MA06CH07-Crimaldi ARI 5 November 2013 12:41 The Physics of Broadcast Spawning in Benthic Invertebrates John P. Crimaldi1 and Richard K. Zimmer2 1Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309-0428; email:
[email protected] 2Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606; email:
[email protected] Annu. Rev. Mar. Sci. 2014. 6:141–65 Keywords First published online as a Review in Advance on fertilization, turbulence, sperm, egg, flow, chemoattractant August 14, 2013 by John Crimaldi on 01/08/14. For personal use only. The Annual Review of Marine Science is online at Abstract marine.annualreviews.org Most benthic invertebrates broadcast their gametes into the sea, whereupon This article’s doi: successful fertilization relies on the complex interaction between the physics 10.1146/annurev-marine-010213-135119 of the surrounding fluid flow and the biological properties and behavior of Annu. Rev. Marine. Sci. 2014.6:141-165. Downloaded from www.annualreviews.org Copyright c 2014 by Annual Reviews. eggs and sperm. We present a holistic overview of the impact of instanta- All rights reserved neous flow processes on fertilization across a range of scales. At large scales, transport and stirring by the flow control the distribution of gametes. Al- though mean dilution of gametes by turbulence is deleterious to fertilization, a variety of instantaneous flow phenomena can aggregate gametes before di- lution occurs. We argue that these instantaneous flow processes are key to fertilization efficiency. At small scales, sperm motility and taxis enhance con- tact rates between sperm and chemoattractant-releasing eggs.