The Atmospheric Parameters and Spectral Interpolator for the MILES Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gerbert of Aurillac: Astronomy and Geometry in Tenth Century Europe
October 25, 2018 15:56 WSPC/INSTRUCTION FILE Sigismondi-Gerbert International Journal of Modern Physics: Conference Series c World Scientific Publishing Company GERBERT OF AURILLAC: ASTRONOMY AND GEOMETRY IN TENTH CENTURY EUROPE COSTANTINO SIGISMONDI Sapienza University of Rome, Physics Dept., and Galileo Ferraris Institute P.le Aldo Moro 5 Roma, 00185, Italy. e-mail: [email protected] University of Nice-Sophia Antipolis - Dept. Fizeau (France); IRSOL, Istituto Ricerche Solari di Locarno (Switzerland) Received 6 Feb 2012 Revised Day Month Year Gerbert of Aurillac was the most prominent personality of the tenth century: as- tronomer, organ builder and music theoretician, mathematician, philosopher, and finally pope with the name of Silvester II (999-1003). Gerbert introduced firstly the arabic num- bers in Europe, invented an abacus for speeding the calculations and found a rational approximation for the equilateral triangle area, in the letter to Adelbold here discussed. Gerbert described a semi-sphere to Constantine of Fleury with built-in sighting tubes, used for astronomical observations. The procedure to identify the star nearest to the North celestial pole is very accurate and still in use in the XII century, when Computa- trix was the name of Polaris. For didactical purposes the Polaris would have been precise enough and much less time consuming, but here Gerbert was clearly aligning a precise equatorial mount for a fixed instrument for accurate daytime observations. Through the sighting tubes it was possible to detect equinoxes and solstices by observing the Sun in the corresponding days. The horalogium of Magdeburg was probably a big and fixed- mount nocturlabe, always pointing the star near the celestial pole. -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
The Scale-Invariant Vacuum (SIV) Theory: a Possible Origin of Dark Matter and Dark Energy
universe Article The Scale-Invariant Vacuum (SIV) Theory: A Possible Origin of Dark Matter and Dark Energy Andre Maeder 1,* and Vesselin G. Gueorguiev 2,3 1 Geneva Observatory, University of Geneva, chemin des Maillettes 51, CH-1290 Sauverny, Switzerland 2 Institute for Advanced Physical Studies, Montevideo Street, Sofia 1618, Bulgaria; [email protected] 3 Ronin Institute for Independent Scholarship, 127 Haddon Pl., Montclair, NJ 07043, USA * Correspondence: [email protected] Received: 7 February 2020; Accepted: 9 March 2020; Published: 18 March 2020 Abstract: The Scale Invariant Vacuum (SIV) theory rests on the basic hypothesis that the macroscopic empty space is scale invariant. This hypothesis is applied in the context of the Integrable Weyl Geometry, where it leads to considerable simplifications in the scale covariant cosmological equations. After an initial explosion and a phase of braking, the cosmological models show a continuous acceleration of the expansion. Several observational tests of the SIV cosmology are performed: on the relation between H0 and the age of the Universe, on the m − z diagram for SNIa data and its extension to z = 7 with quasars and GRBs, and on the H(z) vs. z relation. All comparisons show a very good agreement between SIV predictions and observations. Predictions for the future observations of the redshift drifts are also given. In the weak field approximation, the equation of motion contains, in addition to the classical Newtonian term, an acceleration term (usually very small) depending on the velocity. The two-body problem is studied, showing a slow expansion of the classical conics. The new equation has been applied to clusters of galaxies, to rotating galaxies (some proximities with Modifies Newtonian Dynamics, MOND, are noticed), to the velocity dispersion vs. -
XIII Publications, Presentations
XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys. -
New Atmospheric Parameters and Spectral Interpolator for the MILES Cool Stars Kaushal Sharma1,2,3, Philippe Prugniel1,2, and Harinder P
A&A 585, A64 (2016) Astronomy DOI: 10.1051/0004-6361/201526111 & c ESO 2015 Astrophysics New atmospheric parameters and spectral interpolator for the MILES cool stars Kaushal Sharma1,2,3, Philippe Prugniel1,2, and Harinder P. Singh3,1,2 1 Université de Lyon, Université Lyon 1, 69622 Villeurbanne, France e-mail: [email protected] 2 CRAL, Observatoire de Lyon, CNRS UMR 5574, 69561 Saint-Genis Laval, France 3 Department of Physics and Astrophysics, University of Delhi, 110007 Delhi, India e-mail: [kaushal;hpsingh]@physics.du.ac.in Received 17 March 2015 / Accepted 18 October 2015 ABSTRACT Context. The full spectrum fitting of stellar spectra against a library of empirical spectra is a well-established approach to measure the atmospheric parameters of FGK stars with a high internal consistency. Extending it towards cooler stars still remains a challenge. Aims. We address this question by improving the interpolator of the Medium-resolution INT Library of Empirical Spectra (MILES) library in the low effective temperature regime (Teff < 4800 K), and we refine the determination of the parameters of the cool MILES stars. Methods. We use the ULySS package to determine the atmospheric parameters (Teff,logg and [Fe/H]), and measure the biases of the results with respect to our updated compilation of parameters calibrated against theoretical spectra. After correcting some systematic effects, we compute a new interpolator that we finally use to redetermine the atmospheric parameters homogeneously and assess the biases. Results. Based on an updated literature compilation, we determine Teff in a more accurate and unbiased manner compared to those determined with the original interpolator. -
Ioptron AZ Mount Pro Altazimuth Mount Instruction
® iOptron® AZ Mount ProTM Altazimuth Mount Instruction Manual Product #8900, #8903 and #8920 This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ......................................................................................................................................... 3 1. AZ Mount ProTM Altazimuth Mount Overview...................................................................................... 5 2. AZ Mount ProTM Mount Assembly ........................................................................................................ 6 2.1. Parts List .......................................................................................................................................... 6 2.2. Identification of Parts ....................................................................................................................... 7 2.3. Go2Nova® 8407 Hand Controller .................................................................................................... 8 2.3.1. Key Description ....................................................................................................................... -