Planet Searching from Ground and Space

Total Page:16

File Type:pdf, Size:1020Kb

Planet Searching from Ground and Space Planet Searching from Ground and Space Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair June 8, 2017 Perspectives on O/IR Astronomy in the Mid-2020s Outline 1. Current status of exoplanet research 2. Finding the nearest habitable planets 3. Characterizing exoplanets 4. Breakthrough Watch and Starshot initiatives 5. Subaru Telescope instrumentation, Japan/US collaboration toward TMT 6. Recommendations 1. Current Status of Exoplanet Research 1. Current Status of Exoplanet Research 3,500 confirmed planets (as of June 2017) Most identified by Jupiter two techniques: Radial Velocity with Earth ground-based telescopes Transit (most with NASA Kepler mission) Strong observational bias towards short period and high mass (lower right corner) 1. Current Status of Exoplanet Research Key statistical findings Hot Jupiters, P < 10 day, M > 0.1 Jupiter Planetary systems are common occurrence rate ~1% 23 systems with > 5 planets Most frequent around F, G stars (no analog in our solar system) credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL Earth-size rocky planets are ~10% of Sun-like stars and ~50% abundant of M-type stars have potentially habitable planets credits: NASA Ames/SETI Institute/JPL-Caltech Dressing & Charbonneau 2013 1. Current Status of Exoplanet Research Spectacular discoveries around M stars Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away Proxima Cen b planet Possibly habitable Closest star to our solar system Faint red M-type star 1. Current Status of Exoplanet Research Spectroscopic characterization limited to Giant young planets or close-in planets For most planets, only Mass, radius and orbit are constrained HR 8799 d planet (direct imaging) Currie, Burrows et al. 2011, ApJ, 729, 128 2. Finding the nearest habitable planets Nearest = Best opportunity for characterization (especially direct imaging) and possible flyby (BT Starshot) 2. Finding the nearest habitable Exoplanets Nearby stars Star Temperature [K] 40 Eri A/B/C A Luyten's star Teegarden's star Tau Ceti YZ Ceti Procyon A/B DX F EZ Aquarii ABC Eps Eri AX Mic Cancri 61 Cyg Ross 154 Kapteyn's Ross 128 A/B star Sirius Lacaille Gliese 15 A&B A/B Gliese 9352 CN G 1061 Leonis Ross 248 Eps Indi UV & BL Ceti Gliese 440 Lalande Barnard's 21185 SRC 1843-6537 Gliese star 725 A/B K M α Cen SOUTH system NORTH 2. Finding the nearest habitable Exoplanets Nearby stars >75% of main sequence stars are M type Within 5pc (15ly) : 60 hydrogen-burning stars, 50 are M type, 6 are K-type, 4 are A, F or G 4.36 Alpha Cen A 4.36 Alpha Cen B 8.58 Sirius A 10.52 Eps Eri 11.40 Procyon A 11.40 61 Cyg A 11.89 Tau Ceti 11.40 61 Cyg B A F G 11.82 Eps Ind A M K 15.82 Gliese 380 2. Finding the nearest habitable Exoplanets Main Exoplanet Detection techniques Transit photometry Microlensing Requires orbit gravitational lensing alignment distant background star Radial Velocity Astrometry starlight planet light optimal for finding nearest exoplanets Direct Imaging optimal for characterization 2. Finding the nearest habitable Exoplanets Radial Velocity extending to cool M-type stars Detection limit Star Temperature [K] Sirius for ground-based optical RV α Cen A Expected detection F, G, K stars limit for space astrometry (NEAT, α Cen B THEIA, STEP) F, G, K stars Procyon A Proxima Cen Eps Eri Barnard's star CN Leonis Circle diameter is proportional to 1/distance Circle color indicates stellar temperature (see scale right of figure) Astrometry and RV amplitudes are given for an Earth analog receiving the same stellar flux as Earth receives from Sun (reflected light) Expected detection limit for near-IR RV Habitable Zones within 5 pc (16 ly): surveys (SPIROU, IRD + others) Astrometry and RV Signal Amplitudes for Earth Analogs M-type stars 2. Finding the nearest habitable Exoplanets Direct imaging: Contrast challenge Habitable Zones within 5 pc (16 ly) Star Temperature [K] 1 Gliese 1245 A LP944-020 2 Gliese 1245 B SRC 1845-6357 A 3 Gliese 674 DEN1048-3956 4 Gliese 440 (white dwarf) Wolf 424 A 5 Gliese 876 (massive planets in/near HZ) A 6 Gliese 1002 Van Maanen's Star LHS 292 7 Gliese 3618 DX Cnc Ross 614 B 8 Gliese 412 A Teegarden's star 9 Gliese 412 B TZ Arietis 4 9 10 AD Leonis CN Leonis 11 Gliese 832 YZ Ceti Wolf 424 B 2 UV Ceti GJ 1061 7 EZ Aqu A,B & C LHS380 6 Proxima Cen BL Ceti Ross 248 1 Gl15 B Kruger 60 B Ross 154 Barnard's Star Ross 128 Ross 614 A Kapteyn's star 40 Eri C F 40 Eri B Procyon B Wolf 1061 Gl725 B 3 5 Gl725 A Gliese 1 Lalande 21185 Gl15 A 8 Lacaille 9352 Kruger 60 A 10 Sirius B 11 Luyten's star Gliese 687 AX Mic 61 Cyg A G Groombridge 1618 61 Cyg B Eps Indi Eps Eri α Cen B 40 Eri A Tau Ceti K α Cen A Procyon A Sirius M Circle diameter indicates angular size of habitable zone Circle color indicates stellar temperature (see scale right of figure) Contrast is given for an Earth analog receiving the same stellar flux as Earth receives from Sun (reflected light) 3. Characterizing exoplanets 3. Characterizing Exoplanets Transit Spectroscopy Starlight passing through planet atmosphere during transit reveals atmospheric composition Bean et al. 2010 NASA TESS mission finds best transits JWST transit spectroscopy 3. Characterizing Exoplanets Why directly imaging ? Woolf et al. Spectra of Earth (taken by looking at Earthshine) shows evidence for life and plants 3. Characterizing Exoplanets Taking images of exoplanets: Why is it hard ? 17 3. Characterizing Exoplanets 18 3. Characterizing Exoplanets Around about 50 stars (M type), rocky planets in Contrast and Angular separation habitable zone could be imaged and their spectra 1 λ/D 1 λ/D 1 λ/D acquired with ELTs λ=1600nm λ=1600nm λ=10000nm D = 30m D = 8m D = 30m K-type and nearest G-type stars are more challenging, but could be accessible if raw contrast can be pushed to ~1e-7 (models tell us it's possible) M-type stars Thermal emission from habitable planets around nearby A, F, G type stars is detectable with ELTs log10 contrast 4+ diameter space telescope can K-type stars image habitable planets around F-G-K stars in optical light G-type stars 1 Re rocky planets in HZ for stars within 30pc (6041 stars) F-type stars Angular separation (log10 arcsec) 3. Characterizing Exoplanets Around about 50 stars (M type), rocky planets in Contrast and Angular separation - updated habitable zone could be imaged and their spectra 1 λ/D 1 λ/D 1 λ/D acquired with ELTs λ=1600nm λ=1600nm λ=10000nm D = 30m D = 8m D = 30m K-type and nearest G-type stars are more challenging, but could be accessible if raw contrast can be pushed to ~1e-7 (models tell us it's possible) M-type stars Thermal emission from habitable planets around nearby A, F, G type stars is detectable with ELTs log10 contrast 4+ diameter space telescope can K-type stars image habitable planets around F-G-K stars in optical light G-type stars 1 Re rocky planets in HZ for stars within 30pc (6041 stars) F-type stars Angular separation (log10 arcsec) 3. Characterizing Exoplanets Approximate timeline Direct imaging + spectroscopy is the more promising technique for exoplanet characterization, but is also very challenging. Current systems can only detect thermal emission→ limited to young giant planets Near future (2020s): ● TESS + JWST transit spectroscopy ● WFIRST mission will measure reflected light of nearby giant planets at optical wavelengths ● Continuous progress from ground-based systems → will also reach reflected light (already some early results with high resolution spectroscopy) End 2020s/early 2030s: ● Habitable exoplanets spectroscopy with ELTs in near-IR, mostly around M-type stars ● Thermal imaging with ELTs for hotter stars 2030s+: ● Space mission (HabEx or LUVOIR): visible light spectroscopy (+ some near-IR). ● Further advances with ELTs, reaching deeper contrast, more targets, shorter wavelength Both tracks are complementary long term: ● Larger telescopes for better spectroscopy ● possible resolved imaging with interferometer ● fly-by (starshot) Breakthrough Initiatives Breakthrough Listen Radio and optical search for artificial signals from other civilizations. Uses multiple radio telescopes + optical spectroscopy. Breakthrough Starshot Send lightweight unmanned starchips to nearby exoplanets (flyby) using laser propulsion. Multi-GW ground-based laser coherent array focuses on meter- scale sail. Acceleration phase fow a few minutes, travel time ~20yr, flyby time ~1hr. Images/spectra sent back to Earth by laser comm Breakthrough Watch Identify and characterize nearby (<5pc) habitable planets using Earth-based (ground and space) observations. Breakthrough Watch will find targets for Breakthrough Starshot BTW Report Top Recommendations Phase 1 focused on Alpha Cen A & B Space-based astrometry (30cm telescope) 10 um ground-based imaging (ESO/VLT, Gemini, Magellan) Phase 2 efforts expands effort to dozens of nearby stars, includes spectroscopic characterization ELT instrumentation: • 10 um imaging of Earth-like planets around Sun-like and hotter stars • Near-IR/Visible imaging of Earth-like planets around nearby M stars (including Prox Cen b) RV & Astrometry: Possible participation to RV / Astrometry mission(s) TOLIMAN Space Astrometry Mission 30cm telescope accurately measures the angular separation between Alpha Cen A and B (~4” apart). Planet would orbiting one of the two stars will induce a periodic modulation of the angular separation. Now starting 6-month study, led by Peter Tuthill (Univ.
Recommended publications
  • Commission 27 of the Iau Information Bulletin
    COMMISSION 27 OF THE I.A.U. INFORMATION BULLETIN ON VARIABLE STARS Nos. 2401 - 2500 1983 September - 1984 March EDITORS: B. SZEIDL AND L. SZABADOS, KONKOLY OBSERVATORY 1525 BUDAPEST, Box 67, HUNGARY HU ISSN 0374-0676 CONTENTS 2401 A POSSIBLE CATACLYSMIC VARIABLE IN CANCER Masaaki Huruhata 20 September 1983 2402 A NEW RR-TYPE VARIABLE IN LEO Masaaki Huruhata 20 September 1983 2403 ON THE DELTA SCUTI STAR BD +43d1894 A. Yamasaki, A. Okazaki, M. Kitamura 23 September 1983 2404 IQ Vel: IMPROVED LIGHT-CURVE PARAMETERS L. Kohoutek 26 September 1983 2405 FLARE ACTIVITY OF EPSILON AURIGAE? I.-S. Nha, S.J. Lee 28 September 1983 2406 PHOTOELECTRIC OBSERVATIONS OF 20 CVn Y.W. Chun, Y.S. Lee, I.-S. Nha 30 September 1983 2407 MINIMUM TIMES OF THE ECLIPSING VARIABLES AH Cep AND IU Aur Pavel Mayer, J. Tremko 4 October 1983 2408 PHOTOELECTRIC OBSERVATIONS OF THE FLARE STAR EV Lac IN 1980 G. Asteriadis, S. Avgoloupis, L.N. Mavridis, P. Varvoglis 6 October 1983 2409 HD 37824: A NEW VARIABLE STAR Douglas S. Hall, G.W. Henry, H. Louth, T.R. Renner 10 October 1983 2410 ON THE PERIOD OF BW VULPECULAE E. Szuszkiewicz, S. Ratajczyk 12 October 1983 2411 THE UNIQUE DOUBLE-MODE CEPHEID CO Aur E. Antonello, L. Mantegazza 14 October 1983 2412 FLARE STARS IN TAURUS A.S. Hojaev 14 October 1983 2413 BVRI PHOTOMETRY OF THE ECLIPSING BINARY QX Cas Thomas J. Moffett, T.G. Barnes, III 17 October 1983 2414 THE ABSOLUTE MAGNITUDE OF AZ CANCRI William P. Bidelman, D. Hoffleit 17 October 1983 2415 NEW DATA ABOUT THE APSIDAL MOTION IN THE SYSTEM OF RU MONOCEROTIS D.Ya.
    [Show full text]
  • A Temperate Rocky Super-Earth Transiting a Nearby Cool Star Jason A
    LETTER doi:10.1038/nature22055 A temperate rocky super-Earth transiting a nearby cool star Jason A. Dittmann1, Jonathan M. Irwin1, David Charbonneau1, Xavier Bonfils2,3, Nicola Astudillo-Defru4, Raphaëlle D. Haywood1, Zachory K. Berta-Thompson5, Elisabeth R. Newton6, Joseph E. Rodriguez1, Jennifer G. Winters1, Thiam-Guan Tan7, Jose-Manuel Almenara2,3,4, François Bouchy8, Xavier Delfosse2,3, Thierry Forveille2,3, Christophe Lovis4, Felipe Murgas2,3,9, Francesco Pepe4, Nuno C. Santos10,11, Stephane Udry4, Anaël Wünsche2,3, Gilbert A. Esquerdo1, David W. Latham1 & Courtney D. Dressing12 15 16,17 M dwarf stars, which have masses less than 60 per cent that of Ks magnitude and empirically determined stellar relationships , the Sun, make up 75 per cent of the population of the stars in the we estimate the stellar mass to be 14.6% that of the Sun and the stellar Galaxy1. The atmospheres of orbiting Earth-sized planets are radius to be 18.6% that of the Sun. We estimate the metal content of the observationally accessible via transmission spectroscopy when star to be approximately half that of the Sun ([Fe/H] = −0.24 ± 0.10; the planets pass in front of these stars2,3. Statistical results suggest 1σ error), and we measure the rotational period of the star to be that the nearest transiting Earth-sized planet in the liquid-water, 131 days from our long-term photometric monitoring (see Methods). habitable zone of an M dwarf star is probably around 10.5 parsecs On 15 September 2014 ut, MEarth-South identified a potential away4. A temperate planet has been discovered orbiting Proxima transit in progress around LHS 1140, and automatically commenced Centauri, the closest M dwarf5, but it probably does not transit and high-cadence follow-up observations (see Extended Data Fig.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • A Concise Dictionary of Middle English
    A Concise Dictionary of Middle English A. L. Mayhew and Walter W. Skeat A Concise Dictionary of Middle English Table of Contents A Concise Dictionary of Middle English...........................................................................................................1 A. L. Mayhew and Walter W. Skeat........................................................................................................1 PREFACE................................................................................................................................................3 NOTE ON THE PHONOLOGY OF MIDDLE−ENGLISH...................................................................5 ABBREVIATIONS (LANGUAGES),..................................................................................................11 A CONCISE DICTIONARY OF MIDDLE−ENGLISH....................................................................................12 A.............................................................................................................................................................12 B.............................................................................................................................................................48 C.............................................................................................................................................................82 D...........................................................................................................................................................122
    [Show full text]
  • The Transfiguration in the Theology of Gregory Palamas And
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Spring 2015 Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology Cory Hayes Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Hayes, C. (2015). Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/640 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY A Dissertation Submitted to the McAnulty Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Cory J. Hayes May 2015 Copyright by Cory J. Hayes 2015 DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY By Cory J. Hayes Approved March 31, 2015 _______________________________ ______________________________ Dr. Bogdan Bucur Dr. Radu Bordeianu Associate Professor of Theology Associate Professor of Theology (Committee Chair) (Committee Member) _______________________________ Dr. Christiaan Kappes Professor of Liturgy and Patristics Saints Cyril and Methodius Byzantine Catholic Seminary (Committee Member) ________________________________ ______________________________ Dr. James Swindal Dr.
    [Show full text]
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Tech
    06/03/2019 Life in the Universe 2019 - Student talks - Google Docs Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies Paul Richter ○ Social aspects? ○ life in zero‑gravity ○ communication ● Prospects for long‑term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars F. Stabel ○ What would be the point of a lunar base? ● Testing extra‑terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life‑/bio‑ signatures: Artem Mosienko ○ On Europa ○ on Exo‑planets ● Solar‑system bodies as potentially life‑bearing systems: B. Prinoth ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH‑64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) Sven Kiefer ● Observational signatures of advanced civilizations Leon Raabe ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) Yves Sibony ● Summary of what is known about the exosolar asteroid ( 'Oumuamua ) Andrea Weibel https://docs.google.com/document/d/1qZdVVX3bP5kyfftaQazeXs3l7sP3TQDq9mL9uGLHrjE/edit# 1/4 06/03/2019 Life in the Universe 2019 - Student talks - Google Docs ● How good is the evidence for an asymmetry of left‑ and right‑ handed organic molecules in nature and where could such an asymmetry come from? O.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • To Trappist-1 RAIR Golaith Ship
    Mission Profile Navigator 10:07 AM - 12/2/2018 page 1 of 10 Interstellar Mission Profile for SGC Navigator - Report - Printable ver 4.3 Start: omicron 2 40 Eri (Star Trek Vulcan home star) (HD Dest: Trappist-1 2Mass J23062928-0502285 in Aquarii [X -9.150] [Y - 26965) (Keid) (HIP 19849) in Eridani [X 14.437] [Y - 38.296] [Z -3.452] 7.102] [Z -2.167] Rendezvous Earth date arrival: Tuesday, December 8, 2420 Ship Type: RAIR Golaith Ship date arrival: Tuesday, January 8, 2419 Type 2: Rendezvous with a coasting leg ( Top speed is reached before mid-point ) Start Position: Start Date: 2-December-2018 Star System omicron 2 40 Eri (Star Trek Vulcan home star) (HD 26965) (Keid) Earth Polar Primary Star: (HIP 19849) RA hours: inactive Type: K0 V Planets: 1e RA min: inactive Binary: B, C, b RA sec: inactive Type: M4.5V, DA2.9 dec. degrees inactive Rank from Earth: 69 Abs Mag.: 5.915956445 dec. minutes inactive dec. seconds inactive Galactic SGC Stats Distance l/y Sector X Y Z Earth to Start Position: 16.2346953 Kappa 14.43696547 -7.10221947 -2.16744969 Destination Arrival Date (Earth time): 8-December-2420 Star System Earth Polar Trappist-1 2Mass J23062928-0502285 Primary Star: RA hours: inactive Type: M8V Planets 4, 3e RA min: inactive Binary: B C RA sec: inactive Type: 0 dec. degrees inactive Rank from Earth 679 Abs Mag.: 18.4 dec. minutes inactive Course Headings SGC decimal dec. seconds inactive RA: (0 <360) 232.905748 dec: (0-180) 91.8817176 Galactic SGC Sector X Y Z Destination: Apparent position | Start of Mission Omega -9.09279603 -38.2336637 -3.46695345 Destination: Real position | Start of Mission Omega -9.09548281 -38.2366036 -3.46626331 Destination: Real position | End of Mission Omega -9.14988933 -38.2961361 -3.45228825 Shifts in distances of Destination Distance l/y X Y Z Change in Apparent vs.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • AD Leonis: Flares Observed by XMM-Newton and Chandra
    A&A 411, 587–593 (2003) Astronomy DOI: 10.1051/0004-6361:20031398 & c ESO 2003 Astrophysics AD Leonis: Flares observed by XMM-Newton and Chandra E. J. M. van den Besselaar1;2, A. J. J. Raassen1;3,R.Mewe1,R.L.J.vanderMeer1,M.G¨udel4, and M. Audard5 1 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands e-mail: [email protected];[email protected];[email protected] 2 Department of Astrophysics, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands 3 Astronomical Institute “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 4 Paul Scherrer Institut, W¨urenlingen & Villigen, 5232 Villigen PSI, Switzerland e-mail: [email protected] 5 Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA e-mail: [email protected] Received 3 February 2003 / Accepted 2 September 2003 Abstract. The M-dwarf AD Leonis has been observed with the Reflection Grating Spectrometers and the European Photon Imaging Camera aboard XMM-Newton and also with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory. In the observation taken with XMM-Newton five large flares produced by AD Leo were identified and only one in the observation taken with Chandra. A quiescent level to the lightcurves is difficult to define, since several smaller flares mutually overlap each other. However, we defined a quasi-steady state outside of obvious flares or flare decays. The spectra from the flare state and the quasi-steady state are analysed separately.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Nasa and the Search for Technosignatures
    NASA AND THE SEARCH FOR TECHNOSIGNATURES A Report from the NASA Technosignatures Workshop NOVEMBER 28, 2018 NASA TECHNOSIGNATURES WORKSHOP REPORT CONTENTS 1 INTRODUCTION .................................................................................................................................................................... 1 What are Technosignatures? .................................................................................................................................... 2 What Are Good Technosignatures to Look For? ....................................................................................................... 2 Maturity of the Field ................................................................................................................................................... 5 Breadth of the Field ................................................................................................................................................... 5 Limitations of This Document .................................................................................................................................... 6 Authors of This Document ......................................................................................................................................... 6 2 EXISTING UPPER LIMITS ON TECHNOSIGNATURES ....................................................................................................... 9 Limits and the Limitations of Limits ...........................................................................................................................
    [Show full text]