5-6Index 6 MB

Total Page:16

File Type:pdf, Size:1020Kb

5-6Index 6 MB CLEAR SKIES OBSERVING GUIDES 5-6" Carbon Stars 228 Open Clusters 751 Globular Clusters 161 Nebulae 199 Dark Nebulae 139 Planetary Nebulae 105 Supernova Remnants 10 Galaxies 693 Asterisms 65 Other 4 Clear Skies Observing Guides - ©V.A. van Wulfen - clearskies.eu - [email protected] Index ANDROMEDA - the Princess ST Andromedae And CS SU Andromedae And CS VX Andromedae And CS AQ Andromedae And CS CGCS135 And CS UY Andromedae And CS NGC7686 And OC Alessi 22 And OC NGC752 And OC NGC956 And OC NGC7662 - "Blue Snowball Nebula" And PN NGC7640 And Gx NGC404 - "Mirach's Ghost" And Gx NGC891 - "Silver Sliver Galaxy" And Gx Messier 31 (NGC224) - "Andromeda Galaxy" And Gx Messier 32 (NGC221) And Gx Messier 110 (NGC205) And Gx "Golf Putter" And Ast ANTLIA - the Air Pump AB Antliae Ant CS U Antliae Ant CS Turner 5 Ant OC ESO435-09 Ant OC NGC2997 Ant Gx NGC3001 Ant Gx NGC3038 Ant Gx NGC3175 Ant Gx NGC3223 Ant Gx NGC3250 Ant Gx NGC3258 Ant Gx NGC3268 Ant Gx NGC3271 Ant Gx NGC3275 Ant Gx NGC3281 Ant Gx Streicher 8 - "Parabola" Ant Ast APUS - the Bird of Paradise U Apodis Aps CS IC4499 Aps GC NGC6101 Aps GC Henize 2-105 Aps PN Henize 2-131 Aps PN AQUARIUS - the Water Bearer Messier 72 (NGC6981) Aqr GC Messier 2 (NGC7089) Aqr GC NGC7492 Aqr GC NGC7009 - "Saturn Nebula" Aqr PN NGC7293 - "Helix Nebula" Aqr PN NGC7184 Aqr Gx NGC7377 Aqr Gx NGC7392 Aqr Gx NGC7585 (Arp 223) Aqr Gx NGC7606 Aqr Gx NGC7721 Aqr Gx NGC7727 (Arp 222) Aqr Gx NGC7723 Aqr Gx Messier 73 (NGC6994) Aqr Ast 14 Aquarii Group Aqr Ast 5-6" V2.4 Clear Skies Observing Guides - ©V.A. van Wulfen - clearskies.eu - [email protected] 2 AQUILA - the Eagle UV Aquilae Aql CS V Aquilae Aql CS CGCS4247 Aql CS V374 Aquilae Aql CS V1469 Aquilae Aql CS NGC6709 Aql OC Collinder 401 Aql OC Alessi 10 Aql OC NGC6760 Aql GC Lynds 582 Aql DN Lynds 617 Aql DN Barnard 132 Aql DN Barnard 133 Aql DN Barnard 135 Aql DN Barnard 139 Aql DN Lynds 673 Aql DN Lynds 684 Aql DN Barnard 336 Aql DN Barnard 335 Aql DN Barnard 142 & Barnard 143 - "Barnard's E" Aql DN NGC6741 - "the Phantom Streak" Aql PN NGC6751 - "Glowing Eye Nebula" Aql PN NGC6772 Aql PN NGC6778 Aql PN NGC6781 - "Snowglobe Nebula" Aql PN NGC6790 Aql PN NGC6804 Aql PN NGC6852 Aql PN ARA - the Altar T Arae Ara CS SZ Arae Ara CS Collinder 307 Ara OC NGC6193 & NGC6188 - "Rim Nebula" Ara OC NGC6200 Ara OC NGC6204 Ara OC Hogg 22 Ara OC NGC6208 Ara OC NGC6250 Ara OC NGC6253 Ara OC Alessi-Teutsch 12 Ara OC Alessi 24 Ara OC IC4651 Ara OC NGC6352 Ara GC NGC6362 Ara GC NGC6397 (Lacaille III.11) Ara GC Van den Bergh-Herbst 81 Ara Neb Feitzinger-Stüwe 2-229 Ara DN NGC6326 Ara PN NGC6221 Ara Gx NGC6300 Ara Gx ARIES - the Ram V Arietis Ari CS Dolidze-Dzimselejsvili 1 Ari OC Barnard 203 Ari DN Arp 78 (NGC772 - "Fiddlehead Galaxy" & NGC770) Ari Gx NGC821 Ari Gx NGC877 & NGC876 Ari Gx NGC972 Ari Gx 5-6" V2.4 Clear Skies Observing Guides - ©V.A. van Wulfen - clearskies.eu - [email protected] 3 AURIGA - the Charioteer CGCS781 Aur CS V346 Aurigae Aur CS EL Aurigae Aur CS TX Aurigae Aur CS V348 Aurigae Aur CS UV Aurigae Aur CS S Aurigae Aur CS FU Aurigae Aur CS V Aurigae Aur CS UU Aurigae Aur CS NGC1664 Aur OC NGC1778 Aur OC Dolidze 16 Aur OC Melotte 31 - "Flying Minnow" Aur OC Teutsch 89 Aur OC NGC1893 & IC410 - "Letter Y Cluster" Aur OC Czernik 20 Aur OC NGC1857 Aur OC Waterloo 2 Aur OC Messier 38 (NGC1912) - "Letter Pi Cluster" Aur OC NGC1907 Aur OC Stock 8 & IC417 - "the Spider" Aur OC Messier 36 (NGC1960) - "Pinwheel Cluster" Aur OC Stock 10 Aur OC Messier 37 (NGC2099) - "Auriga Salt and Pepper Cluster" Aur OC NGC2281 - "Broken Heart Cluster" Aur OC IC405 - "Flaming Star Nebula" Aur Neb NGC1931 - "the Fly" Aur Neb IC2149 Aur PN NGC1896 Aur Ast NGC2240 Aur Ast BOÖTES - the Herdsman NGC5466 Boo GC NGC5248 Boo Gx NGC5557 & SDSS J141826.41+362921.8 Boo Gx NGC5676 Boo Gx Picot 1 - "Napoleon's Hat" Boo Ast CAELUM - the Chisel T Caeli Cae CS NGC1679 Cae Gx CAMELOPARDALIS - the Giraffe U Camelopardalis Cam CS UV Camelopardalis Cam CS ST Camelopardalis Cam CS S Camelopardalis Cam CS RU Camelopardalis Cam CS Stock 23 - "Pazimo's Cluster" Cam OC King 6 Cam OC Tombaugh 5 Cam OC NGC1502 - "Golden Harp Cluster" Cam OC NGC1708 Cam OC Collinder 464 Cam OC Barnard 8, Barnard 9, Barnard 11 & Barnard 13 Cam DN Barnard 12 Cam DN NGC1501 - "Oyster Nebula" Cam PN IC3568 - "Lemon Slice Nebula" Cam PN NGC1569 (Arp 210) Cam Gx NGC2146 - "Dusty Hand Galaxy" Cam Gx NGC2336 & PGC213387 Cam Gx NGC2403 Cam Gx 5-6" V2.4 Clear Skies Observing Guides - ©V.A. van Wulfen - clearskies.eu - [email protected] 4 NGC2655 (Arp 225) Cam Gx NGC2715 Cam Gx "Kemble's Cascade" Cam Ast CANCER - the Crab X Cancri Cnc CS T Cancri Cnc CS GM Cancri Cnc CS Messier 44 (NGC2632) - "Praesepe" Cnc OC Messier 67 (NGC2682) - "King Cobra" Cnc OC NGC2775 Cnc Gx NGC2678 Cnc Ast CANES VENATICI - the Hunting Dogs Y Canum Venaticorum - "La Superba" CVn CS TT Canum Venaticorum CVn CS Upgren 1 CVn OC Messier 3 (NGC5272) CVn GC Holmberg 333 (NGC4111 & NGC4109), PGC2210517 & PGC2210701 CVn Gx NGC4145 CVn Gx NGC4151 - "Eye of Sauron" CVn Gx NGC4156 CVn Gx NGC4214 CVn Gx NGC4244 - "Silver Needle Galaxy" CVn Gx Messier 106 (NGC4258) CVn Gx NGC4248 CVn Gx NGC4449 - "Box Galaxy" CVn Gx Arp 269 (NGC4485 & NGC4490 - "Cocoon Galaxy") CVn Gx NGC4618 (Arp 23) CVn Gx NGC4625 CVn Gx Arp 281 - "Whale Galaxy & the Pup" CVn Gx Vorontsov-Vel'yaminov 1560 (NGC4656 & NGC4657) - "Crowbar Galaxy" CVn Gx Messier 94 (NGC4736) - "Croc's Eye Galaxy" CVn Gx NGC5005 CVn Gx NGC5033 CVn Gx Messier 63 (NGC5055) - "Sunflower Galaxy" CVn Gx Messier 51 (NGC5194 & NGC5195 - Arp 85) - "Whirlpool Galaxy" CVn Gx Hickson 68 CVn Gx NGC5371 CVn Gx NGC5377 CVn Gx NGC5383 CVn Gx CANIS MAJOR - the Great Dog IV Canis Majoris CMa CS W Canis Majoris CMa CS NGC2204 CMa OC NGC2243 CMa OC Messier 41 (NGC2287) - "Little Beehive" CMa OC Collinder 121 - "Omicron Canis Majoris Cluster" CMa OC NGC2345 CMa OC NGC2354 CMa OC Collinder 132 CMa OC Basel 11A CMa OC NGC2360 - "Caroline's Cluster" CMa OC NGC2374 CMa OC Waterloo 7 CMa OC NGC2383 CMa OC NGC2384 CMa OC NGC2367 CMa OC Trumpler 6 CMa OC NGC2362 - "Tau Canis Majoris Cluster" CMa OC Collinder 140 (Lacaille II.2) - "Tuft in the Tail of the Dog" CMa OC Sharpless 296 - "Seagull Nebula" CMa Neb NGC2327, &GN07.01.9.01 CMa Neb Cederblad 90 & Lynds 1657A CMa Neb 5-6" V2.4 Clear Skies Observing Guides - ©V.A. van Wulfen - clearskies.eu - [email protected] 5 Cederblad 96 CMa Neb NGC2359 - "Thor's Helmet" CMa Neb IC2165 CMa PN NGC2206 CMa Gx Vorontsov-Vel'yaminov 1155 (NGC2207 & IC2163) - "Cosmic Owl" CMa Gx NGC2217 CMa Gx NGC2223 CMa Gx NGC2272 CMa Gx NGC2280 CMa Gx NGC2295 CMa Gx NGC2292 & NGC2293 CMa Gx IC456 CMa Gx NGC2325 CMa Gx CANIS MINOR - the Little Dog R Canis Minoris CMi CS BK Canis Minoris CMi CS BE Canis Minoris CMi CS W Canis Minoris CMi CS DN Canis Minoris CMi CS Herschel 1 CMi OC NGC2394 CMi Ast CAPRICORNUS - the Sea Goat R Capricorni Cap CS RT Capricorni Cap CS Messier 30 - "Jellyfish Cluster" Cap GC NGC6907 - "Giant Behemoth Galaxy" Cap Gx CARINA - the Keel SZ Carinae Car CS CGCS2792 Car CS ESO123-26 Car OC-1 NGC2516 (Lacaille II.3) - "Southern Beehive" Car OC-1 NGC3036 Car OC-1 ESO62-08 Car OC-1 Melotte 101 Car OC-1 IC2602 (Lacaille II.9) - "Southern Pleiades" Car OC-1 Collinder 236 Car OC-1 NGC3532 (Lacaille II.10) - "Wishing Well Cluster" Car OC-1 Stock 13 Car OC-1 NGC3572 & Gum 37 Car OC-1 Collinder 240 Car OC-1 Trumpler 18 Car OC-1 Hogg 12 Car OC-1 NGC3590 Car OC-1 IC2714 Car OC-1 Melotte 105 Car OC-1 NGC3114 - "Hand Cluster" Car OC-2 Loden 28 Car OC-2 Van den Bergh-Hagen 90 Car OC-2 Trumpler 13 Car OC-2 Westerlund 2 & Gum 29 Car OC-2 NGC3247 Car OC-2 IC2581 Car OC-2 NGC3293 & Gum 30 (Lacaille II.8) - "Gem Cluster" Car OC-2 Bochum 9 Car OC-2 Van den Bergh-Hagen 99 Car OC-2 Trumpler 15 Car OC-2 Trumpler 14 Car OC-2 Collinder 232 Car OC-2 Trumpler 16 - "Eta Carinae Cluster" Car OC-2 Collinder 228 (Lacaille III.5) Car OC-2 Bochum 11 Car OC-2 Trumpler 17 Car OC-2 5-6" V2.4 Clear Skies Observing Guides - ©V.A. van Wulfen - clearskies.eu - [email protected] 6 NGC2808 Car GC IC2220 - "Butterfly Nebula" Car Neb NGC3199 Car Neb NGC3372 (Lacaille III.6) - "Eta Carinae Nebula" Car Neb NGC3324 - "Gabriela Mistral Nebula" Car Neb Gum 32 Car Neb "Statue of Liberty Nebula" Car Neb NGC3603 Car Neb IC2448 - "Herschel's Missed Planetary" Car PN NGC2867 Car PN IC2501 Car PN Henize 2-36 Car PN IC2553 Car PN NGC3211 Car PN Hoffleit 39 Car PN IC2621 Car PN NGC3059 Car Gx NGC3136 Car Gx "Tiny Southern Cross" Car Ast CASSIOPEIA - the Queen WZ Cassiopeia Cas CS ST Cassiopeia Cas CS CP Cassiopeia Cas CS W Cassiopeia Cas CS WW Cassiopeia Cas CS V623 Cassiopeia Cas CS Messier 52 (NGC7654) - "the Scorpion" Cas OC Stock 11 Cas OC Stock 12 Cas OC NGC7788 Cas OC NGC7790 - "Widow's Web Cluster" Cas OC NGC7789 - "Caroline's Rose" Cas OC Stock 19 Cas OC NGC129 Cas OC NGC133 Cas OC King 14 Cas OC NGC189 Cas OC NGC225 - "Sailboat Cluster" Cas OC Alessi 1 Cas OC NGC436 Cas OC NGC457 - "Owl Cluster" Cas OC Messier 103 (NGC581) Cas OC Trumpler 1 Cas OC NGC637 Cas OC NGC654 - "Fuzzy Butterfly Cluster" Cas OC NGC663 - "Letter S Cluster" Cas OC Collinder 463 Cas OC NGC743 Cas OC Stock 5 Cas OC Stock 2 - "V Man Cluster" Cas OC Markarian 6 Cas OC NGC1027 Cas OC Minkowski 1-101 Cas Neb NGC7635 - "Bubble Nebula" Cas Neb Lynds 578 Cas Neb NGC281 & IC1590 - "Pacman Nebula" Cas Neb IC1805 - "Heart Nebula" Cas Neb NGC896 & IC1795 - "Fishhead Nebula" Cas Neb "Soul Nebula" Cas Neb Gyulbudaghian-Akopian 3-8 Cas DN Hubble 12 Cas PN IC1747 Cas PN IC289 Cas PN NGC185 Cas Gx NGC278 - "Ninja Star Galaxy" Cas Gx 5-6" V2.4 Clear Skies Observing Guides - ©V.A.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • As101 Galaxy V2
    Reminder 1. “Runaway Universe” assignment, with an in-class essay next week 2. Final Exam on 05/09 - Mandatory Presence; no make up - Closed online searches - Open book and open notes 3. Misc? This presentation on galaxy deviates from the textbook materials It is built with the next week’s presentation in mind Hubble’s Classification of Galaxies (Tuning Fork) http://en.wikipedia.org/wiki/Galaxy_morphological_classification MWG is SBb - Hubble Classification is improved upon by de Vaucouleurs We will see some examples of each type Let’s begin with our galactic neighbors The Whirlpool Galaxy M51 (M51a) (And companion M51b) Grand-design galaxy Self-sustaining star forming regions along spiral arm M51b: Lencular? (SB0) Amorphous? Irregular? Our Big Neighbors: M33 and M31 (Barred Spirals) http://tehgeektive.com/2012/06/12/what-happens-when-two-galaxies-collide-video/ Our Big Neighbors: M33 and M31 (Barred Spirals) http://apod.nasa.gov/apod/ap121220.html Triangulum Galaxy (Pinwheel) (M33, NGC 598) http://apod.nasa.gov/apod/ap080124.html Andromeda Galaxy (M31, NGC224) M32, a small elliptical dwarf, is above M110, a spheroidal dwarf, is below http:// annesastronomynews.com/annes-picture-of-the-day- the-andromeda-galaxy/ Andromeda - M31 - Barred Spiral http://apod.nasa.gov/apod/ap130202.html/ http://apod.nasa.gov/apod/ap120518.html Herschel Space Observatory (better than Spitzer) GALEX Bar can be seen! Hot Blue stars (O and B stars) Warm dust à will have star formation (now quiescent) Shows some ring structure – collision with M32? All about Andromeda
    [Show full text]
  • The Brightest Stars Seite 1 Von 9
    The Brightest Stars Seite 1 von 9 The Brightest Stars This is a list of the 300 brightest stars made using data from the Hipparcos catalogue. The stellar distances are only fairly accurate for stars well within 1000 light years. 1 2 3 4 5 6 7 8 9 10 11 12 13 No. Star Names Equatorial Galactic Spectral Vis Abs Prllx Err Dist Coordinates Coordinates Type Mag Mag ly RA Dec l° b° 1. Alpha Canis Majoris Sirius 06 45 -16.7 227.2 -8.9 A1V -1.44 1.45 379.21 1.58 9 2. Alpha Carinae Canopus 06 24 -52.7 261.2 -25.3 F0Ib -0.62 -5.53 10.43 0.53 310 3. Alpha Centauri Rigil Kentaurus 14 40 -60.8 315.8 -0.7 G2V+K1V -0.27 4.08 742.12 1.40 4 4. Alpha Boötis Arcturus 14 16 +19.2 15.2 +69.0 K2III -0.05 -0.31 88.85 0.74 37 5. Alpha Lyrae Vega 18 37 +38.8 67.5 +19.2 A0V 0.03 0.58 128.93 0.55 25 6. Alpha Aurigae Capella 05 17 +46.0 162.6 +4.6 G5III+G0III 0.08 -0.48 77.29 0.89 42 7. Beta Orionis Rigel 05 15 -8.2 209.3 -25.1 B8Ia 0.18 -6.69 4.22 0.81 770 8. Alpha Canis Minoris Procyon 07 39 +5.2 213.7 +13.0 F5IV-V 0.40 2.68 285.93 0.88 11 9. Alpha Eridani Achernar 01 38 -57.2 290.7 -58.8 B3V 0.45 -2.77 22.68 0.57 144 10.
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • STERNBILD GIRAFFE (Camelopardalis – Cam)
    STERNBILD GIRAFFE (Camelopardalis – Cam) Die GIRAFFE ist ein Sternbild des nördlichen Himmels. Sie kulminiert im Dezember gegen 24h. Es ist ein unauffälliges Sternbild und besteht aus visuell lichtschwachen Sternen, beinhaltet aber interessante Mehrfachsterne und Deep Sky- Objekte. Für ungeübte Beobachter ein Tip: fast alle Sterne, die zwischen dem POLARSTERN und CAPELLA aufzuspüren sind, gehören zur Giraffe. Im Februar und März 2016 zeigt sich der Komet C/2013 US10 CATALINA in diesem Sternbild. Die Giraffe befindet sich innerhalb der Koordinaten RE 14h 26’ bis 03h 15’ und DE +52° bis +86°; Die Nachbarsternbilder sind im Norden KEPHEUS, im Westen KASSIOPEIA, im Süden PERSEUS, FUHRMANN und LUCHS sowie im Osten der GROßE BÄR, DRACHE und KLEINE BÄR Die Giraffe ist nördlich von 37° geogr. Breite zirkumpolar und südl. von –4° nicht mehr vollständig sichtbar. Die Objekte: 1. die Markierungssterne 2. Doppel- und Mehrfachsterne 3. die Veränderlichen 4. der Offene Sternhaufen NGC 1502 5. die Galaxien NGC2403 und IC 342 1. die Markierungssterne Die Sterne im Giraffen gehören wahrlich nicht zu den sichtbar Hellsten, wenn man bedenkt, dass der Stern BETA mit 4 Magnituden an der Spitze steht. Es sind jedoch mitunter wahre Leuchtkraftriesen dabei, die wegen der immensen Distanz nicht heller erscheinen. Das Gerüst des Giraffen wird von den Sternen 7 Cam – Beta – Alpha – Gamma – CS und CE markiert. Gamma (γ) Camelopardalis, RE 03h 50' 21“ / DE +71° 20' mv= 4,59mag; Spektrum= A2IVn; Distanz= 335LJ; LS= 128fach; Mv= -1,0Mag; MS= 3,7fach; RS= 5,5fach; OT= 9250K; EB= 0,042“/Jhr.; RG= -1,0km/s; Doppelstern; mv Komponente B= 12,4mag; Distanz A-B= 56,2“; PW= 240° (1909) Gamma markiert das Hinterteil der Giraffe; Alpha (α) Camelopardalis, 9 Cam; RE 04h 54' 03“ /DE +66°20' mv= 4,26mag; Spektrum= 09,5Ia, Distanz ca.
    [Show full text]
  • Best Possible Astroimaging for the Beginner on the Cheap – Course: HET 615, November 2004 Supervisor: Dr
    Project: Best Possible Astroimaging for the Beginner on the Cheap – Course: HET 615, November 2004 Supervisor: Dr. Pamela Gay – Student: Eduardo Manuel Alvarez Best Possible Astroimaging for the Beginner on the Cheap Abstract The objective for this project is to analyze the different imaging alternatives currently at the reach of any novice amateur astronomer. Considering that each one of the three possible astroimaging options -that is, film, CCD, and webcam imaging- has its own pros and cons, to know in advance which one becomes particularly appropriate for a given target becomes the ineludible very first step in the right way to achieve success. The selected technique has also to be applied at field with properness. Despite the apparent rudimentary of simple astroimaging gear, serious information can be inferred as long as it is rightfully used. What does “rightfully used” actually mean and which “serious information” can be particularly obtained will be the main discussed topics along this report. Finally, a head to head comparison will summarize the obtained results. Figure 1 Despite suburban skies, the glory of the Milky Way’s centre can still be easily imaged, as this not-neat framed shot proves. As for all remaining images in this report, south is up. Page 1 of 35 Project: Best Possible Astroimaging for the Beginner on the Cheap – Course: HET 615, November 2004 Supervisor: Dr. Pamela Gay – Student: Eduardo Manuel Alvarez 1. Introduction There are two basic possibilities for imaging: either analog or digital. Each one intrinsically achieves very different characteristics regarding linearity, dynamic range, spectral sensitivity, efficiency, etc.
    [Show full text]
  • Planets and Exoplanets
    NASE Publications Planets and exoplanets Planets and exoplanets Rosa M. Ros, Hans Deeg International Astronomical Union, Technical University of Catalonia (Spain), Instituto de Astrofísica de Canarias and University of La Laguna (Spain) Summary This workshop provides a series of activities to compare the many observed properties (such as size, distances, orbital speeds and escape velocities) of the planets in our Solar System. Each section provides context to various planetary data tables by providing demonstrations or calculations to contrast the properties of the planets, giving the students a concrete sense for what the data mean. At present, several methods are used to find exoplanets, more or less indirectly. It has been possible to detect nearly 4000 planets, and about 500 systems with multiple planets. Objetives - Understand what the numerical values in the Solar Sytem summary data table mean. - Understand the main characteristics of extrasolar planetary systems by comparing their properties to the orbital system of Jupiter and its Galilean satellites. The Solar System By creating scale models of the Solar System, the students will compare the different planetary parameters. To perform these activities, we will use the data in Table 1. Planets Diameter (km) Distance to Sun (km) Sun 1 392 000 Mercury 4 878 57.9 106 Venus 12 180 108.3 106 Earth 12 756 149.7 106 Marte 6 760 228.1 106 Jupiter 142 800 778.7 106 Saturn 120 000 1 430.1 106 Uranus 50 000 2 876.5 106 Neptune 49 000 4 506.6 106 Table 1: Data of the Solar System bodies In all cases, the main goal of the model is to make the data understandable.
    [Show full text]