January 2006 Volume 13 Issue 3 the Cranky Curmudgeon Ponders Red Shift HAA Telescope Clinic Summary

Total Page:16

File Type:pdf, Size:1020Kb

January 2006 Volume 13 Issue 3 the Cranky Curmudgeon Ponders Red Shift HAA Telescope Clinic Summary Hamilton Amateur Astronomers JanuaryEvent 2006 Horizon Volume 13 Issue 3 The Cranky Curmudgeon Ponders Red Shift HAA Telescope Clinic Summary by Bill Tekatch by Mike Jefferson January 06/06 Teamsters Hall, 460 Parkdale N., Ever since Edwin Hubble found that the red shift Hamilton, ON of galaxies increased with distance, red shift has been a At the HAA Telescope Clinic there were about 23 keystone topic in cosmology. While the professional sci- people in attendance to give and get help in the oper- entific community now recognises that the galaxies are ation of newly acquired optical equipment from Christ- not moving away from us at great speeds, they still use mas, 2005. John ‘Galileo’ Gauvreau spent consider- terminology as if that were the case. They know that it able time helping his student Maggie and her husband is space itself that is expanding, ever increasing the dis- work through the operation of their new mirror lens tance between distant-galaxies. I say distant-galaxies spotter, while Mike Spicer (in his usual, very profes- because the galaxies in our local group are not separat- sional attire) entertained numerous listeners with tales ing from each other. of the mysteries of “Optics Through the Looking Glass”! So through the years, various explanations were pro- GOTO’s that set themselves up automatically, a ‘queen posed for the cause of red shift from the Doppler Effect, of hearts’ refractor, telescopes easy enough to be oper- to tired light, to the current General relativity stretch. ated by children and cheap ways of circumventing ex- General relativity theory allows the expanding space to pensive methods were just some of the ‘enigma varia- stretch light. I have a difference of opinion that is proba- tions’ and ‘March hares’ he unveiled to the fascination bly more of a difference of perspective. At first glance it of all listeners. John’s astronomy student, Brad, got appears that the general relativity explanation breaks some instruction in the operation of Anthony Tekatch’s the Law of Conservation of Energy. How can a pho- reflector. Anthony and Mike Jefferson spent much time ton be stretched, being changed from the original wave- discussing early concepts of space travel, the influence length to a longer wavelength of lower energy and not of computers, redundancy in spacecraft, spectra, im- lose energy? age formation and manipulation, sundry other topics and handing out bits of advice to anyone who wanted There are likely several perspectives that are equally any. Glenn Muller demonstrated the advantages of a correct, and here is my take. If the universe is ap- 6” F8 Newtonian design to Robert, another student of parently expanding, it obviously had an ever-increasing John Gauvreau’s, with some input from John and Mike density the farther back in time that we look. That J. Ann Tekatch, Gail Muller (who also did her usual, higher density or concentration of matter also meant gracious, hostess ‘thing’ with the coffee and the hall), that the gravitational field intensity was higher. So a Tim Philp (the Patrick Moore of Brantford, ON), Bob photon formed in an earlier denser universe undergoes Christmas, Greg Emery, Hal Mueller, Darryl & Sandy gravitational red shift as it travels to our current lower “Ansel Adams” Maude and other club members were density universe. Gravitational red shift is well under- all on hand to assist in many ways and areas. Glenn, stood, proven, and by coincidence just happens to also Anthony, John and Gail gave assistance and advice to be a part of General relativity theory. Sometimes it is people observing the waxing crescent Moon, through just a matter of perspective. gosammer clouds, in the parking lot at the end of the presentation. Four of us gathered at Tim Horton’s on Bill Tekatch is a founding member of the Parkdale N. afterwards, for further discussion and ‘back HAA, ran the Cosmology Discussion Group of the envelope’ stuff, until far into the very cold night! for some time, and has written several ar- Nuts? “What do WE care what other people think?” ticles on cosmology. All in all, a good and instructive time was had by every participant. by Mike Jefferson Page 2 Meeting space for the Hamilton Amateur Astronomy club provided by Teamsters Local 879 Event Horizon is a publication of the Hamilton Amateur Astronomers (HAA). Domain Name and Web hosting for the The HAA is an amateur astronomy club dedicated to the Hamilton Amateur Astronomy club supplied promotion and enjoyment of astronomy for people of all by ages and experience levels. Axess Communications The cost of the subscription is included in the $25 indi- Corporate and Residential DSL and Web vidual or $30 family membership fee for the year. Event Hosting Horizon is published a minimum of 10 times a year. http://www.axess.com [email protected] HAA Council Hon. Chair . Jim Winger Chair . Glenn Muller Second Chair . Doug Welch Email Reminder notice Secretary . Margaret Walton Treasurer. .Cindy Bingham We send email reminders before each meeting Observing Dir. Greg Emery which describes the location, time and topic of the Publicity . Gail Muller general meeting. Editor/Web. Anthony Tekatch If you’re not on the list, make sure that you receive Membership Dir. Stewart Attlesey your reminder by sending a note to: Councillor. .Bob Christmas [email protected] Councillor . John Gauvreau Councillor . Ann Tekatch An Offer Councillor . Cathy Tekatch Thinking of buying your first telescope but won- PO Box 65578, Dundas, ON L9H 6Y6 dering what kind to get? Before you buy, consider Web:. .amateurastronomy.org this offer from Mike Spicer: a “loaner” 5 inch tele- scope with electronic alt-az controls. The scopes General Inquiries: are lightweight, easy to set up and very easy to [email protected] . (905) 575-5433 use. Mike is offering newer members of our club Membership Inquiries: one of these telescopes to try out for a month or [email protected] so. Interested? You can reach Mike by email at Meeting Inquiries: [email protected] or by phone at (905) [email protected] . (905) 945-5050 388-0602. Public Event Inquiries: Articles submissions [email protected] . (905) 945-5050 The HAA welcomes your astronomy related writ- Binbrook Observing Inquiries: ings for the Event Horizon newsletter. Please send [email protected] . (519) 647 0036 your articles, big or small, to: [email protected] [email protected] Newsletter Inquiries/Submissions: The submission deadline is two days before each [email protected] general meeting. Submissions to the web site or newsletter are welcome, and may be edited for size & content. Event Horizon - Hamilton Amateur Astronomers amateurastronomy.org Page 3 Chair’s Report by Glenn Muller • Some moons, like Ganymede, have magneto- spheres Despite a media predilection for terrorist tsunamis of avian flu, astronomers have rung in the last few “New • Some asteroids have moons Years” with some exciting planetary missions. 2004 saw • Some moons are asteroid-like – they could either Spirit and Opportunity bounce into the spotlight on be captives of the host planet or debris from a Mars, and 2005 revealed the true nature of Saturn’s broken moon. rings and several of its moons, including the tantalizing surface of Titan. For 2006, we can expect the January • Some moons have cometary properties – a good launch of New Horizons which is a long-awaited mission example is Enceladus, shown in a Cassini image to Pluto. releasing icy jets. For a small orbiting body, barely visible in back- yard scopes, Pluto has garnered a lot of attention lately. Additional factors: With the discovery of slightly larger, more distant, • Several exo-planets have been discovered, many worlds Pluto suddenly finds itself the focus of a bench- with several times the mass of Jupiter. When such mark debate over what constitutes a planet. objects have at least 13 times Jupiter’s mass, they Briefly covered, during last October’s presentation have the ability to burn a hydrogen-like element titled “Planets and Pretenders”, the HAA will devote called deuterium. This could push them through an evening for discussion on organizing solar system ob- the upper limit of the “planet” category into the jects into categories that encompass all the variables. “brown dwarf” category. While a couple of hours may be hardly sufficient to scratch such a large surface I still anticipate some en- • Finding a lower size/mass limit may be the most tertaining thoughts on the possibilities. So, to get the difficult parameter to define. wheels turning, here is some applicable information: • An object may change states so it may be simplest Pluto: to categorize solely on the objects current state. • With a diameter of 2274 km there are 5 known • After determining basic categories (i.e.) Planets; moons that are larger. Moons; Asteroids; Comets etc; a series of sub- • Currently credited with 2 moons of its own. categories may further group the individual vari- ables (i.e.) composition; diameter; atmosphere; • Its orbit ranges from 29 AU to 49.5 AU and, al- signs of life; orbital characteristics; etc. (see the though that occasionally brings it closer to the companion article) Sun than Neptune, Pluto has the most eccentric orbit of the planets. Since the International Astronomical Union (IAU), the recognized clearing house for naming celestial bod- • Considered to be part of the Kuiper Belt yet it is ies, has no real definition for a planet I see no reason no longer the largest KBO discovered. why our discussions should not be as relevant as any- • During its close approaches to the Sun, Pluto one else’s. In fact, despite several Google searches, the forms a thin nitrogen/carbon monoxide atmo- most comprehensive systems for classifying planets were sphere which eventually refreezes.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Open Cluster Remnants : an Observational Overview
    Bull. Astr. Soc. India (2006) 34, 153{162 Open cluster remnants : an observational overview Giovanni Carraro¤ Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago, Chile Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA Abstract. The state of the art in the current research on the ¯nal stages of Open Star Clusters dynamical evolution is presented. The focus will be on ob- servational studies and their achievements. By combining together photometric, spectroscopic and astrometric material, a new look at this exciting topic is now possible, thus providing a solid observational foundation for a new generation of theoretical studies on the subject. Keywords : Open Clusters { General, Open Clusters { Dynamics, Open Clus- ters { Individual: Upgren 1, Messier 73, Collinder 21. 1. Introduction Open Star Clusters are fragile ensembles of stars which hardly survive to the hostile Galac- tic disk environment. The Galaxy tidal ¯eld and close encounter with Giant Molecular clouds are the two most e®ective external processes driving dissolution of star clusters. Both numerical simulations (Terlevich 1987; Theuns 1992; de la Fuente Marcos 1997; Tanikawa and Fukushige 2005) and the observed age distribution of star clusters (Wielen 1971; Carraro et al. 2005a) suggest that the lifetime of most open clusters does not exceed 500 Myr. Apart from external perturbations, a star cluster looses its stellar content during a three stages evolution (de la Fuente Marcos 2001). (1) Soon after its birth, a cluster quickly acquires a core-halo structure (Baume et al. 2004), being the halo formed by low mass stars moved outwards due to close encounters occured in the inner regions.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • To Trappist-1 RAIR Golaith Ship
    Mission Profile Navigator 10:07 AM - 12/2/2018 page 1 of 10 Interstellar Mission Profile for SGC Navigator - Report - Printable ver 4.3 Start: omicron 2 40 Eri (Star Trek Vulcan home star) (HD Dest: Trappist-1 2Mass J23062928-0502285 in Aquarii [X -9.150] [Y - 26965) (Keid) (HIP 19849) in Eridani [X 14.437] [Y - 38.296] [Z -3.452] 7.102] [Z -2.167] Rendezvous Earth date arrival: Tuesday, December 8, 2420 Ship Type: RAIR Golaith Ship date arrival: Tuesday, January 8, 2419 Type 2: Rendezvous with a coasting leg ( Top speed is reached before mid-point ) Start Position: Start Date: 2-December-2018 Star System omicron 2 40 Eri (Star Trek Vulcan home star) (HD 26965) (Keid) Earth Polar Primary Star: (HIP 19849) RA hours: inactive Type: K0 V Planets: 1e RA min: inactive Binary: B, C, b RA sec: inactive Type: M4.5V, DA2.9 dec. degrees inactive Rank from Earth: 69 Abs Mag.: 5.915956445 dec. minutes inactive dec. seconds inactive Galactic SGC Stats Distance l/y Sector X Y Z Earth to Start Position: 16.2346953 Kappa 14.43696547 -7.10221947 -2.16744969 Destination Arrival Date (Earth time): 8-December-2420 Star System Earth Polar Trappist-1 2Mass J23062928-0502285 Primary Star: RA hours: inactive Type: M8V Planets 4, 3e RA min: inactive Binary: B C RA sec: inactive Type: 0 dec. degrees inactive Rank from Earth 679 Abs Mag.: 18.4 dec. minutes inactive Course Headings SGC decimal dec. seconds inactive RA: (0 <360) 232.905748 dec: (0-180) 91.8817176 Galactic SGC Sector X Y Z Destination: Apparent position | Start of Mission Omega -9.09279603 -38.2336637 -3.46695345 Destination: Real position | Start of Mission Omega -9.09548281 -38.2366036 -3.46626331 Destination: Real position | End of Mission Omega -9.14988933 -38.2961361 -3.45228825 Shifts in distances of Destination Distance l/y X Y Z Change in Apparent vs.
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Research Paper in Nature
    LETTER doi:10.1038/nature22055 1 A temperate rocky super-Earth transiting a nearby cool star Jason A. Dittmann1, Jonathan M. Irwin1, David Charbonneau1, Xavier Bonfils2,3, Nicola Astudillo-Defru4, Raphaëlle D. Haywood1, Zachory K. Berta-Thompson5, Elisabeth R. Newton6, Joseph E. Rodriguez1, Jennifer G. Winters1, Thiam-Guan Tan7, Jose-Manuel Almenara2,3,4, François Bouchy8, Xavier Delfosse2,3, Thierry Forveille2,3, Christophe Lovis4, Felipe Murgas2,3,9, Francesco Pepe4, Nuno C. Santos10,11, Stephane Udry4, Anaël Wünsche2,3, Gilbert A. Esquerdo1, David W. Latham1 & Courtney D. Dressing12 15 16,17 M dwarf stars, which have masses less than 60 per cent that of Ks magnitude and empirically determined stellar relationships , the Sun, make up 75 per cent of the population of the stars in the we estimate the stellar mass to be 14.6% that of the Sun and the stellar Galaxy1. The atmospheres of orbiting Earth-sized planets are radius to be 18.6% that of the Sun. We estimate the metal content of the observationally accessible via transmission spectroscopy when star to be approximately half that of the Sun ([Fe/H] = −0.24 ± 0.10; all the planets pass in front of these stars2,3. Statistical results suggest errors given in the text are 1σ), and we measure the rotational period that the nearest transiting Earth-sized planet in the liquid-water, of the star to be 131 days from our long-term photometric monitoring habitable zone of an M dwarf star is probably around 10.5 parsecs (see Methods). away4. A temperate planet has been discovered orbiting Proxima On 15 September 2014 ut, MEarth-South identified a potential Centauri, the closest M dwarf5, but it probably does not transit and transit in progress around LHS 1140, and automatically commenced its true mass is unknown.
    [Show full text]
  • Aquarius, the Watering Can Man by Magda Streicher [email protected]
    deepsky delights Aquarius, the Watering Can Man by Magda Streicher [email protected] Aquarius is by no means just another constellation – it’s quite simply something exceptional in its own right. Aquarius the Image source: Stellarium water-bearer spreads out its lanky image just north of Capricornus the sea-goat. Other ier, the French astronomer. Averted vision well-known water constellations are Piscis yields the best view, which sees the object Austrinus the southern fish, Cetus the whale, brightening relatively quickly to a core that Delphinus the dolphin and Hydra the water appears slightly more square than round and snake. The water-bearer was so named due less concentrated than most globulars. Not to the Sun’s entry into the constellation dur- at all easy to resolve, although I can pick up ing the Babylonian monsoon season. The a grainy tangerine skin impression, which image portrays a man pouring water from a makes me suspect partial resolution. pitcher he’s holding in his right hand. Little sprays of brighter stars look like numerous Just 1.2 degrees to the east, arguably one of drops of water and stand out well against the most interesting documented clusters or the fainter background star-field. When star asterisms can be seen. NGC 6994, bet- Aquarius is about appear in the east, Albali, ter known as Messier 73, consists of a cluster or Epsilon Aquarii, at magnitude 3.7, pops of only four stars, which the University of up as the western-most star in the constella- Padua in Italy places at different distances as tion, as if to say “Here I am!” field stars.
    [Show full text]
  • The Age of Aquarius Is an Astrological Term Denoting Either the Current Or Upcoming Astrological Age, Depending on the Method of Calculation
    The Age of Aquarius is an astrological term denoting either the current or upcoming astrological age, depending on the method of calculation. Astrologers maintain that an astrological age is a product of the earth's slow precessional rotation and lasts for 2,150 years, on average. In popular culture in the United States, the Age of Aquarius refers to the advent of the New Age movement in the 1960s and 1970s. There are various methods of calculating the length of an astrological age. In sun- sign astrology, the first sign is Aries, followed by Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces, whereupon the cycle returns to Aries and through the zodiacal signs again. Astrological ages, however, proceed in the opposite direction ("retrograde" in astronomy). Therefore, the Age of Aquarius follows the Age of Pisces. Mythology of the constellation Aquarius This is the eleventh zodiacal sign and one which has always been connected with water. To the Babylonians it represented an overflowing urn, and they associated this with the heavy rains which fell in their eleventh month, whilst the Egyptians saw the constellation as Hapi, the god of the Nile. Greek legend, however, tells of Ganymede, an exceptionally handsome, young prince of Troy. He was spotted by Zeus, who immediately decided that he would make a perfect cup-bearer. The story then differs - one version telling how Zeus sent his pet eagle, Aquila, to carry Ganymede to Olympus, another that it was Zeus, himself, disguised as an eagle, who swept up the youth and carried him to the home of the gods.
    [Show full text]
  • Planet Searching from Ground and Space
    Planet Searching from Ground and Space Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair June 8, 2017 Perspectives on O/IR Astronomy in the Mid-2020s Outline 1. Current status of exoplanet research 2. Finding the nearest habitable planets 3. Characterizing exoplanets 4. Breakthrough Watch and Starshot initiatives 5. Subaru Telescope instrumentation, Japan/US collaboration toward TMT 6. Recommendations 1. Current Status of Exoplanet Research 1. Current Status of Exoplanet Research 3,500 confirmed planets (as of June 2017) Most identified by Jupiter two techniques: Radial Velocity with Earth ground-based telescopes Transit (most with NASA Kepler mission) Strong observational bias towards short period and high mass (lower right corner) 1. Current Status of Exoplanet Research Key statistical findings Hot Jupiters, P < 10 day, M > 0.1 Jupiter Planetary systems are common occurrence rate ~1% 23 systems with > 5 planets Most frequent around F, G stars (no analog in our solar system) credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL Earth-size rocky planets are ~10% of Sun-like stars and ~50% abundant of M-type stars have potentially habitable planets credits: NASA Ames/SETI Institute/JPL-Caltech Dressing & Charbonneau 2013 1. Current Status of Exoplanet Research Spectacular discoveries around M stars Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away Proxima Cen b planet Possibly habitable Closest star to our solar system Faint red M-type star 1. Current Status of Exoplanet Research Spectroscopic characterization limited to Giant young planets or close-in planets For most planets, only Mass, radius and orbit are constrained HR 8799 d planet (direct imaging) Currie, Burrows et al.
    [Show full text]
  • Post-Main-Sequence Planetary System Evolution Rsos.Royalsocietypublishing.Org Dimitri Veras
    Post-main-sequence planetary system evolution rsos.royalsocietypublishing.org Dimitri Veras Department of Physics, University of Warwick, Coventry CV4 7AL, UK Review The fates of planetary systems provide unassailable insights Cite this article: Veras D. 2016 into their formation and represent rich cross-disciplinary Post-main-sequence planetary system dynamical laboratories. Mounting observations of post-main- evolution. R. Soc. open sci. 3: 150571. sequence planetary systems necessitate a complementary level http://dx.doi.org/10.1098/rsos.150571 of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the Received: 23 October 2015 interpretation and modelling of currently known systems and Accepted: 20 January 2016 upcoming discoveries. 1. Introduction Subject Category: Decades of unsuccessful attempts to find planets around other Astronomy Sun-like stars preceded the unexpected 1992 discovery of planetary bodies orbiting a pulsar [1,2]. The three planets around Subject Areas: the millisecond pulsar PSR B1257+12 were the first confidently extrasolar planets/astrophysics/solar system reported extrasolar planets to withstand enduring scrutiny due to their well-constrained masses and orbits. However, a retrospective Keywords: historical analysis reveals even more surprises. We now know that dynamics, white dwarfs, giant branch stars, the eponymous celestial body that Adriaan van Maanen observed pulsars, asteroids, formation in the late 1910s [3,4]isanisolatedwhitedwarf(WD)witha metal-enriched atmosphere: direct evidence for the accretion of planetary remnants. These pioneering discoveries of planetary material around Author for correspondence: or in post-main-sequence (post-MS) stars, although exciting, Dimitri Veras represented a poor harbinger for how the field of exoplanetary e-mail: [email protected] science has since matured.
    [Show full text]
  • Telescope at the Foot of Table Mountain
    Volume 75 Nos 11 & 12 December 2016 Volume 75 Nos 11 & 12 December 2016 CONTENTS Editorial .................................................................................................................................. 251 SALT's excellence and achievements recognised by DST ........................................................... 253 News Note: KBO Occultation ................................................................................................... 255 Private Observatories in SA ..................................................................................................... 256 Klein Karoo Observatory ............................................................................................................................ 257 Cederberg Observatory ............................................................................................................................... 260 Centurion Planetary and Lunar Observatory ....................................................................................... 261 La Marischel Observatory .......................................................................................................................... 264 Sterkastaaing Observatory ........................................................................................................................ 266 Henley on Klip observatory ....................................................................................................................... 267 Archer Observatory ....................................................................................................................................
    [Show full text]