STERNBILD GIRAFFE (Camelopardalis – Cam)

Total Page:16

File Type:pdf, Size:1020Kb

STERNBILD GIRAFFE (Camelopardalis – Cam) STERNBILD GIRAFFE (Camelopardalis – Cam) Die GIRAFFE ist ein Sternbild des nördlichen Himmels. Sie kulminiert im Dezember gegen 24h. Es ist ein unauffälliges Sternbild und besteht aus visuell lichtschwachen Sternen, beinhaltet aber interessante Mehrfachsterne und Deep Sky- Objekte. Für ungeübte Beobachter ein Tip: fast alle Sterne, die zwischen dem POLARSTERN und CAPELLA aufzuspüren sind, gehören zur Giraffe. Im Februar und März 2016 zeigt sich der Komet C/2013 US10 CATALINA in diesem Sternbild. Die Giraffe befindet sich innerhalb der Koordinaten RE 14h 26’ bis 03h 15’ und DE +52° bis +86°; Die Nachbarsternbilder sind im Norden KEPHEUS, im Westen KASSIOPEIA, im Süden PERSEUS, FUHRMANN und LUCHS sowie im Osten der GROßE BÄR, DRACHE und KLEINE BÄR Die Giraffe ist nördlich von 37° geogr. Breite zirkumpolar und südl. von –4° nicht mehr vollständig sichtbar. Die Objekte: 1. die Markierungssterne 2. Doppel- und Mehrfachsterne 3. die Veränderlichen 4. der Offene Sternhaufen NGC 1502 5. die Galaxien NGC2403 und IC 342 1. die Markierungssterne Die Sterne im Giraffen gehören wahrlich nicht zu den sichtbar Hellsten, wenn man bedenkt, dass der Stern BETA mit 4 Magnituden an der Spitze steht. Es sind jedoch mitunter wahre Leuchtkraftriesen dabei, die wegen der immensen Distanz nicht heller erscheinen. Das Gerüst des Giraffen wird von den Sternen 7 Cam – Beta – Alpha – Gamma – CS und CE markiert. Gamma (γ) Camelopardalis, RE 03h 50' 21“ / DE +71° 20' mv= 4,59mag; Spektrum= A2IVn; Distanz= 335LJ; LS= 128fach; Mv= -1,0Mag; MS= 3,7fach; RS= 5,5fach; OT= 9250K; EB= 0,042“/Jhr.; RG= -1,0km/s; Doppelstern; mv Komponente B= 12,4mag; Distanz A-B= 56,2“; PW= 240° (1909) Gamma markiert das Hinterteil der Giraffe; Alpha (α) Camelopardalis, 9 Cam; RE 04h 54' 03“ /DE +66°20' mv= 4,26mag; Spektrum= 09,5Ia, Distanz ca. 3200LJ; LS= 71000fach; Mv= -7,1Mag; MS= 43,2fach; RS= 36,8fach; OT= 27700K; EB= 0,008“/Jhr.; RG= -6,1km/s; Alter ca. 2Mill. Jahre; Im OH NGC 1502 in der Cam R1 Assoziation; möglicherweise „Runawaystar“ von Cam OB1; Alpha markiert die Hüfte der Giraffe CS Camelopardalis, H2 Cam; B Cam; RE 03h 29' 04“ / DE +59° 56“ mv= 4,21mag; Spektrum= B9Ia; Distanz= 4292LJ; LS= 30000fach; Mv= -4,6Mag; MS= 17,5fach; RS= 63,3fach; OT= 11600K; EB= 0,001“/Jhr.; RG= -6,8km/s; Alter ca, 16,5Mill. Jahre; zur Cam OB1 Assoziation in Cam R1; CS markiert den Hinterhuf; Doppelstern; siehe 3. Doppelsterne; Veränderlich; Typ α Cyg (Nichtradiale Pulsatoren, Überriesen); Amplitude= 4,29mag - 4,34mag; Periode= 26,76 Tage; CE Camelopardalis, RE 03h 29' 55“ / DE +58° 52' mv= 4,55mag; Spektrum= A0Ia; Distanz= 2500LJ; LS= 7200fach; Mv= -4,9Mag; MS= 15,5fach; RS= 73fach; OT= 9730K; EB= 0,007“/Jhr.; RG= -6,0km/s; Alter ca. 11,6Mill. Jahre; zur Cam OB1 Assoziation in Cam R1; CE markiert den Hinterhufzehe; Veränderlich; Typ α Cyg (Nichtradiale Pulsatoren, Überriesen); Amplitude= 4,54mag – 4,57mag; Beta Camelopardalis, RE 05h 03' 25“ / DE +60° 36' mv= 4,03mag; Spektrum= G0Ib; Distanz= 1000LJ; LS= 1900fach; Mv= -3,4Mag; MS= 6,6fach; RS= 62fach; OT= 5940K; EB= 0,014“/Jhr.; RG= -1,7km/s; Alter ca. 40Mill. Jahre; Beta markiert das Vorderbein; Doppelstern; siehe 3. Doppelsterne; 7 Camelopardalis, RE 04h 57' 17“ / DE +53° 45' mv= 4,43mag; Spektrum= A1V; Distanz= 376LJ; LS= 187fach; Mv= -0,9Mag; MS= 3,9fach; RS= 5,4fach; OT= 9400K; EB= 0,024“/Jhr.; RG= -7,9km/s; 7 markiert den Vorderhuf der Giraffe; spektrobinär; Periode= 3,885 Tage; Mehrfachstern; mv Komponente B= 7,70mag; Spektrum Komponente B= F5V; Distanz A-B= 0,78“; PW= 216° (1997); Orbitdauer= 284 Jahre; mv Komponente C= 11,3mag; Distanz AB-C= 25,8“; PW= 240° (1831); zum Bärenstrom; 2. Doppelsterne Beta Camelopardalis, RE 05h 03' 25“ / DE +60° 36'; Gesamthelligkeit 4,03mag mv Komponenten A + B= 4,12mag + 7,44mag; Spektren A + B= G0Ib + A5V; Distanz A-B= 83“; PW= 210° (2003); wahre mittlere Distanz= 25000AE (3,75Bill. Km= ca. 0,35LJ); Orbitdauer ca. 1Mill. Jahre; siehe 1. Markierungssterne CS Camelopardalis, RE 03h 29' 04“ / DE +59° 56'; Gesamthelligkeit 4,21mag mv Komponenten A + B= 4,23mag + 7,80mag; Spektren A + B= B9Ia + A2V; Distanz A-B= 2,4“; PW= 162° (2010); siehe 1. Markierungssterne 11/12 Camelopardalis 05h 06' 08“ / DE +58° 58'; Gesamthelligkeit 5,22mag; mv Komponenten 11 + 12= 5,22mag + 6,21mag; Spektren 11 + 12= B2,5Ve + K0III; Distanz 11-12= 178,7“; PW= 9° (1991); optisch doppelt; Komponente 11: Spektrum= B2,5Ve; Distanz= 670; LS= 288fach; Mv= -1,4Mag; MS= 5fach; RS= 4,5fach; OT= 16121K; EB= 0,006“/Jhr.; RG= -11,0km/s; Typ γC (Hüllenstern); Amplitude= 5,08mag – 5,15mag; Periode= irregulär; Komponente 12: Spektrum= K0III; Distanz= 620LJ; LS= 113fach; Mv= -0,3Mag; EB= 0,029“/Jhr.; RG= - 8,0km/s; spektrobinär; Periode= 80,174 Tage; RSC- veränderl.; Amplitude= 6,18mag – 6,21mag; Periode= 82,8 Tage; HD 24480 (OΣ 67), RE 03h 57' 08“ / DE +61° 06'; Gesamthelligkeit 4,99mag mv Komponenten A + B= 5,25mag + 8,06mag; Spektren A + B= K3II + B9V; Distanz A-B= 1,7“; PW= 49° (1991); HD 24480: Spektrum K3Ib; Distanz= 1850LJ; LS= 2700fach; Mv= -3,8Mag; EB= 0,011“/Jhr.; RG= -2,4km/s; HD 112028 Camelopardalis, 32H Cam; RE 12h 49' 14“ / DE +83° 24'; Gesamthelligkeit 5,29mag mv Komponenten A + B= 5,29mag + 5,74mag; Spektren A + B= A1III + A0V; Distanz A-B= 21,5“; PW= 329° (1997); optisch doppelt; mv Komponenten A + C= 5,29mag + 11,5mag; Distanz A-C= 73,5“; PW= 223° (2003) Komponente B: Distanz= 220LJ; LS= 17fach; Mv= 1,8Mag; EB= 0,031“/Jhr.; Komponente B= spektrobinär; Periode= 3,287 Tage; Spektren= A0V + A2V; 2 Camelopardalis, RE 04h 39' 58“ / DE +53° 28'; Gesamthelligkeit 5,38mag mv Komponenten A + B= 5,60mag + 7,50mag, Spektren A + B= A9V + F8V; Distanz A-B= 0,3“; PW= 166° (1997), Orbitdauer= 26,25Jahre; mv Komponenten AB + C= 5,38mag + 7,30mag; Spektren A + C= A9V + F8V; Distanz A-B= 1,4“; PW= 256° (1997); Orbitdauer= 425 Jahre; 2 Camelopardalis, Spektrum= A8V; Distanz= 277LJ; LS= 43fach; Mv= 0,7Mag; MS= 3,1fach; RS= 2,1fach; OT= 8100K; EB= 0,102“/Jhr., RG= +20,1km/s; 1 Camelopardalis, RE 04h 33' 04“ / DE +53° 56'; Gesamthelligkeit 5,78mag mv Komponenten A + B= 5,80mag + 6,82mag; Spektren A + B= B0IIISB + B1IV; Distanz A-B= 10,3“; PW= 308° (2003); 1 (DL) Camelopardalis: Spektrum= B0III; Distanz ca. 2000LJ; LS= 2340fach; Mv= -3,6Mag; MS= 14,6fach; RS= 8fach; OT= 27500K; EB= 0,001“/Jhr.; RG= -7,0km/s; zur Cam OB1 Assoziation; βC- veränderlich; Amplitude= 5,81mag – 5,85mag; 3. Veränderliche Sterne BE Camelopardalis, RE 03h 49' 31“ / DE +65° 31'; mittlere Helligkeit 4,39mag; Lc- veränderlich (langsam unregelmäßig veränderliche Überriesen der späten Spektralklassen); Amplitude= 4,35mag-4,50mag; Periode irregulär; Spektrum= M1III; Distanz= 960LJ; LS= 1280fach; Mv= -3,0Mag; MS= 2,9fach; RS= 212fach; OT= 3450K; EB= 0,009“/Jhr.; RG= -3,3km/s; BK Camelopardalis, RE 03h 19' 59“ / DE +65° 39'; mittlere Helligkeit 4,74mag Typ γC (Hüllenstern); Amplitude= 4,78mag-4,89mag; Periode= irregulär; Spektrum= B2,5Vpe; Distanz= 762LJ; LS= 640fach; Mv= -2,2Mag; MS= 8,1fach; RS= 4,7fach; OT= 21300K; EB= 0,m018“/Jhr.; RG= -3,4km/s; VZ Camelopardalis, RE 07h 31' 04“ / DE +82° 24'; mittlere Helligkeit 4,92mag Typ SRa (Z Aqr – Halbregelmäßig veränderlich); Amplitude= 4,80mag-4,96mag; Periode= 23,7 Tage; Spektrum= M4IIIa; Distanz= 473LJ; LS= 189fach; Mv= -0,9Mag; EB= 0,041“/Jhr.; RG= +14,3km/s; zur Hyadengruppe BD Camelopardalis, RE 03h 42' 09“ / DE +63° 13'; mittlere Helligkeit 5,06mag Typ Lb (langsam unregelmäßig veränderliche Riesen der späten Spektralklassen); Amplitude= 5,04mag- 5,17mag; Periode irregulär; Spektrum= M4III; Distanz= 520LJ; LS= 200fach; Mv= -1,0Mag; RS= 135fach; OT= 3250K; EB= 0,026“/Jhr.; RG= -22,0km/s; CQ Camelopardalis, RE 03h 24' 41“ / DE +64° 35'; mittlere Helligkeit 5,13mag Typ Lc (angsam unregelmäßig veränderliche Überriesen der späten Spektralklassen); Amplitude= 5,15mag- 5,27mag; Periode irregulär; Spektrum= M0II; Distanz= 1250LJ; LS= 1080fach; Mv= -2,8Mag; OT= 3598K; EB= 0,008“/Jhr.; RG= - 22,2km/s; CO Camelopardealis, RE 12h 12' 12“ / DE + 77° 37'; mittlere Helligkeit 5,14mag Typ Ell (Ellipsoid veränderlich); Amplitude= 5,14mag – 5,21mag; Spektrum= A5Vm; Distanz= 109,8LJ; LS= 8fach; Mv= 2,5Mag; MS= 1,8fach; OT= 9000K; EB= 0,019“/Jhr.; RG= -0,2km/s; spektrobinär; Periode= 1,271 Tage; TU Camelopardalis, 31 Cam: RE 05h 54' 58“ / DE +59° 53'; mittlere Helligkeit 5,20mag Typ EB (bedeckungsveränderl. Typ Beta Lyr); Amplitude= 5,12mag – 5,29mag; Periode= 2,933 Tage; Speltrum= A2V; Distanz= 405LJ; LS= 107fach; Mv= -0,3Mag; MS= 31,fach; RS= 2,1fach; OT= 8850K; EB= 0,019“/Jhr.; RG= -2,9km/s; 4. Der Offene Sternhaufen NGC 1502 NGC 1502, RE 04h 07‘ 52“ / DE +62° 20‘; Offener Sternhaufen; Typ II3p; mv= 6,9m ag; D= 8‘; Distanz 3400 LJ; RG= - 20,7km/s; Alter etwa 11,2 Mill. Jahre; etwa 45 Sterne ab 6,9mag; NGC 1502 befindet sich etwa 5° westlich Mitte Linie α Cam (4,3mag) – β Cam (4,0mag); Es ist ein mäßig konzentrierter Haufen. Steve Coe beobachtete 27 Sterne, verschieden helle Paare und einen schönen blau- gelben Doppelstern. Im Nordwesten bei 100fach. Er ist schon im 11X80 Fernglas leicht zu finden. Der 6,9mag- Stern (SZ Cam) ist der hellste Stern im Haufen. 5. Die Galaxien NGC 2403 und IC 342 NGC 2403, RE 07h 36‘ 51“ / DE +65° 36‘ Spiralgalaxie; Typ Sc; mv= 8,2mag; D= 23,4‘ X 12,3‘;wahrer D= 75000 LJ; PW= 127°; Mv= -19,5Mag; Distanz ca.
Recommended publications
  • Gerbert of Aurillac: Astronomy and Geometry in Tenth Century Europe
    October 25, 2018 15:56 WSPC/INSTRUCTION FILE Sigismondi-Gerbert International Journal of Modern Physics: Conference Series c World Scientific Publishing Company GERBERT OF AURILLAC: ASTRONOMY AND GEOMETRY IN TENTH CENTURY EUROPE COSTANTINO SIGISMONDI Sapienza University of Rome, Physics Dept., and Galileo Ferraris Institute P.le Aldo Moro 5 Roma, 00185, Italy. e-mail: [email protected] University of Nice-Sophia Antipolis - Dept. Fizeau (France); IRSOL, Istituto Ricerche Solari di Locarno (Switzerland) Received 6 Feb 2012 Revised Day Month Year Gerbert of Aurillac was the most prominent personality of the tenth century: as- tronomer, organ builder and music theoretician, mathematician, philosopher, and finally pope with the name of Silvester II (999-1003). Gerbert introduced firstly the arabic num- bers in Europe, invented an abacus for speeding the calculations and found a rational approximation for the equilateral triangle area, in the letter to Adelbold here discussed. Gerbert described a semi-sphere to Constantine of Fleury with built-in sighting tubes, used for astronomical observations. The procedure to identify the star nearest to the North celestial pole is very accurate and still in use in the XII century, when Computa- trix was the name of Polaris. For didactical purposes the Polaris would have been precise enough and much less time consuming, but here Gerbert was clearly aligning a precise equatorial mount for a fixed instrument for accurate daytime observations. Through the sighting tubes it was possible to detect equinoxes and solstices by observing the Sun in the corresponding days. The horalogium of Magdeburg was probably a big and fixed- mount nocturlabe, always pointing the star near the celestial pole.
    [Show full text]
  • Ioptron AZ Mount Pro Altazimuth Mount Instruction
    ® iOptron® AZ Mount ProTM Altazimuth Mount Instruction Manual Product #8900, #8903 and #8920 This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ......................................................................................................................................... 3 1. AZ Mount ProTM Altazimuth Mount Overview...................................................................................... 5 2. AZ Mount ProTM Mount Assembly ........................................................................................................ 6 2.1. Parts List .......................................................................................................................................... 6 2.2. Identification of Parts ....................................................................................................................... 7 2.3. Go2Nova® 8407 Hand Controller .................................................................................................... 8 2.3.1. Key Description .......................................................................................................................
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • IC-342 IC-342 Is an Intermediate Spiral Galaxy in the Constellation Camelopardalis
    MONTHLY OBSERVER’S CHALLENGE Las Vegas Astronomical Society Compiled by: Roger Ivester, Boiling Springs, North Carolina & Fred Rayworth, Las Vegas, Nevada With special assistance from: Rob Lambert, Las Vegas, Nevada November 2010 IC 342 (Caldwell 5) - Hidden Galaxy in Camelopardalis Introduction The purpose of the observer’s challenge is to encourage the pursuit of visual observing. It is open to everyone that is interested, and if you are able to contribute notes, drawings, or photographs, we will be happy to include them in our monthly summary. Observing is not only a pleasure, but an art. With the main focus of amateur astronomy on astrophotography, many times people tend to forget how it was in the days before cameras, clock drives, and GOTO. Astronomy depended on what was seen through the eyepiece. Not only did it satisfy an innate curiosity, but it allowed the first astronomers to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what the astronomer saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings and that is the tradition we are stressing in the observers challenge. By combining our visual observations with our drawings, and sometimes, astrophotography (from those with the equipment and talent to do so), we get a unique understanding of what it is like to look through an eyepiece, and to see what is really there. The hope is that you will read through these notes and become inspired to take more time at the eyepiece studying each object, and looking for those subtle details that you might never have noticed before.
    [Show full text]
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • N O T I C E This Document Has Been Reproduced From
    N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE ,^a__ . ^22 •^ ^•_ - j RF Project 762142/712834 Final Technical Report 486- 152 19 (NASA - CLc - 17b356) CCNTINUEG UlIbAYICLEI S:UDIE5 61 SVME bE STABS Gr LAILL TYNE Fival Tccht,lcal kel ort, 15 May lStO - 31 Auq. 1985 (Ohio State UDiv-, Cclumbus.) Uuclas 76 p HC AC5 /Mk AC1 CSCL 03A G^/69 U4847 CONTINUED ULTRAVIOLET STUDIES OF SOME Be STABS OF LATER TYPE Arne Slettebak Department of Astronomy ^4r For the Period - i May 15, 1980 - August 31, 1985 1 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771 Grant No. NAG 5-52 3 November 1985 The Ohio State University Research Foundation 1314 Kinnear Road Columbus, Ohio 43212 .. io from NASA CP-2238, "Advances in Ultraviolet Astronomy* Four Years of IUE Research", ed. Y. Kondo, J. K. read, and R. D. Chapman, 1982, p. 579 ULTRAVIOLET SPECTRA OF SOME BRIGHT LATER-TYPE Be STARS AND A-F SHELL STARS .01 Arne Slattebak .Parkins Observatory Ohio State and Ohio Wesleyan Universities ABSTRACT Anomalous ionization (C IV and Si IV) is seen in IUE spectra of Be stars as late as B8, and occurs also in standard stare of similar spectral types. Asymmetrical lines suggesting mass lose are present in all the Be stars and several of the standard stars as well, with no obvious correlation with v sin i.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 4.00 Observing List for 24 7 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 60 75 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 73 111 Andromeda Pi Andromedae 4.4 8.6 35.9 bright white & faint blue 0 36.9 33 43 72 71 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 58 80 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 89 34 Andromeda NGC 7662 (The Blue Snowball) planetary nebula, fairly bright & slightly elongated 23 25.9 42 32.1 75 84 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 75 85 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 75 82 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 60 84 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 57 73 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 89 173 Andromeda NGC7640 elongated galaxy with mottled halo 23 22.1 40 51 82 10 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 47 200 Aquarius 55 Aquarii, Zeta 4.3 4.5 2.1 close, elegant pair of yellow stars 22 28.8 0 -1 35 181 Aquarius 94 Aquarii 5.3 7.3 12.7 pale rose & emerald 23 19.1 -13 28 30 173 Aquarius 107 Aquarii 5.7 6.7 6.6 yellow-white & bluish-white 23 46 -18 41 26 221 Aquarius M72 globular cluster 20 53.5 -12 32 27 220 Aquarius M73 Y-shaped asterism of 4 stars 20 59 -12 38 40 181 Aquarius NGC7606 Galaxy 23 19.1 -8 29 28 219 Aquarius NGC7009
    [Show full text]
  • Six Units for Primary (K-2) Gifted/Talented Students. Self
    DOCUMENT RESUME ED 333 675 EC 300 431 AUTHOR McCallister, Corliss TITLE Six Units for Primary (K-2) Gifted/Talented Students. Se?f (Psychology), Plants (Botany), Animals (Zoology), Measurement (Mathematics), Space (Astronomy), Computers (Technology). INSTITUTION Education Service Center Region 7, Kilgore, Tex. PUB DATE 88 NOTE 403p. PUB TYPE Guides - Classroom Use - Teaching Guides (For Teacher) (052) EDRS PRICE MF01/PC17 Plus Postage. DESCRIPTORS Animals; Computers; *Curriculum; Diagnostic Teaching; Experiential Learning; *Gifted; Learning Activities; Measurement; Plants (Botany); Primary Education; Self Concept; Space Sciences; *Student Educational Objectives; *Talent; *Teaching Methods ABSTRACT This curriculum for gifted/talented students in kindergarten through grade 2 focuses on the cognitive, affective, and psychomotor domains in the areas of language arts, mathematics, music, physical education (dance), science, social studies, theatre, and visual arts. The curriculum is student centered, experientially based, exploratory, holistic/integrative, and individualized by diagnostic prescriptive teaching. An introductory section provides goals; long-term objectives; and information on adapting the curriculum by kind and degree of giftedness, minority subpopulation, and delivery system. The curriculum covers six units: self, plants, animals, measurement, space, and computers. For each unit, the curriculum contains background information, a chart depicting visual organization of the topics, short-term objectives, field trip ideas, speaker
    [Show full text]