LPIB Issue 164 (April 2021)

Total Page:16

File Type:pdf, Size:1020Kb

LPIB Issue 164 (April 2021) THE CHICXULUB IMPACT CRATER: Producing a Cradle of Life in the Midst of a Global Calamity Featured Story | From the Desk of Lori Glaze | Meeting Highlights | News from Space | Spotlight on Education In Memoriam | Milestones | New and Noteworthy | Calendar LUNAR AND PLANETARY INFORMATION BULLETIN April 2021 Issue 164 FEATURED STORY THE CHICXULUB IMPACT CRATER: Producing a Cradle of Life in the Midst of a Global Calamity DAVID A. KRING, LUNAR AND PLANETARY INSTITUTE Expedition 364 mission patch Introduction when the International Ocean Discov- an area that had been a stable sediment ery Program (IODP) and International catchment for over 100 million years? Strategically located scientific drilling Continental Scientific Drilling Program Clues began to emerge when the core can be used to tap the Earth for evi- (ICDP) initiated a new campaign with was analyzed. Logging revealed chem- dence of evolutionary upheavals that the call sign Expedition 364. Drilling ical and petrological variations on the transformed the planet. A good example from a marine platform a few meters granitic theme, plus felsite and dolerite is the Yucatán-6 borehole in Mexico above the sea surface, the new borehole intrusions, in a granitoid rock sequence that recovered rock samples from 1.2 reached a depth of 1335 meters be- that represented continental crust that and 1.3 kilometers beneath Earth’s neath the sea floor (mbsf). The borehole had been assembled through a series of surface. I used those samples 30 years penetrated seafloor sediments that bury tectonic events over more than a billion ago to show that a buried, geophysical- the crater, finally reaching impactites at years. However, that crust in the core ly anomalous structure on the Yucatán a depth of 617 mbsf. Continuous core was crosscut by seams of impact melt Peninsula contained a polymict breccia was recovered from 506 mbsf, within rock and suevite. Moreover, quartz and with shock metamorphism and an impact Eocene sediments deposited 48 million other minerals in the granitoid rocks were melt rock, indicating the buried structure years ago, to the bottom of the borehole deformed, corresponding to shock pres- was an immense impact crater that was within the crater’s 66-million-year-old sures of 16 to 18 gigapascals, indicating excavated 66 million years ago. That peak ring. The core is a scientific marvel, the tectonic construction of the crust had structure, which we called Chicxulub, was exceeding the expedition’s highest hopes been superseded by an impact event. produced by a ~100-million-megaton of success. Here, I briefly summarize blast responsible for a global environ- the science party’s analyses of that core Those observations indicated the granit- mental calamity and mass extinction that and the insights they are gleaning about oid rocks were uplifted from the geologic defines the Cretaceous-Tertiary (K-T) peak ring formation and the biological basement of the Yucatán, far beneath a boundary in Earth’s evolution (see LPIB, communities that reoccupied the site after carbonate platform sequence of sedi- March 2016, for additional details of most life on Earth had been extinguished. mentary strata that covers the peninsula. that discovery). The impact provoked a Numerical simulations of the impact biological crisis that extinguished indicator Formation of the integrated with borehole observations species throughout the world, including suggest the crystalline rock was uplift- winged pterosaurs in the air, non-avian Crater’s Peak Ring ed from a depth of 8 to 10 kilometers. dinosaurs on land, and apex predator During the crater-forming process, the mosasaurs in the seas, along with 75% of Granite. Lots of spectacular-looking uplifted rock formed a transient central the total breadth of species that existed granite. That was a common observa- peak that collapsed outward to form on Earth at that time. Life was decimated. tion when meter after meter of core was a peak ring, overturning the granitoid pulled from the sea, bringing to light one rocks. A dramatic cycle of compres- Science has returned twice to probe the of the expedition’s key questions: Why sion, dilation, rotation, and shear all depths of Chicxulub, most recently in 2016 was granite so near Earth’s surface in occurred within minutes as the crust of 2 Issue 164 April 2021 © Copyright 2021 Lunar and Planetary Institute FEATURED STORY Earth flowed at speeds in excess of 100 being traced across the Chicxulub basin kilometers per hour, producing zones where the breccia blankets an ~3-kilo- of microcommunited rock (cataclasites), meter-thick central melt sheet. Ejected shear faults, and deformation bands that debris was also launched beyond the cross-cut shock metamorphic fabrics. crater rim, where some of it flew through Shearing is particularly intense in the the atmosphere faster than the speed of basal 100 meters of the core, produced sound, producing sonic booms like bil- when overlying granitoid rocks were lions of simultaneously falling meteorites. thrust over impact melt that had already That curtain of debris hit the sea surface covered underlying basement rocks. with such high speeds it caused the sea The resulting impact crater looked very to boil with cavitation. The debris dis- much like the Schrödinger basin on the placed seawater, too, while cascading Moon, before being hidden from view to the seafloor and pummeling marine beneath Tertiary sediments. Asymmetries organisms caught in its path. The speed in Chicxulub’s peak ring and underlying of that debris hitting Earth’s surface grew mantle uplift were noted, however, and larger with distance from the crater and explored in numerical simulations of increasingly ploughed into the surface the crater-forming event. Those results it landed upon. Because the Chicxulub suggest the impactor had a trajectory impact occurred at sea (albeit above from the northeast to the southwest. The continental crust rather than oceanic transient central uplift, potentially rising crust), the ballistic sedimentation process more than 10 kilometers into the atmo- often mixed ejecta with water. In those sphere, was momentarily higher than cases, fluid target materials escaped the An 83-millimeter-diameter granitic core from the Mt. Everest and would have been visible final deposit, leaving behind a blanket Chicxulub peak ring that is crosscut with cataclastic halfway across the Gulf of Mexico if of wholly ejected rock and solidified and hydrothermal veins, and which also has been not obscured by >25 trillion metric tons impact melt. At greater distances, shock-metamorphosed, as illustrated with planar deformation features with ~5-micrometer spacing of ejecta lofted into the atmosphere. beyond the unit traditionally mapped in quartz (inset, with field of view 245 micrometers as proximally emplaced continuous wide). Photomicrograph of quartz by expedition Deposition of ejecta, impact melt spherules cascad- scientist Ludovic Ferrière. Previously published by D. ed through the atmosphere and seas A. Kring, Ph. Claeys, S. P. S. Gulick, J. V. Morgan, G. S. Collins, and the IODP-ICDP Expedition 364 Sci- Impactites throughout the region, forming blankets ence Party (2017) Chicxulub and the exploration of of glass that are still preserved in Beloc large peak-ring impact craters through scientific dril- Some of that ejecta fell back onto the (Haiti), Arroyo el Mimbral (Mexico), ling. GSA Today, 27, DOI: 10.1130/GSATG352A.1. granitoid peak ring, producing 130 and Gorgonilla Island (Colombia). meters of melt-bearing polymict brec- cia (suevite) and impact melt rock. The The impact also generated a vapor-rich Decimating the basal melt rock is a small portion of the ejecta plume that expanded from the 104 to 105 cubic kilometers of molten point of impact, accelerating through the Marine Environment rock generated by wholesale melting of atmosphere as it raced toward space. Earth’s crust by the impact. Overlying Superheated to temperatures on the order The concept of “ground zero” literally ex- breccia clast sizes grow smaller toward of 10,000°, that plume and other ejecta ploded into our lexicon with the 21-kilo- the top of the suevite, but do not form ignited vegetation on distant shores. Back- ton Trinity blast in the Jornada del Muerto a single (normally graded) unit going wash from impact-generated tsunamis desert valley of New Mexico in 1945. from large to small clast sizes. Rather, and/or strong atmospheric circulation The devastating effects of high-energy ex- there is at least one erosional contact carried charcoal from those fires back plosions were immediately obvious and in the lower portion of the breccias and to the crater, where it is found buried in began coloring descriptions of impacting several size-graded intervals toward the core on top of the peak ring. That asteroids like the collision that produced the top of the sequence, indicating high-energy ejecta plume also carried Barringer Meteorite Crater (aka Meteor reworking by marine currents, including vaporized components of the impacting Crater) in Arizona. The Chicxulub impact impact-generated seiches produced object. When it and other debris reaccret- blast was nearly five billion times more when tsunamis and other waves washed ed to Earth, they heated the atmosphere energetic than the Trinity test and seven to and fro across the ocean basin. and generated a firestorm over a broader million times more energetic than the area. Scorched woodland fragments from Meteor Crater event. The Chicxulub blast Impact melt and suevite sampled in the those fires were incorporated into peak- occurred in a thriving marine ecosystem borehole cover more than 100,000 ring sediments, too, with iridium rainout that was, with a flash of light, vaporized. square kilometers of the Gulf seafloor. over a longer period of time, producing The seismic properties of the suevite are a second peak in charcoal abundance. In the mid-1990s, I used the results of 3 Issue 164 April 2021 © Copyright 2021 Lunar and Planetary Institute FEATURED STORY pounds per square inch (or a few to tens of megapascals) and likely lethal out to distances of about 2000 kilometers in the open sea.
Recommended publications
  • Serena M. Aunon-Chancellor (M.D.) NASA Astronaut
    National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 October 2019 Serena M. Aunon-Chancellor (M.D.) NASA Astronaut Summary: Dr. Serena M. Aunon was selected by NASA in 2009. Board certified in Internal and Aerospace Medicine, she recently served as Flight Engineer on the International Space Station for Expeditions 56 and 57. During her time on orbit, the crews contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the International Space Station. Investigations were led into new cancer treatment methods and algae growth in space. The crew also installed a new Life Sciences Glovebox, a sealed work area for life science and technology investigations that can accommodate two astronauts. Serena’s first flight, she logged in 197 days in space. She currently covers medical issues and on-orbit support in the Astronaut Office. Personal Data: Born April 9, 1976 in Indianapolis, Indiana. Considers Fort Collins, CO, to be her home town. Married to Jeff Chancellor and she has a stepdaughter, Serafina Chancellor. Personal and recreational interests include mountain hiking and providing medical care to the underserved. Education: Graduated from Poudre High School, Fort Collins, Colorado in 1993. Received a Bachelor of Science in Electrical Engineering from The George Washington University, Washington, D.C., in 1997 and a Doctorate of Medicine from The University of Texas - Health Science Center at Houston in 2001. Completed a three-year residency in internal medicine at The University of Texas Medical Branch (UTMB) in Galveston, Texas, in 2004, and then completed an additional year as Chief Resident in the Internal Medicine Department in 2005.
    [Show full text]
  • THE MUSCLES TREASURY SURVEY. I. MOTIVATION and OVERVIEW* Kevin France1, R
    The Astrophysical Journal, 820:89 (24pp), 2016 April 1 doi:10.3847/0004-637X/820/2/89 © 2016. The American Astronomical Society. All rights reserved. THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW* Kevin France1, R. O. Parke Loyd1, Allison Youngblood1, Alexander Brown2, P. Christian Schneider3, Suzanne L. Hawley4, Cynthia S. Froning5, Jeffrey L. Linsky6, Aki Roberge7, Andrea P. Buccino8, James R. A. Davenport9,19, Juan M. Fontenla10, Lisa Kaltenegger11, Adam F. Kowalski12, Pablo J. D. Mauas8, Yamila Miguel13, Seth Redfield14, Sarah Rugheimer15, Feng Tian16, Mariela C. Vieytes17, Lucianne M. Walkowicz18, and Kolby L. Weisenburger4 1 Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO 80309, USA; [email protected] 2 Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309, USA 3 European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 5 Department of Astronomy, C1400, University of Texas at Austin, Austin, TX 78712, USA 6 JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309, USA 7 Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 8 Instituto de Astronomía y Física del Espacio (UBA-CONICET) and Departamento de Física (UBA), CC.67, suc. 28, 1428, Buenos Aires, Argentina 9 Department of Physics & Astronomy, Western Washington University, Bellingham,
    [Show full text]
  • AAS/AIAA Astrodynamics Specialist Conference
    DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com AAS/AIAA Astrodynamics Specialist Conference July 31 ‐ August 4, 2011 Girdwood, Alaska AAS General Chair AIAA General Chair Ryan P. Russell William Todd Cerven Georgia Institute of Technology The Aerospace Corporation AAS Technical Chair AIAA Technical Chair Hanspeter Schaub Brian C. Gunter University of Colorado Delft University of Technology DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com Cover images: Top right: Conference Location: Aleyska Resort in Girdwood Alaska. Middle left: Cassini looking back at an eclipsed Saturn, Astronomy picture of the day 2006 Oct 16, credit CICLOPS, JPL, ESA, NASA; Middle right: Shuttle shadow in the sunset (in honor of the end of the Shuttle Era), Astronomy picture of the day 2010 February 16, credit: Expedition 22 Crew, NASA. Bottom right: Comet Hartley 2 Flyby, Astronomy picture of the day 2010 Nov 5, Credit: NASA, JPL-Caltech, UMD, EPOXI Mission DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com Table of Contents Registration ............................................................................................................................................... 5 Schedule of Events ................................................................................................................................... 6 Conference Center Layout ........................................................................................................................ 7 Conference Location: The Hotel Alyeska ...............................................................................................
    [Show full text]
  • Habitabilidade No Sistema Solar
    Jorge Martins Teixeira HABITABILIDADE NO SISTEMA SOLAR Departamento de Física e Astronomia. Faculdade de Ciências da Universidade do Porto. Ano de 2014 Prefácio O tema da existência de vida no sistema solar é extremamente interessante. Gente de todas as idades, formações escolares e profissões se questiona se estamos sós no Universo. E gente de todos os tempos. É um assunto inesgotável. Estar em cima deste planeta e ver aquelas pintinhas lá longe tão inacessíveis é sentir que estamos perante algo que nos ultrapassa completamente. Mas que é ao mesmo tempo extremamente fascinante. Isso mesmo tive oportunidade de constatar numas férias que passei no Alentejo quando estive presente no Andanças - basicamente uma série de pavilhões onde se aprende a dançar - pois quando me encontrava altas horas da noite a indicar aos meus colegas onde se encontrava a estrela polar, a posição da Via Láctea, e outros fenómenos astronómicos fui surpreendido por um grupo de umas dez pessoas, de todas as idades, que se apercebeu do que estava a fazer e propôs a realização de uma sessão de observação de astronomia naquele recinto. De pergunta a pergunta a olhar para o céu estrelado, os minutos passaram a mais de uma hora. Isto é, a juntar à dança propriamente dita não lhes parecia mal acrescentar as danças dos corpos celestes. Seria também interessante fazer uma pesquisa nos livros de divulgação científica quais aqueles que fazem da astronomia o seu principal tema. E dar o devido valor a estas matérias que têm sido um pouco subalternizadas no ensino por outras. E ir para o espaço é o nosso futuro.
    [Show full text]
  • 2021 Transpacific Yacht Race Event Program
    TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs .
    [Show full text]
  • A Researcher's Guide to Earth Observations
    National Aeronautics and Space Administration A Researcher’s Guide to: Earth Observations This International Space Station (ISS) Researcher’s Guide is published by the NASA ISS Program Science Office. Authors: William L. Stefanov, Ph.D. Lindsey A. Jones Atalanda K. Cameron Lisa A. Vanderbloemen, Ph.D Cynthia A. Evans, Ph.D. Executive Editor: Bryan Dansberry Technical Editor: Carrie Gilder Designer: Cory Duke Published: June 11, 2013 Revision: January 2020 Cover and back cover: a. Photograph of the Japanese Experiment Module Exposed Facility (JEM-EF). This photo was taken using External High Definition Camera (EHDC) 1 during Expedition 56 on June 4, 2018. b. Photograph of the Momotombo Volcano taken on July 10, 2018. This active stratovolcano is located in western Nicaragua and was described as “the smoking terror” in 1902. The geothermal field that surrounds this volcano creates ideal conditions to produce thermal renewable energy. c. Photograph of the Betsiboka River Delta in Madagascar taken on June 29, 2018. This river is comprised of interwoven channels carrying sediment from the mountains into Bombetoka Bay and the Mozambique Channel. The heavy islands of built-up sediment were formed as a result of heavy deforestation on Madagascar since the 1950s. 2 The Lab is Open Orbiting the Earth at almost 5 miles per second, a structure exists that is nearly the size of a football field and weighs almost a million pounds. The International Space Station (ISS) is a testament to international cooperation and significant achievements in engineering. Beyond all of this, the ISS is a truly unique research platform. The possibilities of what can be discovered by conducting research on the ISS are endless and have the potential to contribute to the greater good of life on Earth and inspire generations of researchers to come.
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • Discovering the Lost Race Story: Writing Science Fiction, Writing Temporality
    Discovering the Lost Race Story: Writing Science Fiction, Writing Temporality This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia 2008 Karen Peta Hall Bachelor of Arts (Honours) Discipline of English and Cultural Studies School of Social and Cultural Studies ii Abstract Genres are constituted, implicitly and explicitly, through their construction of the past. Genres continually reconstitute themselves, as authors, producers and, most importantly, readers situate texts in relation to one another; each text implies a reader who will locate the text on a spectrum of previously developed generic characteristics. Though science fiction appears to be a genre concerned with the future, I argue that the persistent presence of lost race stories – where the contemporary world and groups of people thought to exist only in the past intersect – in science fiction demonstrates that the past is crucial in the operation of the genre. By tracing the origins and evolution of the lost race story from late nineteenth-century novels through the early twentieth-century American pulp science fiction magazines to novel-length narratives, and narrative series, at the end of the twentieth century, this thesis shows how the consistent presence, and varied uses, of lost race stories in science fiction complicates previous critical narratives of the history and definitions of science fiction. In examining the implicit and explicit aspects of temporality and genre, this thesis works through close readings of exemplar texts as well as historicist, structural and theoretically informed readings. It focuses particularly on women writers, thus extending previous accounts of women’s participation in science fiction and demonstrating that gender inflects constructions of authority, genre and temporality.
    [Show full text]
  • Professor Jun'ichiro Kawaguchi: Particles Brought Back From
    Japan Aerospace Exploration Agency January 2011 No. 03 Special Features Professor Jun’ichiro Kawaguchi: Refl ecting on the Hayabusa mission and the future of space exploration Particles brought back from Asteroid Itokawa: What methods did researchers use to discover particles inside Hayabusa’s sample-return capsule? Contents No. 03 Japan Aerospace Exploration Agency 1−7 Interview with Professor Jun’ichiro Welcome to JAXA TODAY Kawaguchi The Japan Aerospace Exploration Agency (JAXA) works to realize its Midori Nishiura, advisor to JAXA vision of contributing to a safe and prosperous society through the on public affairs, interviewed pursuit of research and development in the aerospace fi eld to deepen Professor Jun’ichiro Kawaguchi humankind’s understanding of the universe. JAXA’s activities cover a on such topics as the development broad spectrum of the space and aeronautical fi elds, including satellite of Japan’s space probes and the development and operation, astronomical observation, planetary future of space exploration. exploration, participation in the International Space Station (ISS) project, and the development of new rockets and next-generation aeronautical technology. 8-11 With the aim of disseminating information about JAXA’s activities How many particles from Itokawa and recent news relating to Japan’s space development programs to was Hayabusa able to capture? as wide an audience as possible, we launched JAXA TODAY in January 2010. Marking the fi rst anniversary of the launch of JAXA TODAY, in What methods did research- this, the third issue, we feature an interview with Professor Jun’ichiro ers use to discover the particles Kawaguchi, who led the Hayabusa project, and also provide a close-up brought back from Asteroid look at how the particles brought back from Asteroid Itokawa were dis- Itokawa inside Hayabusa’s covered inside Hayabusa’s sample-return capsule.
    [Show full text]
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Tech
    06/03/2019 Life in the Universe 2019 - Student talks - Google Docs Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies Paul Richter ○ Social aspects? ○ life in zero‑gravity ○ communication ● Prospects for long‑term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars F. Stabel ○ What would be the point of a lunar base? ● Testing extra‑terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life‑/bio‑ signatures: Artem Mosienko ○ On Europa ○ on Exo‑planets ● Solar‑system bodies as potentially life‑bearing systems: B. Prinoth ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH‑64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) Sven Kiefer ● Observational signatures of advanced civilizations Leon Raabe ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) Yves Sibony ● Summary of what is known about the exosolar asteroid ( 'Oumuamua ) Andrea Weibel https://docs.google.com/document/d/1qZdVVX3bP5kyfftaQazeXs3l7sP3TQDq9mL9uGLHrjE/edit# 1/4 06/03/2019 Life in the Universe 2019 - Student talks - Google Docs ● How good is the evidence for an asymmetry of left‑ and right‑ handed organic molecules in nature and where could such an asymmetry come from? O.
    [Show full text]
  • Space Coast Is Getting Busy: 6 New Rockets Coming to Cape Canaveral, KSC
    4/16/2019 Space Coast is getting busy: 6 new rockets coming to Cape Canaveral, KSC Space Coast is getting busy: 6 new rockets coming to Cape Canaveral, Kennedy Space Center Emre Kelly, Florida Today Published 4:04 p.m. ET April 11, 2019 | Updated 7:53 a.m. ET April 12, 2019 COLORADO SPRINGS, Colo. – If schedules hold, the Space Coast will live up to its name over the next two years as a half-dozen new rockets target launches from sites peppered across the Eastern Range. Company, government and military officials here at the 35th Space Symposium, an annual space conference, have reaffirmed their plans to launch rockets ranging from more traditional heavy-lift behemoths to smaller vehicles that take advantage of new manufacturing technologies. Even if some of these schedules slip, at least one thing is apparent to several spaceflight experts here: The Eastern Range is seeing an unprecedented growth in commercial space companies and efforts. Space Launch System: 2020 NASA's Space Launch System rocket launches from Kennedy Space Center's pad 39B in this rendering by the agency. (Photo: NASA) NASA's long-awaited SLS, a multibillion-dollar rocket announced in 2011, is slated to become the most powerful launch vehicle in history if it can meet a stringent late 2020 deadline. The 322-foot-tall rocket is expected to launch on its first flight – Exploration Mission 1 – from Kennedy Space Center with an uncrewed Orion capsule for a mission around the moon, which fits in with the agency's wider goal of putting humans on the surface by 2024.
    [Show full text]
  • Store 3 Catalog
    LOCATION PRODUCT CODE DESCRIPTION PRODUCT SIZE PRICE STORE #3 705819 10 BARREL CRUSH SOUR MIX 12C 17.49 STORE #3 703556 10 BARREL RASPBERRY SOUR 6C 10.49 STORE #3 704465 10,000 DROPS SPICED RUM 750ML 33.99 STORE #3 700940 1000 STORIES ZINFANDEL * 750ML 19.99 STORE #3 701150 12 CIDER HOUSE BLCK CURRANT 1B 12.99 STORE #3 701820 12 CIDER HOUSE CHESTNUT 1B 11.49 STORE #3 6414 123 TRES ANEJO TEQUILA 750ML 61.99 STORE #3 704020 13 CELSIUS P GRIGIO 750ML 10.99 STORE #3 4556 13 CELSIUS SAUV BLANC 750ML 10.99 STORE #3 7980 14 HANDS CAB 750ML 14.49 STORE #3 8579 14 HANDS HOT TO TROT RED 750ML 11.49 STORE #3 7981 14 HANDS MERLOT 750ML 14.49 STORE #3 7973 14 HANDS MOSCATO 750ML 11.49 STORE #3 7975 14 HANDS PINOT GRIGIO 750ML 11.49 STORE #3 7917 14 HANDS RIESLING 750ML 11.49 STORE #3 706784 1776 JAMES E PEPPER BOUR 750ML 34.99 STORE #3 706785 1776 JAMES E PEPPER RYE 750ML 34.99 STORE #3 703989 1792 BOURBON BOND 750ML 54.99 STORE #3 703566 1792 FULL PROOF SINGLE BAR 750ML 47.99 STORE #3 701887 1792 SINGLE BARREL BOURBON 750ML 47.99 STORE #3 17266 1792 SMALL BATCH BOURBON 750ML 30.99 STORE #3 6252 1800 REPOSADO 375 ML 15.99 STORE #3 6219 1800 REPOSADO 750ML 27.99 STORE #3 700280 1800 SILVER 375 ML 14.99 STORE #3 705486 1800 SILVER 50 ML 3.49 STORE #3 6222 1800 SILVER 750ML 27.99 STORE #3 6253 1800 SILVER TEQUILA 1.75 L 43.99 STORE #3 2958 1809 BERLINER WEISSE 1B 6.99 STORE #3 702967 1865 CABERNET SAUVIGNON 750ML 19.97 STORE #3 700832 19 CRIMES CAB 750ML 11.99 STORE #3 400000009919 19 CRIMES CALI RED 750ML 14.49 STORE #3 400000011639 19 CRIMES CHARD 375ML
    [Show full text]