba ovih moćnih lekova koji spasavaju život dovela je do of resistance of numerous microorganisms, resulting in an in- razvoja rezistencije mnogih mikroorganizama na njih, a crease in the number of hospital-acquired infections with a fatal rezultat toga je i porast bolničkih infekcija sa smrtnim outcome. -
The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity
molecules Review The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity Abdul Naeem 1, Syed Lal Badshah 1,2,*, Mairman Muska 1, Nasir Ahmad 2 and Khalid Khan 2 1 National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (A.N.); [email protected] (M.M.) 2 Department of Chemistry, Islamia College University Peshawar, Peshawar, Khyber Pukhtoonkhwa 25120, Pakistan; [email protected] (N.A.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +92-331-931-6672 Academic Editor: Peter J. Rutledge Received: 23 December 2015 ; Accepted: 15 February 2016 ; Published: 28 March 2016 Abstract: Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites—the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. -
Paper I and II)
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335 Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance LISA PRASKI ALZRIGAT ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9923-5 UPPSALA urn:nbn:se:uu:diva-320580 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Friday, 9 June 2017 at 09:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Fernando Baquero (Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain). Abstract Praski Alzrigat, L. 2017. Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9923-5. The crucial role of antibiotics in modern medicine, in curing infections and enabling advanced medical procedures, is being threatened by the increasing frequency of resistant bacteria. Better understanding of the forces selecting resistance mutations could help develop strategies to optimize the use of antibiotics and slow the spread of resistance. Resistance to ciprofloxacin, a clinically important antibiotic, almost always involves target mutations in DNA gyrase and Topoisomerase IV. Because ciprofloxacin is a substrate of the AcrAB-TolC efflux pump, mutations causing pump up-regulation are also common. Studying the role of efflux pump-regulatory mutations in the development of ciprofloxacin resistance, we found a strong bias against gene-inactivating mutations in marR and acrR in clinical isolates.